| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexpssxrxp | Structured version Visualization version GIF version | ||
| Description: The Cartesian product of standard reals are a subset of the Cartesian product of extended reals. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| rexpssxrxp | ⊢ (ℝ × ℝ) ⊆ (ℝ* × ℝ*) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressxr 11218 | . 2 ⊢ ℝ ⊆ ℝ* | |
| 2 | xpss12 5653 | . 2 ⊢ ((ℝ ⊆ ℝ* ∧ ℝ ⊆ ℝ*) → (ℝ × ℝ) ⊆ (ℝ* × ℝ*)) | |
| 3 | 1, 1, 2 | mp2an 692 | 1 ⊢ (ℝ × ℝ) ⊆ (ℝ* × ℝ*) |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3914 × cxp 5636 ℝcr 11067 ℝ*cxr 11207 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-un 3919 df-ss 3931 df-opab 5170 df-xp 5644 df-xr 11212 |
| This theorem is referenced by: ltrelxr 11235 xrsdsre 24699 ovolfioo 25368 ovolficc 25369 ovolficcss 25370 ovollb 25380 ovolicc2 25423 ovolfs2 25472 uniiccdif 25479 uniioovol 25480 uniiccvol 25481 uniioombllem2 25484 uniioombllem3a 25485 uniioombllem3 25486 uniioombllem4 25487 uniioombllem5 25488 uniioombl 25490 dyadmbllem 25500 opnmbllem 25502 icoreresf 37340 icoreelrn 37349 relowlpssretop 37352 opnmbllem0 37650 mblfinlem1 37651 mblfinlem2 37652 voliooicof 45994 ovolval3 46645 ovolval4lem2 46648 ovolval5lem2 46651 ovolval5lem3 46652 ovnovollem1 46654 ovnovollem2 46655 |
| Copyright terms: Public domain | W3C validator |