| Mathbox for Ender Ting |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > et-ltneverrefl | Structured version Visualization version GIF version | ||
| Description: Less-than class is never reflexive. (Contributed by Ender Ting, 22-Nov-2024.) Prefer to specify theorem domain and then apply ltnri 11222. (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| et-ltneverrefl | ⊢ ¬ 𝐴 < 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrltnr 13018 | . 2 ⊢ (𝐴 ∈ ℝ* → ¬ 𝐴 < 𝐴) | |
| 2 | opelxp1 5656 | . . . . 5 ⊢ (〈𝐴, 𝐴〉 ∈ (ℝ* × ℝ*) → 𝐴 ∈ ℝ*) | |
| 3 | 2 | con3i 154 | . . . 4 ⊢ (¬ 𝐴 ∈ ℝ* → ¬ 〈𝐴, 𝐴〉 ∈ (ℝ* × ℝ*)) |
| 4 | ltrelxr 11173 | . . . . 5 ⊢ < ⊆ (ℝ* × ℝ*) | |
| 5 | 4 | sseli 3925 | . . . 4 ⊢ (〈𝐴, 𝐴〉 ∈ < → 〈𝐴, 𝐴〉 ∈ (ℝ* × ℝ*)) |
| 6 | 3, 5 | nsyl 140 | . . 3 ⊢ (¬ 𝐴 ∈ ℝ* → ¬ 〈𝐴, 𝐴〉 ∈ < ) |
| 7 | df-br 5090 | . . 3 ⊢ (𝐴 < 𝐴 ↔ 〈𝐴, 𝐴〉 ∈ < ) | |
| 8 | 6, 7 | sylnibr 329 | . 2 ⊢ (¬ 𝐴 ∈ ℝ* → ¬ 𝐴 < 𝐴) |
| 9 | 1, 8 | pm2.61i 182 | 1 ⊢ ¬ 𝐴 < 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2111 〈cop 4579 class class class wbr 5089 × cxp 5612 ℝ*cxr 11145 < clt 11146 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-pre-lttri 11080 ax-pre-lttrn 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |