Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexpssxrxp | Structured version Visualization version GIF version |
Description: The Cartesian product of standard reals are a subset of the Cartesian product of extended reals. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
rexpssxrxp | ⊢ (ℝ × ℝ) ⊆ (ℝ* × ℝ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressxr 10950 | . 2 ⊢ ℝ ⊆ ℝ* | |
2 | xpss12 5595 | . 2 ⊢ ((ℝ ⊆ ℝ* ∧ ℝ ⊆ ℝ*) → (ℝ × ℝ) ⊆ (ℝ* × ℝ*)) | |
3 | 1, 1, 2 | mp2an 688 | 1 ⊢ (ℝ × ℝ) ⊆ (ℝ* × ℝ*) |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3883 × cxp 5578 ℝcr 10801 ℝ*cxr 10939 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-un 3888 df-in 3890 df-ss 3900 df-opab 5133 df-xp 5586 df-xr 10944 |
This theorem is referenced by: ltrelxr 10967 xrsdsre 23879 ovolfioo 24536 ovolficc 24537 ovolficcss 24538 ovollb 24548 ovolicc2 24591 ovolfs2 24640 uniiccdif 24647 uniioovol 24648 uniiccvol 24649 uniioombllem2 24652 uniioombllem3a 24653 uniioombllem3 24654 uniioombllem4 24655 uniioombllem5 24656 uniioombl 24658 dyadmbllem 24668 opnmbllem 24670 icoreresf 35450 icoreelrn 35459 relowlpssretop 35462 opnmbllem0 35740 mblfinlem1 35741 mblfinlem2 35742 voliooicof 43427 ovolval3 44075 ovolval4lem2 44078 ovolval5lem2 44081 ovolval5lem3 44082 ovnovollem1 44084 ovnovollem2 44085 |
Copyright terms: Public domain | W3C validator |