![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexpssxrxp | Structured version Visualization version GIF version |
Description: The Cartesian product of standard reals are a subset of the Cartesian product of extended reals. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
rexpssxrxp | ⊢ (ℝ × ℝ) ⊆ (ℝ* × ℝ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressxr 11334 | . 2 ⊢ ℝ ⊆ ℝ* | |
2 | xpss12 5715 | . 2 ⊢ ((ℝ ⊆ ℝ* ∧ ℝ ⊆ ℝ*) → (ℝ × ℝ) ⊆ (ℝ* × ℝ*)) | |
3 | 1, 1, 2 | mp2an 691 | 1 ⊢ (ℝ × ℝ) ⊆ (ℝ* × ℝ*) |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3976 × cxp 5698 ℝcr 11183 ℝ*cxr 11323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-ss 3993 df-opab 5229 df-xp 5706 df-xr 11328 |
This theorem is referenced by: ltrelxr 11351 xrsdsre 24851 ovolfioo 25521 ovolficc 25522 ovolficcss 25523 ovollb 25533 ovolicc2 25576 ovolfs2 25625 uniiccdif 25632 uniioovol 25633 uniiccvol 25634 uniioombllem2 25637 uniioombllem3a 25638 uniioombllem3 25639 uniioombllem4 25640 uniioombllem5 25641 uniioombl 25643 dyadmbllem 25653 opnmbllem 25655 icoreresf 37318 icoreelrn 37327 relowlpssretop 37330 opnmbllem0 37616 mblfinlem1 37617 mblfinlem2 37618 voliooicof 45917 ovolval3 46568 ovolval4lem2 46571 ovolval5lem2 46574 ovolval5lem3 46575 ovnovollem1 46577 ovnovollem2 46578 |
Copyright terms: Public domain | W3C validator |