| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > renfdisj | Structured version Visualization version GIF version | ||
| Description: The reals and the infinities are disjoint. (Contributed by NM, 25-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| Ref | Expression |
|---|---|
| renfdisj | ⊢ (ℝ ∩ {+∞, -∞}) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disj 4432 | . 2 ⊢ ((ℝ ∩ {+∞, -∞}) = ∅ ↔ ∀𝑥 ∈ ℝ ¬ 𝑥 ∈ {+∞, -∞}) | |
| 2 | renepnf 11292 | . . 3 ⊢ (𝑥 ∈ ℝ → 𝑥 ≠ +∞) | |
| 3 | renemnf 11293 | . . 3 ⊢ (𝑥 ∈ ℝ → 𝑥 ≠ -∞) | |
| 4 | 2, 3 | nelprd 4639 | . 2 ⊢ (𝑥 ∈ ℝ → ¬ 𝑥 ∈ {+∞, -∞}) |
| 5 | 1, 4 | mprgbir 3057 | 1 ⊢ (ℝ ∩ {+∞, -∞}) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2107 ∩ cin 3932 ∅c0 4315 {cpr 4610 ℝcr 11137 +∞cpnf 11275 -∞cmnf 11276 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-resscn 11195 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-er 8728 df-en 8969 df-dom 8970 df-sdom 8971 df-pnf 11280 df-mnf 11281 |
| This theorem is referenced by: ssxr 11313 |
| Copyright terms: Public domain | W3C validator |