Users' Mathboxes Mathbox for Ender Ting < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  et-ltneverrefl Structured version   Visualization version   GIF version

Theorem et-ltneverrefl 46869
Description: Less-than class is never reflexive. (Contributed by Ender Ting, 22-Nov-2024.) Prefer to specify theorem domain and then apply ltnri 11283. (New usage is discouraged.)
Assertion
Ref Expression
et-ltneverrefl ¬ 𝐴 < 𝐴

Proof of Theorem et-ltneverrefl
StepHypRef Expression
1 xrltnr 13079 . 2 (𝐴 ∈ ℝ* → ¬ 𝐴 < 𝐴)
2 opelxp1 5680 . . . . 5 (⟨𝐴, 𝐴⟩ ∈ (ℝ* × ℝ*) → 𝐴 ∈ ℝ*)
32con3i 154 . . . 4 𝐴 ∈ ℝ* → ¬ ⟨𝐴, 𝐴⟩ ∈ (ℝ* × ℝ*))
4 ltrelxr 11235 . . . . 5 < ⊆ (ℝ* × ℝ*)
54sseli 3942 . . . 4 (⟨𝐴, 𝐴⟩ ∈ < → ⟨𝐴, 𝐴⟩ ∈ (ℝ* × ℝ*))
63, 5nsyl 140 . . 3 𝐴 ∈ ℝ* → ¬ ⟨𝐴, 𝐴⟩ ∈ < )
7 df-br 5108 . . 3 (𝐴 < 𝐴 ↔ ⟨𝐴, 𝐴⟩ ∈ < )
86, 7sylnibr 329 . 2 𝐴 ∈ ℝ* → ¬ 𝐴 < 𝐴)
91, 8pm2.61i 182 1 ¬ 𝐴 < 𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2109  cop 4595   class class class wbr 5107   × cxp 5636  *cxr 11207   < clt 11208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-pre-lttri 11142  ax-pre-lttrn 11143
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213
This theorem is referenced by:  tworepnotupword  46884
  Copyright terms: Public domain W3C validator