| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmex | Structured version Visualization version GIF version | ||
| Description: The domain of a set is a set. Corollary 6.8(2) of [TakeutiZaring] p. 26. (Contributed by NM, 7-Jul-2008.) |
| Ref | Expression |
|---|---|
| dmex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| dmex | ⊢ dom 𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | dmexg 7841 | . 2 ⊢ (𝐴 ∈ V → dom 𝐴 ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ dom 𝐴 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3438 dom cdm 5623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-cnv 5631 df-dm 5633 df-rn 5634 |
| This theorem is referenced by: elxp4 7862 ofmres 7926 1stval 7933 fo1st 7951 frxp 8066 frxp2 8084 frxp3 8091 tfrlem8 8313 mapprc 8764 ixpprc 8853 bren 8889 brdomg 8891 fundmen 8963 domssex 9062 mapen 9065 ssenen 9075 hartogslem1 9453 wemapso 9462 brwdomn0 9480 unxpwdom2 9499 ixpiunwdom 9501 oemapwe 9609 cantnffval2 9610 r0weon 9925 fseqenlem2 9938 acndom 9964 acndom2 9967 dfac9 10050 ackbij2lem2 10152 ackbij2lem3 10153 cfsmolem 10183 coftr 10186 dcomex 10360 axdc3lem4 10366 axdclem 10432 axdclem2 10433 fodomb 10439 brdom3 10441 brdom5 10442 brdom4 10443 shftfval 14995 prdsvallem 17376 isoval 17690 issubc 17760 prfval 18123 psgnghm2 21506 psdmul 22069 dfac14 23521 indishmph 23701 ufldom 23865 tsmsval2 24033 dvmptadd 25880 dvmptmul 25881 dvmptco 25892 taylfval 26282 usgrsizedg 29178 usgredgleordALT 29197 vtxdun 29445 vtxdlfgrval 29449 vtxd0nedgb 29452 vtxdushgrfvedglem 29453 vtxdushgrfvedg 29454 vtxdginducedm1lem4 29506 vtxdginducedm1 29507 ewlksfval 29565 wksfval 29573 wlkiswwlksupgr2 29840 vdn0conngrumgrv2 30158 vdgn1frgrv2 30258 hmoval 30772 cyc3conja 33112 esum2d 34062 sitmval 34319 bnj893 34897 fmlafv 35355 fmla 35356 fmlasuc0 35359 dfrecs2 35926 dfrdg4 35927 indexdom 37716 dibfval 41123 aomclem1 43030 dfac21 43042 trclexi 43596 rtrclexi 43597 dfrtrcl5 43605 dfrcl2 43650 dvsubf 45899 dvdivf 45907 fouriersw 46216 smflimlem1 46756 smflimlem6 46761 smfpimcc 46793 smfsuplem1 46796 smfinflem 46802 smflimsuplem1 46805 smflimsuplem2 46806 smflimsuplem3 46807 smflimsuplem4 46808 smflimsuplem5 46809 smflimsuplem7 46811 smfliminflem 46815 fsupdm 46827 finfdm 46831 grimidvtxedg 47873 isuspgrim0 47882 cycldlenngric 47916 upwlksfval 48123 dfinito4 49490 dftermo4 49491 |
| Copyright terms: Public domain | W3C validator |