| Mathbox for Ender Ting |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > et-ltneverrefl | Structured version Visualization version GIF version | ||
| Description: Less-than class is never reflexive. (Contributed by Ender Ting, 22-Nov-2024.) Prefer to specify theorem domain and then apply ltnri 11259. (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| et-ltneverrefl | ⊢ ¬ 𝐴 < 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrltnr 13055 | . 2 ⊢ (𝐴 ∈ ℝ* → ¬ 𝐴 < 𝐴) | |
| 2 | opelxp1 5673 | . . . . 5 ⊢ (〈𝐴, 𝐴〉 ∈ (ℝ* × ℝ*) → 𝐴 ∈ ℝ*) | |
| 3 | 2 | con3i 154 | . . . 4 ⊢ (¬ 𝐴 ∈ ℝ* → ¬ 〈𝐴, 𝐴〉 ∈ (ℝ* × ℝ*)) |
| 4 | ltrelxr 11211 | . . . . 5 ⊢ < ⊆ (ℝ* × ℝ*) | |
| 5 | 4 | sseli 3939 | . . . 4 ⊢ (〈𝐴, 𝐴〉 ∈ < → 〈𝐴, 𝐴〉 ∈ (ℝ* × ℝ*)) |
| 6 | 3, 5 | nsyl 140 | . . 3 ⊢ (¬ 𝐴 ∈ ℝ* → ¬ 〈𝐴, 𝐴〉 ∈ < ) |
| 7 | df-br 5103 | . . 3 ⊢ (𝐴 < 𝐴 ↔ 〈𝐴, 𝐴〉 ∈ < ) | |
| 8 | 6, 7 | sylnibr 329 | . 2 ⊢ (¬ 𝐴 ∈ ℝ* → ¬ 𝐴 < 𝐴) |
| 9 | 1, 8 | pm2.61i 182 | 1 ⊢ ¬ 𝐴 < 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2109 〈cop 4591 class class class wbr 5102 × cxp 5629 ℝ*cxr 11183 < clt 11184 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-pre-lttri 11118 ax-pre-lttrn 11119 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 |
| This theorem is referenced by: tworepnotupword 46877 |
| Copyright terms: Public domain | W3C validator |