| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmex | Structured version Visualization version GIF version | ||
| Description: The domain of a set is a set. Corollary 6.8(2) of [TakeutiZaring] p. 26. (Contributed by NM, 7-Jul-2008.) |
| Ref | Expression |
|---|---|
| dmex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| dmex | ⊢ dom 𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | dmexg 7902 | . 2 ⊢ (𝐴 ∈ V → dom 𝐴 ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ dom 𝐴 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3464 dom cdm 5659 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-cnv 5667 df-dm 5669 df-rn 5670 |
| This theorem is referenced by: elxp4 7923 ofmres 7988 1stval 7995 fo1st 8013 frxp 8130 frxp2 8148 frxp3 8155 tfrlem8 8403 mapprc 8849 ixpprc 8938 bren 8974 brdomg 8976 brdomgOLD 8977 fundmen 9050 domssex 9157 mapen 9160 ssenen 9170 hartogslem1 9561 wemapso 9570 brwdomn0 9588 unxpwdom2 9607 ixpiunwdom 9609 oemapwe 9713 cantnffval2 9714 r0weon 10031 fseqenlem2 10044 acndom 10070 acndom2 10073 dfac9 10156 ackbij2lem2 10258 ackbij2lem3 10259 cfsmolem 10289 coftr 10292 dcomex 10466 axdc3lem4 10472 axdclem 10538 axdclem2 10539 fodomb 10545 brdom3 10547 brdom5 10548 brdom4 10549 shftfval 15094 prdsvallem 17473 isoval 17783 issubc 17853 prfval 18216 psgnghm2 21546 psdmul 22109 dfac14 23561 indishmph 23741 ufldom 23905 tsmsval2 24073 dvmptadd 25921 dvmptmul 25922 dvmptco 25933 taylfval 26323 usgrsizedg 29199 usgredgleordALT 29218 vtxdun 29466 vtxdlfgrval 29470 vtxd0nedgb 29473 vtxdushgrfvedglem 29474 vtxdushgrfvedg 29475 vtxdginducedm1lem4 29527 vtxdginducedm1 29528 ewlksfval 29586 wksfval 29594 wksvOLD 29605 wlkiswwlksupgr2 29864 vdn0conngrumgrv2 30182 vdgn1frgrv2 30282 hmoval 30796 cyc3conja 33173 esum2d 34129 sitmval 34386 bnj893 34964 fmlafv 35407 fmla 35408 fmlasuc0 35411 dfrecs2 35973 dfrdg4 35974 indexdom 37763 dibfval 41165 aomclem1 43053 dfac21 43065 trclexi 43619 rtrclexi 43620 dfrtrcl5 43628 dfrcl2 43673 dvsubf 45923 dvdivf 45931 fouriersw 46240 smflimlem1 46780 smflimlem6 46785 smfpimcc 46817 smfsuplem1 46820 smfinflem 46826 smflimsuplem1 46829 smflimsuplem2 46830 smflimsuplem3 46831 smflimsuplem4 46832 smflimsuplem5 46833 smflimsuplem7 46835 smfliminflem 46839 fsupdm 46851 finfdm 46855 grimidvtxedg 47878 isuspgrim0 47887 cycldlenngric 47921 upwlksfval 48090 dfinito4 49366 dftermo4 49367 |
| Copyright terms: Public domain | W3C validator |