![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexpssxrxp | Structured version Visualization version GIF version |
Description: The Cartesian product of standard reals are a subset of the Cartesian product of extended reals. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
rexpssxrxp | ⊢ (ℝ × ℝ) ⊆ (ℝ* × ℝ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressxr 11303 | . 2 ⊢ ℝ ⊆ ℝ* | |
2 | xpss12 5704 | . 2 ⊢ ((ℝ ⊆ ℝ* ∧ ℝ ⊆ ℝ*) → (ℝ × ℝ) ⊆ (ℝ* × ℝ*)) | |
3 | 1, 1, 2 | mp2an 692 | 1 ⊢ (ℝ × ℝ) ⊆ (ℝ* × ℝ*) |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3963 × cxp 5687 ℝcr 11152 ℝ*cxr 11292 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-un 3968 df-ss 3980 df-opab 5211 df-xp 5695 df-xr 11297 |
This theorem is referenced by: ltrelxr 11320 xrsdsre 24846 ovolfioo 25516 ovolficc 25517 ovolficcss 25518 ovollb 25528 ovolicc2 25571 ovolfs2 25620 uniiccdif 25627 uniioovol 25628 uniiccvol 25629 uniioombllem2 25632 uniioombllem3a 25633 uniioombllem3 25634 uniioombllem4 25635 uniioombllem5 25636 uniioombl 25638 dyadmbllem 25648 opnmbllem 25650 icoreresf 37335 icoreelrn 37344 relowlpssretop 37347 opnmbllem0 37643 mblfinlem1 37644 mblfinlem2 37645 voliooicof 45952 ovolval3 46603 ovolval4lem2 46606 ovolval5lem2 46609 ovolval5lem3 46610 ovnovollem1 46612 ovnovollem2 46613 |
Copyright terms: Public domain | W3C validator |