![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltex | Structured version Visualization version GIF version |
Description: The less-than relation is a set. (Contributed by SN, 5-Jun-2025.) |
Ref | Expression |
---|---|
ltex | ⊢ < ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrex 13004 | . . 3 ⊢ ℝ* ∈ V | |
2 | 1, 1 | xpex 7756 | . 2 ⊢ (ℝ* × ℝ*) ∈ V |
3 | ltrelxr 11307 | . 2 ⊢ < ⊆ (ℝ* × ℝ*) | |
4 | 2, 3 | ssexi 5323 | 1 ⊢ < ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2098 Vcvv 3461 × cxp 5676 ℝ*cxr 11279 < clt 11280 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-opab 5212 df-xp 5684 df-rel 5685 df-xr 11284 df-ltxr 11285 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |