| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexpssxrxp | Structured version Visualization version GIF version | ||
| Description: The Cartesian product of standard reals are a subset of the Cartesian product of extended reals. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| rexpssxrxp | ⊢ (ℝ × ℝ) ⊆ (ℝ* × ℝ*) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressxr 11225 | . 2 ⊢ ℝ ⊆ ℝ* | |
| 2 | xpss12 5656 | . 2 ⊢ ((ℝ ⊆ ℝ* ∧ ℝ ⊆ ℝ*) → (ℝ × ℝ) ⊆ (ℝ* × ℝ*)) | |
| 3 | 1, 1, 2 | mp2an 692 | 1 ⊢ (ℝ × ℝ) ⊆ (ℝ* × ℝ*) |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3917 × cxp 5639 ℝcr 11074 ℝ*cxr 11214 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-un 3922 df-ss 3934 df-opab 5173 df-xp 5647 df-xr 11219 |
| This theorem is referenced by: ltrelxr 11242 xrsdsre 24706 ovolfioo 25375 ovolficc 25376 ovolficcss 25377 ovollb 25387 ovolicc2 25430 ovolfs2 25479 uniiccdif 25486 uniioovol 25487 uniiccvol 25488 uniioombllem2 25491 uniioombllem3a 25492 uniioombllem3 25493 uniioombllem4 25494 uniioombllem5 25495 uniioombl 25497 dyadmbllem 25507 opnmbllem 25509 icoreresf 37347 icoreelrn 37356 relowlpssretop 37359 opnmbllem0 37657 mblfinlem1 37658 mblfinlem2 37659 voliooicof 46001 ovolval3 46652 ovolval4lem2 46655 ovolval5lem2 46658 ovolval5lem3 46659 ovnovollem1 46661 ovnovollem2 46662 |
| Copyright terms: Public domain | W3C validator |