Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexpssxrxp | Structured version Visualization version GIF version |
Description: The Cartesian product of standard reals are a subset of the Cartesian product of extended reals. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
rexpssxrxp | ⊢ (ℝ × ℝ) ⊆ (ℝ* × ℝ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressxr 11008 | . 2 ⊢ ℝ ⊆ ℝ* | |
2 | xpss12 5601 | . 2 ⊢ ((ℝ ⊆ ℝ* ∧ ℝ ⊆ ℝ*) → (ℝ × ℝ) ⊆ (ℝ* × ℝ*)) | |
3 | 1, 1, 2 | mp2an 689 | 1 ⊢ (ℝ × ℝ) ⊆ (ℝ* × ℝ*) |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3888 × cxp 5584 ℝcr 10859 ℝ*cxr 10997 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3433 df-un 3893 df-in 3895 df-ss 3905 df-opab 5138 df-xp 5592 df-xr 11002 |
This theorem is referenced by: ltrelxr 11025 xrsdsre 23962 ovolfioo 24620 ovolficc 24621 ovolficcss 24622 ovollb 24632 ovolicc2 24675 ovolfs2 24724 uniiccdif 24731 uniioovol 24732 uniiccvol 24733 uniioombllem2 24736 uniioombllem3a 24737 uniioombllem3 24738 uniioombllem4 24739 uniioombllem5 24740 uniioombl 24742 dyadmbllem 24752 opnmbllem 24754 icoreresf 35510 icoreelrn 35519 relowlpssretop 35522 opnmbllem0 35800 mblfinlem1 35801 mblfinlem2 35802 voliooicof 43497 ovolval3 44145 ovolval4lem2 44148 ovolval5lem2 44151 ovolval5lem3 44152 ovnovollem1 44154 ovnovollem2 44155 |
Copyright terms: Public domain | W3C validator |