| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmex | Structured version Visualization version GIF version | ||
| Description: The domain of a set is a set. Corollary 6.8(2) of [TakeutiZaring] p. 26. (Contributed by NM, 7-Jul-2008.) |
| Ref | Expression |
|---|---|
| dmex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| dmex | ⊢ dom 𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | dmexg 7877 | . 2 ⊢ (𝐴 ∈ V → dom 𝐴 ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ dom 𝐴 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3447 dom cdm 5638 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-cnv 5646 df-dm 5648 df-rn 5649 |
| This theorem is referenced by: elxp4 7898 ofmres 7963 1stval 7970 fo1st 7988 frxp 8105 frxp2 8123 frxp3 8130 tfrlem8 8352 mapprc 8803 ixpprc 8892 bren 8928 brdomg 8930 fundmen 9002 domssex 9102 mapen 9105 ssenen 9115 hartogslem1 9495 wemapso 9504 brwdomn0 9522 unxpwdom2 9541 ixpiunwdom 9543 oemapwe 9647 cantnffval2 9648 r0weon 9965 fseqenlem2 9978 acndom 10004 acndom2 10007 dfac9 10090 ackbij2lem2 10192 ackbij2lem3 10193 cfsmolem 10223 coftr 10226 dcomex 10400 axdc3lem4 10406 axdclem 10472 axdclem2 10473 fodomb 10479 brdom3 10481 brdom5 10482 brdom4 10483 shftfval 15036 prdsvallem 17417 isoval 17727 issubc 17797 prfval 18160 psgnghm2 21490 psdmul 22053 dfac14 23505 indishmph 23685 ufldom 23849 tsmsval2 24017 dvmptadd 25864 dvmptmul 25865 dvmptco 25876 taylfval 26266 usgrsizedg 29142 usgredgleordALT 29161 vtxdun 29409 vtxdlfgrval 29413 vtxd0nedgb 29416 vtxdushgrfvedglem 29417 vtxdushgrfvedg 29418 vtxdginducedm1lem4 29470 vtxdginducedm1 29471 ewlksfval 29529 wksfval 29537 wksvOLD 29548 wlkiswwlksupgr2 29807 vdn0conngrumgrv2 30125 vdgn1frgrv2 30225 hmoval 30739 cyc3conja 33114 esum2d 34083 sitmval 34340 bnj893 34918 fmlafv 35367 fmla 35368 fmlasuc0 35371 dfrecs2 35938 dfrdg4 35939 indexdom 37728 dibfval 41135 aomclem1 43043 dfac21 43055 trclexi 43609 rtrclexi 43610 dfrtrcl5 43618 dfrcl2 43663 dvsubf 45912 dvdivf 45920 fouriersw 46229 smflimlem1 46769 smflimlem6 46774 smfpimcc 46806 smfsuplem1 46809 smfinflem 46815 smflimsuplem1 46818 smflimsuplem2 46819 smflimsuplem3 46820 smflimsuplem4 46821 smflimsuplem5 46822 smflimsuplem7 46824 smfliminflem 46828 fsupdm 46840 finfdm 46844 grimidvtxedg 47885 isuspgrim0 47894 cycldlenngric 47928 upwlksfval 48123 dfinito4 49490 dftermo4 49491 |
| Copyright terms: Public domain | W3C validator |