![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltex | Structured version Visualization version GIF version |
Description: The less-than relation is a set. (Contributed by SN, 5-Jun-2025.) |
Ref | Expression |
---|---|
ltex | ⊢ < ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrex 13026 | . . 3 ⊢ ℝ* ∈ V | |
2 | 1, 1 | xpex 7771 | . 2 ⊢ (ℝ* × ℝ*) ∈ V |
3 | ltrelxr 11319 | . 2 ⊢ < ⊆ (ℝ* × ℝ*) | |
4 | 2, 3 | ssexi 5327 | 1 ⊢ < ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 Vcvv 3477 × cxp 5686 ℝ*cxr 11291 < clt 11292 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-opab 5210 df-xp 5694 df-rel 5695 df-xr 11296 df-ltxr 11297 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |