Users' Mathboxes Mathbox for Ender Ting < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  et-ltneverrefl Structured version   Visualization version   GIF version

Theorem et-ltneverrefl 46182
Description: Less-than class is never reflexive. (Contributed by Ender Ting, 22-Nov-2024.) Prefer to specify theorem domain and then apply ltnri 11345. (New usage is discouraged.)
Assertion
Ref Expression
et-ltneverrefl ¬ 𝐴 < 𝐴

Proof of Theorem et-ltneverrefl
StepHypRef Expression
1 xrltnr 13123 . 2 (𝐴 ∈ ℝ* → ¬ 𝐴 < 𝐴)
2 opelxp1 5714 . . . . 5 (⟨𝐴, 𝐴⟩ ∈ (ℝ* × ℝ*) → 𝐴 ∈ ℝ*)
32con3i 154 . . . 4 𝐴 ∈ ℝ* → ¬ ⟨𝐴, 𝐴⟩ ∈ (ℝ* × ℝ*))
4 ltrelxr 11297 . . . . 5 < ⊆ (ℝ* × ℝ*)
54sseli 3974 . . . 4 (⟨𝐴, 𝐴⟩ ∈ < → ⟨𝐴, 𝐴⟩ ∈ (ℝ* × ℝ*))
63, 5nsyl 140 . . 3 𝐴 ∈ ℝ* → ¬ ⟨𝐴, 𝐴⟩ ∈ < )
7 df-br 5143 . . 3 (𝐴 < 𝐴 ↔ ⟨𝐴, 𝐴⟩ ∈ < )
86, 7sylnibr 329 . 2 𝐴 ∈ ℝ* → ¬ 𝐴 < 𝐴)
91, 8pm2.61i 182 1 ¬ 𝐴 < 𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2099  cop 4630   class class class wbr 5142   × cxp 5670  *cxr 11269   < clt 11270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-pre-lttri 11204  ax-pre-lttrn 11205
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-po 5584  df-so 5585  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-er 8718  df-en 8956  df-dom 8957  df-sdom 8958  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275
This theorem is referenced by:  tworepnotupword  46195
  Copyright terms: Public domain W3C validator