| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmex | Structured version Visualization version GIF version | ||
| Description: The domain of a set is a set. Corollary 6.8(2) of [TakeutiZaring] p. 26. (Contributed by NM, 7-Jul-2008.) |
| Ref | Expression |
|---|---|
| dmex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| dmex | ⊢ dom 𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | dmexg 7840 | . 2 ⊢ (𝐴 ∈ V → dom 𝐴 ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ dom 𝐴 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 Vcvv 3437 dom cdm 5621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-cnv 5629 df-dm 5631 df-rn 5632 |
| This theorem is referenced by: elxp4 7861 ofmres 7925 1stval 7932 fo1st 7950 frxp 8065 frxp2 8083 frxp3 8090 tfrlem8 8312 mapprc 8763 ixpprc 8853 bren 8889 brdomg 8891 fundmen 8964 domssex 9062 mapen 9065 ssenen 9075 hartogslem1 9439 wemapso 9448 brwdomn0 9466 unxpwdom2 9485 ixpiunwdom 9487 oemapwe 9595 cantnffval2 9596 r0weon 9914 fseqenlem2 9927 acndom 9953 acndom2 9956 dfac9 10039 ackbij2lem2 10141 ackbij2lem3 10142 cfsmolem 10172 coftr 10175 dcomex 10349 axdc3lem4 10355 axdclem 10421 axdclem2 10422 fodomb 10428 brdom3 10430 brdom5 10431 brdom4 10432 shftfval 14984 prdsvallem 17365 isoval 17680 issubc 17750 prfval 18113 psgnghm2 21527 psdmul 22100 dfac14 23553 indishmph 23733 ufldom 23897 tsmsval2 24065 dvmptadd 25911 dvmptmul 25912 dvmptco 25923 taylfval 26313 usgrsizedg 29214 usgredgleordALT 29233 vtxdun 29481 vtxdlfgrval 29485 vtxd0nedgb 29488 vtxdushgrfvedglem 29489 vtxdushgrfvedg 29490 vtxdginducedm1lem4 29542 vtxdginducedm1 29543 ewlksfval 29601 wksfval 29609 wlkiswwlksupgr2 29876 vdn0conngrumgrv2 30197 vdgn1frgrv2 30297 hmoval 30811 cyc3conja 33167 esum2d 34178 sitmval 34434 bnj893 35012 fmlafv 35496 fmla 35497 fmlasuc0 35500 dfrecs2 36066 dfrdg4 36067 indexdom 37847 dibfval 41313 aomclem1 43211 dfac21 43223 trclexi 43777 rtrclexi 43778 dfrtrcl5 43786 dfrcl2 43831 dvsubf 46074 dvdivf 46082 fouriersw 46391 smflimlem1 46931 smflimlem6 46936 smfpimcc 46968 smfsuplem1 46971 smfinflem 46977 smflimsuplem1 46980 smflimsuplem2 46981 smflimsuplem3 46982 smflimsuplem4 46983 smflimsuplem5 46984 smflimsuplem7 46986 smfliminflem 46990 fsupdm 47002 finfdm 47006 grimidvtxedg 48047 isuspgrim0 48056 cycldlenngric 48090 upwlksfval 48297 dfinito4 49662 dftermo4 49663 |
| Copyright terms: Public domain | W3C validator |