| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexpssxrxp | Structured version Visualization version GIF version | ||
| Description: The Cartesian product of standard reals are a subset of the Cartesian product of extended reals. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| rexpssxrxp | ⊢ (ℝ × ℝ) ⊆ (ℝ* × ℝ*) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressxr 11178 | . 2 ⊢ ℝ ⊆ ℝ* | |
| 2 | xpss12 5638 | . 2 ⊢ ((ℝ ⊆ ℝ* ∧ ℝ ⊆ ℝ*) → (ℝ × ℝ) ⊆ (ℝ* × ℝ*)) | |
| 3 | 1, 1, 2 | mp2an 692 | 1 ⊢ (ℝ × ℝ) ⊆ (ℝ* × ℝ*) |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3905 × cxp 5621 ℝcr 11027 ℝ*cxr 11167 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-un 3910 df-ss 3922 df-opab 5158 df-xp 5629 df-xr 11172 |
| This theorem is referenced by: ltrelxr 11195 xrsdsre 24715 ovolfioo 25384 ovolficc 25385 ovolficcss 25386 ovollb 25396 ovolicc2 25439 ovolfs2 25488 uniiccdif 25495 uniioovol 25496 uniiccvol 25497 uniioombllem2 25500 uniioombllem3a 25501 uniioombllem3 25502 uniioombllem4 25503 uniioombllem5 25504 uniioombl 25506 dyadmbllem 25516 opnmbllem 25518 icoreresf 37325 icoreelrn 37334 relowlpssretop 37337 opnmbllem0 37635 mblfinlem1 37636 mblfinlem2 37637 voliooicof 45978 ovolval3 46629 ovolval4lem2 46632 ovolval5lem2 46635 ovolval5lem3 46636 ovnovollem1 46638 ovnovollem2 46639 |
| Copyright terms: Public domain | W3C validator |