| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ltex | Structured version Visualization version GIF version | ||
| Description: The less-than relation is a set. (Contributed by SN, 5-Jun-2025.) |
| Ref | Expression |
|---|---|
| ltex | ⊢ < ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrex 13001 | . . 3 ⊢ ℝ* ∈ V | |
| 2 | 1, 1 | xpex 7745 | . 2 ⊢ (ℝ* × ℝ*) ∈ V |
| 3 | ltrelxr 11294 | . 2 ⊢ < ⊆ (ℝ* × ℝ*) | |
| 4 | 2, 3 | ssexi 5292 | 1 ⊢ < ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 Vcvv 3459 × cxp 5652 ℝ*cxr 11266 < clt 11267 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-opab 5182 df-xp 5660 df-rel 5661 df-xr 11271 df-ltxr 11272 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |