MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  renfdisj Structured version   Visualization version   GIF version

Theorem renfdisj 10677
Description: The reals and the infinities are disjoint. (Contributed by NM, 25-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
Assertion
Ref Expression
renfdisj (ℝ ∩ {+∞, -∞}) = ∅

Proof of Theorem renfdisj
StepHypRef Expression
1 disj 4373 . 2 ((ℝ ∩ {+∞, -∞}) = ∅ ↔ ∀𝑥 ∈ ℝ ¬ 𝑥 ∈ {+∞, -∞})
2 renepnf 10665 . . 3 (𝑥 ∈ ℝ → 𝑥 ≠ +∞)
3 renemnf 10666 . . 3 (𝑥 ∈ ℝ → 𝑥 ≠ -∞)
42, 3nelprd 4570 . 2 (𝑥 ∈ ℝ → ¬ 𝑥 ∈ {+∞, -∞})
51, 4mprgbir 3140 1 (ℝ ∩ {+∞, -∞}) = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1537  wcel 2114  cin 3911  c0 4267  {cpr 4543  cr 10512  +∞cpnf 10648  -∞cmnf 10649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-sep 5177  ax-nul 5184  ax-pow 5240  ax-pr 5304  ax-un 7437  ax-resscn 10570
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-rab 3134  df-v 3475  df-sbc 3752  df-csb 3860  df-dif 3915  df-un 3917  df-in 3919  df-ss 3928  df-nul 4268  df-if 4442  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4813  df-br 5041  df-opab 5103  df-mpt 5121  df-id 5434  df-xp 5535  df-rel 5536  df-cnv 5537  df-co 5538  df-dm 5539  df-rn 5540  df-res 5541  df-ima 5542  df-iota 6288  df-fun 6331  df-fn 6332  df-f 6333  df-f1 6334  df-fo 6335  df-f1o 6336  df-fv 6337  df-er 8265  df-en 8486  df-dom 8487  df-sdom 8488  df-pnf 10653  df-mnf 10654
This theorem is referenced by:  ssxr  10686
  Copyright terms: Public domain W3C validator