Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dmex | Structured version Visualization version GIF version |
Description: The domain of a set is a set. Corollary 6.8(2) of [TakeutiZaring] p. 26. (Contributed by NM, 7-Jul-2008.) |
Ref | Expression |
---|---|
dmex.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
dmex | ⊢ dom 𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | dmexg 7724 | . 2 ⊢ (𝐴 ∈ V → dom 𝐴 ∈ V) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ dom 𝐴 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3422 dom cdm 5580 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-cnv 5588 df-dm 5590 df-rn 5591 |
This theorem is referenced by: elxp4 7743 ofmres 7800 1stval 7806 fo1st 7824 frxp 7938 tfrlem8 8186 mapprc 8577 ixpprc 8665 bren 8701 brenOLD 8702 brdomg 8703 fundmen 8775 domssex 8874 mapen 8877 ssenen 8887 hartogslem1 9231 wemapso 9240 brwdomn0 9258 unxpwdom2 9277 ixpiunwdom 9279 oemapwe 9382 cantnffval2 9383 r0weon 9699 fseqenlem2 9712 acndom 9738 acndom2 9741 dfac9 9823 ackbij2lem2 9927 ackbij2lem3 9928 cfsmolem 9957 coftr 9960 dcomex 10134 axdc3lem4 10140 axdclem 10206 axdclem2 10207 fodomb 10213 brdom3 10215 brdom5 10216 brdom4 10217 hashfacenOLD 14095 shftfval 14709 prdsvallem 17082 isoval 17394 issubc 17466 prfval 17832 psgnghm2 20698 dfac14 22677 indishmph 22857 ufldom 23021 tsmsval2 23189 dvmptadd 25029 dvmptmul 25030 dvmptco 25041 taylfval 25423 usgrsizedg 27485 usgredgleordALT 27504 vtxdun 27751 vtxdlfgrval 27755 vtxd0nedgb 27758 vtxdushgrfvedglem 27759 vtxdushgrfvedg 27760 vtxdginducedm1lem4 27812 vtxdginducedm1 27813 ewlksfval 27871 wksfval 27879 wksv 27889 wlkiswwlksupgr2 28143 vdn0conngrumgrv2 28461 vdgn1frgrv2 28561 hmoval 29073 cyc3conja 31326 esum2d 31961 sitmval 32216 bnj893 32808 fmlafv 33242 fmla 33243 fmlasuc0 33246 frxp2 33718 frxp3 33724 dfrecs2 34179 dfrdg4 34180 indexdom 35819 dibfval 39082 aomclem1 40795 dfac21 40807 trclexi 41117 rtrclexi 41118 dfrtrcl5 41126 dfrcl2 41171 dvsubf 43345 dvdivf 43353 fouriersw 43662 smflimlem1 44193 smflimlem6 44198 smfpimcc 44228 smfsuplem1 44231 smfinflem 44237 smflimsuplem1 44240 smflimsuplem2 44241 smflimsuplem3 44242 smflimsuplem4 44243 smflimsuplem5 44244 smflimsuplem7 44246 smfliminflem 44250 upwlksfval 45185 |
Copyright terms: Public domain | W3C validator |