![]() |
Mathbox for Ender Ting |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > et-ltneverrefl | Structured version Visualization version GIF version |
Description: Less-than class is never reflexive. (Contributed by Ender Ting, 22-Nov-2024.) Prefer to specify theorem domain and then apply ltnri 11345. (New usage is discouraged.) |
Ref | Expression |
---|---|
et-ltneverrefl | ⊢ ¬ 𝐴 < 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrltnr 13123 | . 2 ⊢ (𝐴 ∈ ℝ* → ¬ 𝐴 < 𝐴) | |
2 | opelxp1 5714 | . . . . 5 ⊢ (⟨𝐴, 𝐴⟩ ∈ (ℝ* × ℝ*) → 𝐴 ∈ ℝ*) | |
3 | 2 | con3i 154 | . . . 4 ⊢ (¬ 𝐴 ∈ ℝ* → ¬ ⟨𝐴, 𝐴⟩ ∈ (ℝ* × ℝ*)) |
4 | ltrelxr 11297 | . . . . 5 ⊢ < ⊆ (ℝ* × ℝ*) | |
5 | 4 | sseli 3974 | . . . 4 ⊢ (⟨𝐴, 𝐴⟩ ∈ < → ⟨𝐴, 𝐴⟩ ∈ (ℝ* × ℝ*)) |
6 | 3, 5 | nsyl 140 | . . 3 ⊢ (¬ 𝐴 ∈ ℝ* → ¬ ⟨𝐴, 𝐴⟩ ∈ < ) |
7 | df-br 5143 | . . 3 ⊢ (𝐴 < 𝐴 ↔ ⟨𝐴, 𝐴⟩ ∈ < ) | |
8 | 6, 7 | sylnibr 329 | . 2 ⊢ (¬ 𝐴 ∈ ℝ* → ¬ 𝐴 < 𝐴) |
9 | 1, 8 | pm2.61i 182 | 1 ⊢ ¬ 𝐴 < 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2099 ⟨cop 4630 class class class wbr 5142 × cxp 5670 ℝ*cxr 11269 < clt 11270 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-pre-lttri 11204 ax-pre-lttrn 11205 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-po 5584 df-so 5585 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-er 8718 df-en 8956 df-dom 8957 df-sdom 8958 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 |
This theorem is referenced by: tworepnotupword 46195 |
Copyright terms: Public domain | W3C validator |