| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexpssxrxp | Structured version Visualization version GIF version | ||
| Description: The Cartesian product of standard reals are a subset of the Cartesian product of extended reals. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| rexpssxrxp | ⊢ (ℝ × ℝ) ⊆ (ℝ* × ℝ*) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressxr 11279 | . 2 ⊢ ℝ ⊆ ℝ* | |
| 2 | xpss12 5669 | . 2 ⊢ ((ℝ ⊆ ℝ* ∧ ℝ ⊆ ℝ*) → (ℝ × ℝ) ⊆ (ℝ* × ℝ*)) | |
| 3 | 1, 1, 2 | mp2an 692 | 1 ⊢ (ℝ × ℝ) ⊆ (ℝ* × ℝ*) |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3926 × cxp 5652 ℝcr 11128 ℝ*cxr 11268 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-un 3931 df-ss 3943 df-opab 5182 df-xp 5660 df-xr 11273 |
| This theorem is referenced by: ltrelxr 11296 xrsdsre 24750 ovolfioo 25420 ovolficc 25421 ovolficcss 25422 ovollb 25432 ovolicc2 25475 ovolfs2 25524 uniiccdif 25531 uniioovol 25532 uniiccvol 25533 uniioombllem2 25536 uniioombllem3a 25537 uniioombllem3 25538 uniioombllem4 25539 uniioombllem5 25540 uniioombl 25542 dyadmbllem 25552 opnmbllem 25554 icoreresf 37370 icoreelrn 37379 relowlpssretop 37382 opnmbllem0 37680 mblfinlem1 37681 mblfinlem2 37682 voliooicof 46025 ovolval3 46676 ovolval4lem2 46679 ovolval5lem2 46682 ovolval5lem3 46683 ovnovollem1 46685 ovnovollem2 46686 |
| Copyright terms: Public domain | W3C validator |