![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmex | Structured version Visualization version GIF version |
Description: The domain of a set is a set. Corollary 6.8(2) of [TakeutiZaring] p. 26. (Contributed by NM, 7-Jul-2008.) |
Ref | Expression |
---|---|
dmex.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
dmex | ⊢ dom 𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | dmexg 7923 | . 2 ⊢ (𝐴 ∈ V → dom 𝐴 ∈ V) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ dom 𝐴 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 Vcvv 3477 dom cdm 5688 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-cnv 5696 df-dm 5698 df-rn 5699 |
This theorem is referenced by: elxp4 7944 ofmres 8007 1stval 8014 fo1st 8032 frxp 8149 frxp2 8167 frxp3 8174 tfrlem8 8422 mapprc 8868 ixpprc 8957 bren 8993 brdomg 8995 brdomgOLD 8996 fundmen 9069 domssex 9176 mapen 9179 ssenen 9189 hartogslem1 9579 wemapso 9588 brwdomn0 9606 unxpwdom2 9625 ixpiunwdom 9627 oemapwe 9731 cantnffval2 9732 r0weon 10049 fseqenlem2 10062 acndom 10088 acndom2 10091 dfac9 10174 ackbij2lem2 10276 ackbij2lem3 10277 cfsmolem 10307 coftr 10310 dcomex 10484 axdc3lem4 10490 axdclem 10556 axdclem2 10557 fodomb 10563 brdom3 10565 brdom5 10566 brdom4 10567 shftfval 15105 prdsvallem 17500 isoval 17812 issubc 17885 prfval 18254 psgnghm2 21616 psdmul 22187 dfac14 23641 indishmph 23821 ufldom 23985 tsmsval2 24153 dvmptadd 26012 dvmptmul 26013 dvmptco 26024 taylfval 26414 usgrsizedg 29246 usgredgleordALT 29265 vtxdun 29513 vtxdlfgrval 29517 vtxd0nedgb 29520 vtxdushgrfvedglem 29521 vtxdushgrfvedg 29522 vtxdginducedm1lem4 29574 vtxdginducedm1 29575 ewlksfval 29633 wksfval 29641 wksvOLD 29652 wlkiswwlksupgr2 29906 vdn0conngrumgrv2 30224 vdgn1frgrv2 30324 hmoval 30838 cyc3conja 33159 esum2d 34073 sitmval 34330 bnj893 34920 fmlafv 35364 fmla 35365 fmlasuc0 35368 dfrecs2 35931 dfrdg4 35932 indexdom 37720 dibfval 41123 aomclem1 43042 dfac21 43054 trclexi 43609 rtrclexi 43610 dfrtrcl5 43618 dfrcl2 43663 dvsubf 45869 dvdivf 45877 fouriersw 46186 smflimlem1 46726 smflimlem6 46731 smfpimcc 46763 smfsuplem1 46766 smfinflem 46772 smflimsuplem1 46775 smflimsuplem2 46776 smflimsuplem3 46777 smflimsuplem4 46778 smflimsuplem5 46779 smflimsuplem7 46781 smfliminflem 46785 fsupdm 46797 finfdm 46801 isuspgrim0 47809 grimidvtxedg 47813 upwlksfval 47978 |
Copyright terms: Public domain | W3C validator |