| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > renfdisj | Structured version Visualization version GIF version | ||
| Description: The reals and the infinities are disjoint. (Contributed by NM, 25-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| Ref | Expression |
|---|---|
| renfdisj | ⊢ (ℝ ∩ {+∞, -∞}) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disj 4415 | . 2 ⊢ ((ℝ ∩ {+∞, -∞}) = ∅ ↔ ∀𝑥 ∈ ℝ ¬ 𝑥 ∈ {+∞, -∞}) | |
| 2 | renepnf 11228 | . . 3 ⊢ (𝑥 ∈ ℝ → 𝑥 ≠ +∞) | |
| 3 | renemnf 11229 | . . 3 ⊢ (𝑥 ∈ ℝ → 𝑥 ≠ -∞) | |
| 4 | 2, 3 | nelprd 4623 | . 2 ⊢ (𝑥 ∈ ℝ → ¬ 𝑥 ∈ {+∞, -∞}) |
| 5 | 1, 4 | mprgbir 3052 | 1 ⊢ (ℝ ∩ {+∞, -∞}) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 ∩ cin 3915 ∅c0 4298 {cpr 4593 ℝcr 11073 +∞cpnf 11211 -∞cmnf 11212 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-resscn 11131 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-pnf 11216 df-mnf 11217 |
| This theorem is referenced by: ssxr 11249 |
| Copyright terms: Public domain | W3C validator |