![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmex | Structured version Visualization version GIF version |
Description: The domain of a set is a set. Corollary 6.8(2) of [TakeutiZaring] p. 26. (Contributed by NM, 7-Jul-2008.) |
Ref | Expression |
---|---|
dmex.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
dmex | ⊢ dom 𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | dmexg 7941 | . 2 ⊢ (𝐴 ∈ V → dom 𝐴 ∈ V) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ dom 𝐴 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3488 dom cdm 5700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-cnv 5708 df-dm 5710 df-rn 5711 |
This theorem is referenced by: elxp4 7962 ofmres 8025 1stval 8032 fo1st 8050 frxp 8167 frxp2 8185 frxp3 8192 tfrlem8 8440 mapprc 8888 ixpprc 8977 bren 9013 brenOLD 9014 brdomg 9016 brdomgOLD 9017 fundmen 9096 domssex 9204 mapen 9207 ssenen 9217 hartogslem1 9611 wemapso 9620 brwdomn0 9638 unxpwdom2 9657 ixpiunwdom 9659 oemapwe 9763 cantnffval2 9764 r0weon 10081 fseqenlem2 10094 acndom 10120 acndom2 10123 dfac9 10206 ackbij2lem2 10308 ackbij2lem3 10309 cfsmolem 10339 coftr 10342 dcomex 10516 axdc3lem4 10522 axdclem 10588 axdclem2 10589 fodomb 10595 brdom3 10597 brdom5 10598 brdom4 10599 shftfval 15119 prdsvallem 17514 isoval 17826 issubc 17899 prfval 18268 psgnghm2 21622 psdmul 22193 dfac14 23647 indishmph 23827 ufldom 23991 tsmsval2 24159 dvmptadd 26018 dvmptmul 26019 dvmptco 26030 taylfval 26418 usgrsizedg 29250 usgredgleordALT 29269 vtxdun 29517 vtxdlfgrval 29521 vtxd0nedgb 29524 vtxdushgrfvedglem 29525 vtxdushgrfvedg 29526 vtxdginducedm1lem4 29578 vtxdginducedm1 29579 ewlksfval 29637 wksfval 29645 wksvOLD 29656 wlkiswwlksupgr2 29910 vdn0conngrumgrv2 30228 vdgn1frgrv2 30328 hmoval 30842 cyc3conja 33150 esum2d 34057 sitmval 34314 bnj893 34904 fmlafv 35348 fmla 35349 fmlasuc0 35352 dfrecs2 35914 dfrdg4 35915 indexdom 37694 dibfval 41098 aomclem1 43011 dfac21 43023 trclexi 43582 rtrclexi 43583 dfrtrcl5 43591 dfrcl2 43636 dvsubf 45835 dvdivf 45843 fouriersw 46152 smflimlem1 46692 smflimlem6 46697 smfpimcc 46729 smfsuplem1 46732 smfinflem 46738 smflimsuplem1 46741 smflimsuplem2 46742 smflimsuplem3 46743 smflimsuplem4 46744 smflimsuplem5 46745 smflimsuplem7 46747 smfliminflem 46751 fsupdm 46763 finfdm 46767 isuspgrim0 47756 grimidvtxedg 47760 upwlksfval 47858 |
Copyright terms: Public domain | W3C validator |