Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdh6hN | Structured version Visualization version GIF version |
Description: Lemmma for mapdh6N 39755. Part (6) of [Baer] p. 48 line 2. (Contributed by NM, 1-May-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mapdh.q | ⊢ 𝑄 = (0g‘𝐶) |
mapdh.i | ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) |
mapdh.h | ⊢ 𝐻 = (LHyp‘𝐾) |
mapdh.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
mapdh.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
mapdh.v | ⊢ 𝑉 = (Base‘𝑈) |
mapdh.s | ⊢ − = (-g‘𝑈) |
mapdhc.o | ⊢ 0 = (0g‘𝑈) |
mapdh.n | ⊢ 𝑁 = (LSpan‘𝑈) |
mapdh.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
mapdh.d | ⊢ 𝐷 = (Base‘𝐶) |
mapdh.r | ⊢ 𝑅 = (-g‘𝐶) |
mapdh.j | ⊢ 𝐽 = (LSpan‘𝐶) |
mapdh.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
mapdhc.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
mapdh.mn | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) |
mapdhcl.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
mapdh.p | ⊢ + = (+g‘𝑈) |
mapdh.a | ⊢ ✚ = (+g‘𝐶) |
mapdh6d.xn | ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) |
mapdh6d.yz | ⊢ (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍})) |
mapdh6d.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
mapdh6d.z | ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) |
mapdh6d.w | ⊢ (𝜑 → 𝑤 ∈ (𝑉 ∖ { 0 })) |
mapdh6d.wn | ⊢ (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) |
Ref | Expression |
---|---|
mapdh6hN | ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdh.q | . . . 4 ⊢ 𝑄 = (0g‘𝐶) | |
2 | mapdh.i | . . . 4 ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) | |
3 | mapdh.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | mapdh.m | . . . 4 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
5 | mapdh.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
6 | mapdh.v | . . . 4 ⊢ 𝑉 = (Base‘𝑈) | |
7 | mapdh.s | . . . 4 ⊢ − = (-g‘𝑈) | |
8 | mapdhc.o | . . . 4 ⊢ 0 = (0g‘𝑈) | |
9 | mapdh.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑈) | |
10 | mapdh.c | . . . 4 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
11 | mapdh.d | . . . 4 ⊢ 𝐷 = (Base‘𝐶) | |
12 | mapdh.r | . . . 4 ⊢ 𝑅 = (-g‘𝐶) | |
13 | mapdh.j | . . . 4 ⊢ 𝐽 = (LSpan‘𝐶) | |
14 | mapdh.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
15 | mapdhc.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
16 | mapdh.mn | . . . 4 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) | |
17 | mapdhcl.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
18 | mapdh.p | . . . 4 ⊢ + = (+g‘𝑈) | |
19 | mapdh.a | . . . 4 ⊢ ✚ = (+g‘𝐶) | |
20 | mapdh6d.xn | . . . 4 ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) | |
21 | mapdh6d.yz | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍})) | |
22 | mapdh6d.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
23 | mapdh6d.z | . . . 4 ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) | |
24 | mapdh6d.w | . . . 4 ⊢ (𝜑 → 𝑤 ∈ (𝑉 ∖ { 0 })) | |
25 | mapdh6d.wn | . . . 4 ⊢ (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) | |
26 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 | mapdh6gN 39750 | . . 3 ⊢ (𝜑 → ((𝐼‘〈𝑋, 𝐹, 𝑤〉) ✚ (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉)) = (((𝐼‘〈𝑋, 𝐹, 𝑤〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑌〉)) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) |
27 | 3, 10, 14 | lcdlmod 39600 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ LMod) |
28 | 24 | eldifad 3904 | . . . . 5 ⊢ (𝜑 → 𝑤 ∈ 𝑉) |
29 | 3, 5, 14 | dvhlvec 39117 | . . . . . . . 8 ⊢ (𝜑 → 𝑈 ∈ LVec) |
30 | 17 | eldifad 3904 | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
31 | 22 | eldifad 3904 | . . . . . . . 8 ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
32 | 6, 9, 29, 28, 30, 31, 25 | lspindpi 20390 | . . . . . . 7 ⊢ (𝜑 → ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑌}))) |
33 | 32 | simpld 495 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑋})) |
34 | 33 | necomd 3001 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑤})) |
35 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 28, 34 | mapdhcl 39735 | . . . 4 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑤〉) ∈ 𝐷) |
36 | 23 | eldifad 3904 | . . . . . . 7 ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
37 | 6, 9, 29, 30, 31, 36, 20 | lspindpi 20390 | . . . . . 6 ⊢ (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}))) |
38 | 37 | simpld 495 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
39 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 31, 38 | mapdhcl 39735 | . . . 4 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) ∈ 𝐷) |
40 | 37 | simprd 496 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})) |
41 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 36, 40 | mapdhcl 39735 | . . . 4 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑍〉) ∈ 𝐷) |
42 | 11, 19 | lmodass 20134 | . . . 4 ⊢ ((𝐶 ∈ LMod ∧ ((𝐼‘〈𝑋, 𝐹, 𝑤〉) ∈ 𝐷 ∧ (𝐼‘〈𝑋, 𝐹, 𝑌〉) ∈ 𝐷 ∧ (𝐼‘〈𝑋, 𝐹, 𝑍〉) ∈ 𝐷)) → (((𝐼‘〈𝑋, 𝐹, 𝑤〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑌〉)) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉)) = ((𝐼‘〈𝑋, 𝐹, 𝑤〉) ✚ ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉)))) |
43 | 27, 35, 39, 41, 42 | syl13anc 1371 | . . 3 ⊢ (𝜑 → (((𝐼‘〈𝑋, 𝐹, 𝑤〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑌〉)) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉)) = ((𝐼‘〈𝑋, 𝐹, 𝑤〉) ✚ ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉)))) |
44 | 26, 43 | eqtrd 2780 | . 2 ⊢ (𝜑 → ((𝐼‘〈𝑋, 𝐹, 𝑤〉) ✚ (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉)) = ((𝐼‘〈𝑋, 𝐹, 𝑤〉) ✚ ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉)))) |
45 | 3, 5, 14 | dvhlmod 39118 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ LMod) |
46 | 6, 18 | lmodvacl 20133 | . . . . 5 ⊢ ((𝑈 ∈ LMod ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉) → (𝑌 + 𝑍) ∈ 𝑉) |
47 | 45, 31, 36, 46 | syl3anc 1370 | . . . 4 ⊢ (𝜑 → (𝑌 + 𝑍) ∈ 𝑉) |
48 | 6, 18, 8, 9, 29, 17, 22, 23, 24, 21, 38, 25 | mapdindp1 39728 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{(𝑌 + 𝑍)})) |
49 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 47, 48 | mapdhcl 39735 | . . 3 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) ∈ 𝐷) |
50 | 11, 19 | lmodvacl 20133 | . . . 4 ⊢ ((𝐶 ∈ LMod ∧ (𝐼‘〈𝑋, 𝐹, 𝑌〉) ∈ 𝐷 ∧ (𝐼‘〈𝑋, 𝐹, 𝑍〉) ∈ 𝐷) → ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉)) ∈ 𝐷) |
51 | 27, 39, 41, 50 | syl3anc 1370 | . . 3 ⊢ (𝜑 → ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉)) ∈ 𝐷) |
52 | 11, 19 | lmodlcan 20135 | . . 3 ⊢ ((𝐶 ∈ LMod ∧ ((𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) ∈ 𝐷 ∧ ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉)) ∈ 𝐷 ∧ (𝐼‘〈𝑋, 𝐹, 𝑤〉) ∈ 𝐷)) → (((𝐼‘〈𝑋, 𝐹, 𝑤〉) ✚ (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉)) = ((𝐼‘〈𝑋, 𝐹, 𝑤〉) ✚ ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) ↔ (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉)))) |
53 | 27, 49, 51, 35, 52 | syl13anc 1371 | . 2 ⊢ (𝜑 → (((𝐼‘〈𝑋, 𝐹, 𝑤〉) ✚ (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉)) = ((𝐼‘〈𝑋, 𝐹, 𝑤〉) ✚ ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) ↔ (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉)))) |
54 | 44, 53 | mpbid 231 | 1 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ≠ wne 2945 Vcvv 3431 ∖ cdif 3889 ifcif 4465 {csn 4567 {cpr 4569 〈cotp 4575 ↦ cmpt 5162 ‘cfv 6431 ℩crio 7225 (class class class)co 7269 1st c1st 7820 2nd c2nd 7821 Basecbs 16908 +gcplusg 16958 0gc0g 17146 -gcsg 18575 LModclmod 20119 LSpanclspn 20229 HLchlt 37358 LHypclh 37992 DVecHcdvh 39086 LCDualclcd 39594 mapdcmpd 39632 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-cnex 10926 ax-resscn 10927 ax-1cn 10928 ax-icn 10929 ax-addcl 10930 ax-addrcl 10931 ax-mulcl 10932 ax-mulrcl 10933 ax-mulcom 10934 ax-addass 10935 ax-mulass 10936 ax-distr 10937 ax-i2m1 10938 ax-1ne0 10939 ax-1rid 10940 ax-rnegex 10941 ax-rrecex 10942 ax-cnre 10943 ax-pre-lttri 10944 ax-pre-lttrn 10945 ax-pre-ltadd 10946 ax-pre-mulgt0 10947 ax-riotaBAD 36961 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-ot 4576 df-uni 4846 df-int 4886 df-iun 4932 df-iin 4933 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6200 df-ord 6267 df-on 6268 df-lim 6269 df-suc 6270 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-of 7525 df-om 7705 df-1st 7822 df-2nd 7823 df-tpos 8031 df-undef 8078 df-frecs 8086 df-wrecs 8117 df-recs 8191 df-rdg 8230 df-1o 8286 df-er 8479 df-map 8598 df-en 8715 df-dom 8716 df-sdom 8717 df-fin 8718 df-pnf 11010 df-mnf 11011 df-xr 11012 df-ltxr 11013 df-le 11014 df-sub 11205 df-neg 11206 df-nn 11972 df-2 12034 df-3 12035 df-4 12036 df-5 12037 df-6 12038 df-n0 12232 df-z 12318 df-uz 12580 df-fz 13237 df-struct 16844 df-sets 16861 df-slot 16879 df-ndx 16891 df-base 16909 df-ress 16938 df-plusg 16971 df-mulr 16972 df-sca 16974 df-vsca 16975 df-0g 17148 df-mre 17291 df-mrc 17292 df-acs 17294 df-proset 18009 df-poset 18027 df-plt 18044 df-lub 18060 df-glb 18061 df-join 18062 df-meet 18063 df-p0 18139 df-p1 18140 df-lat 18146 df-clat 18213 df-mgm 18322 df-sgrp 18371 df-mnd 18382 df-submnd 18427 df-grp 18576 df-minusg 18577 df-sbg 18578 df-subg 18748 df-cntz 18919 df-oppg 18946 df-lsm 19237 df-cmn 19384 df-abl 19385 df-mgp 19717 df-ur 19734 df-ring 19781 df-oppr 19858 df-dvdsr 19879 df-unit 19880 df-invr 19910 df-dvr 19921 df-drng 19989 df-lmod 20121 df-lss 20190 df-lsp 20230 df-lvec 20361 df-lsatoms 36984 df-lshyp 36985 df-lcv 37027 df-lfl 37066 df-lkr 37094 df-ldual 37132 df-oposet 37184 df-ol 37186 df-oml 37187 df-covers 37274 df-ats 37275 df-atl 37306 df-cvlat 37330 df-hlat 37359 df-llines 37506 df-lplanes 37507 df-lvols 37508 df-lines 37509 df-psubsp 37511 df-pmap 37512 df-padd 37804 df-lhyp 37996 df-laut 37997 df-ldil 38112 df-ltrn 38113 df-trl 38167 df-tgrp 38751 df-tendo 38763 df-edring 38765 df-dveca 39011 df-disoa 39037 df-dvech 39087 df-dib 39147 df-dic 39181 df-dih 39237 df-doch 39356 df-djh 39403 df-lcdual 39595 df-mapd 39633 |
This theorem is referenced by: mapdh6iN 39752 |
Copyright terms: Public domain | W3C validator |