| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmex | Structured version Visualization version GIF version | ||
| Description: The domain of a set is a set. Corollary 6.8(2) of [TakeutiZaring] p. 26. (Contributed by NM, 7-Jul-2008.) |
| Ref | Expression |
|---|---|
| dmex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| dmex | ⊢ dom 𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | dmexg 7924 | . 2 ⊢ (𝐴 ∈ V → dom 𝐴 ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ dom 𝐴 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2107 Vcvv 3479 dom cdm 5684 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 ax-un 7756 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-cnv 5692 df-dm 5694 df-rn 5695 |
| This theorem is referenced by: elxp4 7945 ofmres 8010 1stval 8017 fo1st 8035 frxp 8152 frxp2 8170 frxp3 8177 tfrlem8 8425 mapprc 8871 ixpprc 8960 bren 8996 brdomg 8998 brdomgOLD 8999 fundmen 9072 domssex 9179 mapen 9182 ssenen 9192 hartogslem1 9583 wemapso 9592 brwdomn0 9610 unxpwdom2 9629 ixpiunwdom 9631 oemapwe 9735 cantnffval2 9736 r0weon 10053 fseqenlem2 10066 acndom 10092 acndom2 10095 dfac9 10178 ackbij2lem2 10280 ackbij2lem3 10281 cfsmolem 10311 coftr 10314 dcomex 10488 axdc3lem4 10494 axdclem 10560 axdclem2 10561 fodomb 10567 brdom3 10569 brdom5 10570 brdom4 10571 shftfval 15110 prdsvallem 17500 isoval 17810 issubc 17881 prfval 18245 psgnghm2 21600 psdmul 22171 dfac14 23627 indishmph 23807 ufldom 23971 tsmsval2 24139 dvmptadd 25999 dvmptmul 26000 dvmptco 26011 taylfval 26401 usgrsizedg 29233 usgredgleordALT 29252 vtxdun 29500 vtxdlfgrval 29504 vtxd0nedgb 29507 vtxdushgrfvedglem 29508 vtxdushgrfvedg 29509 vtxdginducedm1lem4 29561 vtxdginducedm1 29562 ewlksfval 29620 wksfval 29628 wksvOLD 29639 wlkiswwlksupgr2 29898 vdn0conngrumgrv2 30216 vdgn1frgrv2 30316 hmoval 30830 cyc3conja 33178 esum2d 34095 sitmval 34352 bnj893 34943 fmlafv 35386 fmla 35387 fmlasuc0 35390 dfrecs2 35952 dfrdg4 35953 indexdom 37742 dibfval 41144 aomclem1 43071 dfac21 43083 trclexi 43638 rtrclexi 43639 dfrtrcl5 43647 dfrcl2 43692 dvsubf 45934 dvdivf 45942 fouriersw 46251 smflimlem1 46791 smflimlem6 46796 smfpimcc 46828 smfsuplem1 46831 smfinflem 46837 smflimsuplem1 46840 smflimsuplem2 46841 smflimsuplem3 46842 smflimsuplem4 46843 smflimsuplem5 46844 smflimsuplem7 46846 smfliminflem 46850 fsupdm 46862 finfdm 46866 isuspgrim0 47877 grimidvtxedg 47881 upwlksfval 48056 |
| Copyright terms: Public domain | W3C validator |