| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexpssxrxp | Structured version Visualization version GIF version | ||
| Description: The Cartesian product of standard reals are a subset of the Cartesian product of extended reals. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| rexpssxrxp | ⊢ (ℝ × ℝ) ⊆ (ℝ* × ℝ*) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressxr 11163 | . 2 ⊢ ℝ ⊆ ℝ* | |
| 2 | xpss12 5634 | . 2 ⊢ ((ℝ ⊆ ℝ* ∧ ℝ ⊆ ℝ*) → (ℝ × ℝ) ⊆ (ℝ* × ℝ*)) | |
| 3 | 1, 1, 2 | mp2an 692 | 1 ⊢ (ℝ × ℝ) ⊆ (ℝ* × ℝ*) |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3898 × cxp 5617 ℝcr 11012 ℝ*cxr 11152 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-un 3903 df-ss 3915 df-opab 5156 df-xp 5625 df-xr 11157 |
| This theorem is referenced by: ltrelxr 11180 xrsdsre 24727 ovolfioo 25396 ovolficc 25397 ovolficcss 25398 ovollb 25408 ovolicc2 25451 ovolfs2 25500 uniiccdif 25507 uniioovol 25508 uniiccvol 25509 uniioombllem2 25512 uniioombllem3a 25513 uniioombllem3 25514 uniioombllem4 25515 uniioombllem5 25516 uniioombl 25518 dyadmbllem 25528 opnmbllem 25530 icoreresf 37417 icoreelrn 37426 relowlpssretop 37429 opnmbllem0 37716 mblfinlem1 37717 mblfinlem2 37718 voliooicof 46118 ovolval3 46769 ovolval4lem2 46772 ovolval5lem2 46775 ovolval5lem3 46776 ovnovollem1 46778 ovnovollem2 46779 |
| Copyright terms: Public domain | W3C validator |