| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexpssxrxp | Structured version Visualization version GIF version | ||
| Description: The Cartesian product of standard reals are a subset of the Cartesian product of extended reals. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| rexpssxrxp | ⊢ (ℝ × ℝ) ⊆ (ℝ* × ℝ*) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressxr 11153 | . 2 ⊢ ℝ ⊆ ℝ* | |
| 2 | xpss12 5631 | . 2 ⊢ ((ℝ ⊆ ℝ* ∧ ℝ ⊆ ℝ*) → (ℝ × ℝ) ⊆ (ℝ* × ℝ*)) | |
| 3 | 1, 1, 2 | mp2an 692 | 1 ⊢ (ℝ × ℝ) ⊆ (ℝ* × ℝ*) |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3902 × cxp 5614 ℝcr 11002 ℝ*cxr 11142 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3907 df-ss 3919 df-opab 5154 df-xp 5622 df-xr 11147 |
| This theorem is referenced by: ltrelxr 11170 xrsdsre 24724 ovolfioo 25393 ovolficc 25394 ovolficcss 25395 ovollb 25405 ovolicc2 25448 ovolfs2 25497 uniiccdif 25504 uniioovol 25505 uniiccvol 25506 uniioombllem2 25509 uniioombllem3a 25510 uniioombllem3 25511 uniioombllem4 25512 uniioombllem5 25513 uniioombl 25515 dyadmbllem 25525 opnmbllem 25527 icoreresf 37385 icoreelrn 37394 relowlpssretop 37397 opnmbllem0 37695 mblfinlem1 37696 mblfinlem2 37697 voliooicof 46033 ovolval3 46684 ovolval4lem2 46687 ovolval5lem2 46690 ovolval5lem3 46691 ovnovollem1 46693 ovnovollem2 46694 |
| Copyright terms: Public domain | W3C validator |