![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > renfdisj | Structured version Visualization version GIF version |
Description: The reals and the infinities are disjoint. (Contributed by NM, 25-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
Ref | Expression |
---|---|
renfdisj | ⊢ (ℝ ∩ {+∞, -∞}) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disj 4213 | . 2 ⊢ ((ℝ ∩ {+∞, -∞}) = ∅ ↔ ∀𝑥 ∈ ℝ ¬ 𝑥 ∈ {+∞, -∞}) | |
2 | renepnf 10377 | . . 3 ⊢ (𝑥 ∈ ℝ → 𝑥 ≠ +∞) | |
3 | renemnf 10378 | . . 3 ⊢ (𝑥 ∈ ℝ → 𝑥 ≠ -∞) | |
4 | 2, 3 | nelprd 4396 | . 2 ⊢ (𝑥 ∈ ℝ → ¬ 𝑥 ∈ {+∞, -∞}) |
5 | 1, 4 | mprgbir 3109 | 1 ⊢ (ℝ ∩ {+∞, -∞}) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1653 ∈ wcel 2157 ∩ cin 3769 ∅c0 4116 {cpr 4371 ℝcr 10224 +∞cpnf 10361 -∞cmnf 10362 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-sep 4976 ax-nul 4984 ax-pow 5036 ax-pr 5098 ax-un 7184 ax-resscn 10282 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-nel 3076 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3388 df-sbc 3635 df-csb 3730 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-nul 4117 df-if 4279 df-pw 4352 df-sn 4370 df-pr 4372 df-op 4376 df-uni 4630 df-br 4845 df-opab 4907 df-mpt 4924 df-id 5221 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-res 5325 df-ima 5326 df-iota 6065 df-fun 6104 df-fn 6105 df-f 6106 df-f1 6107 df-fo 6108 df-f1o 6109 df-fv 6110 df-er 7983 df-en 8197 df-dom 8198 df-sdom 8199 df-pnf 10366 df-mnf 10367 |
This theorem is referenced by: ssxr 10398 |
Copyright terms: Public domain | W3C validator |