| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmex | Structured version Visualization version GIF version | ||
| Description: The domain of a set is a set. Corollary 6.8(2) of [TakeutiZaring] p. 26. (Contributed by NM, 7-Jul-2008.) |
| Ref | Expression |
|---|---|
| dmex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| dmex | ⊢ dom 𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | dmexg 7826 | . 2 ⊢ (𝐴 ∈ V → dom 𝐴 ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ dom 𝐴 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 Vcvv 3436 dom cdm 5611 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-cnv 5619 df-dm 5621 df-rn 5622 |
| This theorem is referenced by: elxp4 7847 ofmres 7911 1stval 7918 fo1st 7936 frxp 8051 frxp2 8069 frxp3 8076 tfrlem8 8298 mapprc 8749 ixpprc 8838 bren 8874 brdomg 8876 fundmen 8948 domssex 9046 mapen 9049 ssenen 9059 hartogslem1 9423 wemapso 9432 brwdomn0 9450 unxpwdom2 9469 ixpiunwdom 9471 oemapwe 9579 cantnffval2 9580 r0weon 9898 fseqenlem2 9911 acndom 9937 acndom2 9940 dfac9 10023 ackbij2lem2 10125 ackbij2lem3 10126 cfsmolem 10156 coftr 10159 dcomex 10333 axdc3lem4 10339 axdclem 10405 axdclem2 10406 fodomb 10412 brdom3 10414 brdom5 10415 brdom4 10416 shftfval 14972 prdsvallem 17353 isoval 17667 issubc 17737 prfval 18100 psgnghm2 21513 psdmul 22076 dfac14 23528 indishmph 23708 ufldom 23872 tsmsval2 24040 dvmptadd 25886 dvmptmul 25887 dvmptco 25898 taylfval 26288 usgrsizedg 29188 usgredgleordALT 29207 vtxdun 29455 vtxdlfgrval 29459 vtxd0nedgb 29462 vtxdushgrfvedglem 29463 vtxdushgrfvedg 29464 vtxdginducedm1lem4 29516 vtxdginducedm1 29517 ewlksfval 29575 wksfval 29583 wlkiswwlksupgr2 29850 vdn0conngrumgrv2 30168 vdgn1frgrv2 30268 hmoval 30782 cyc3conja 33118 esum2d 34098 sitmval 34354 bnj893 34932 fmlafv 35416 fmla 35417 fmlasuc0 35420 dfrecs2 35984 dfrdg4 35985 indexdom 37774 dibfval 41180 aomclem1 43087 dfac21 43099 trclexi 43653 rtrclexi 43654 dfrtrcl5 43662 dfrcl2 43707 dvsubf 45952 dvdivf 45960 fouriersw 46269 smflimlem1 46809 smflimlem6 46814 smfpimcc 46846 smfsuplem1 46849 smfinflem 46855 smflimsuplem1 46858 smflimsuplem2 46859 smflimsuplem3 46860 smflimsuplem4 46861 smflimsuplem5 46862 smflimsuplem7 46864 smfliminflem 46868 fsupdm 46880 finfdm 46884 grimidvtxedg 47916 isuspgrim0 47925 cycldlenngric 47959 upwlksfval 48166 dfinito4 49533 dftermo4 49534 |
| Copyright terms: Public domain | W3C validator |