Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexpssxrxp | Structured version Visualization version GIF version |
Description: The Cartesian product of standard reals are a subset of the Cartesian product of extended reals. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
rexpssxrxp | ⊢ (ℝ × ℝ) ⊆ (ℝ* × ℝ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressxr 11019 | . 2 ⊢ ℝ ⊆ ℝ* | |
2 | xpss12 5604 | . 2 ⊢ ((ℝ ⊆ ℝ* ∧ ℝ ⊆ ℝ*) → (ℝ × ℝ) ⊆ (ℝ* × ℝ*)) | |
3 | 1, 1, 2 | mp2an 689 | 1 ⊢ (ℝ × ℝ) ⊆ (ℝ* × ℝ*) |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3887 × cxp 5587 ℝcr 10870 ℝ*cxr 11008 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-un 3892 df-in 3894 df-ss 3904 df-opab 5137 df-xp 5595 df-xr 11013 |
This theorem is referenced by: ltrelxr 11036 xrsdsre 23973 ovolfioo 24631 ovolficc 24632 ovolficcss 24633 ovollb 24643 ovolicc2 24686 ovolfs2 24735 uniiccdif 24742 uniioovol 24743 uniiccvol 24744 uniioombllem2 24747 uniioombllem3a 24748 uniioombllem3 24749 uniioombllem4 24750 uniioombllem5 24751 uniioombl 24753 dyadmbllem 24763 opnmbllem 24765 icoreresf 35523 icoreelrn 35532 relowlpssretop 35535 opnmbllem0 35813 mblfinlem1 35814 mblfinlem2 35815 voliooicof 43537 ovolval3 44185 ovolval4lem2 44188 ovolval5lem2 44191 ovolval5lem3 44192 ovnovollem1 44194 ovnovollem2 44195 |
Copyright terms: Public domain | W3C validator |