| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmex | Structured version Visualization version GIF version | ||
| Description: The domain of a set is a set. Corollary 6.8(2) of [TakeutiZaring] p. 26. (Contributed by NM, 7-Jul-2008.) |
| Ref | Expression |
|---|---|
| dmex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| dmex | ⊢ dom 𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | dmexg 7891 | . 2 ⊢ (𝐴 ∈ V → dom 𝐴 ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ dom 𝐴 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2107 Vcvv 3457 dom cdm 5651 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pr 5399 ax-un 7723 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-br 5117 df-opab 5179 df-cnv 5659 df-dm 5661 df-rn 5662 |
| This theorem is referenced by: elxp4 7912 ofmres 7977 1stval 7984 fo1st 8002 frxp 8119 frxp2 8137 frxp3 8144 tfrlem8 8392 mapprc 8838 ixpprc 8927 bren 8963 brdomg 8965 brdomgOLD 8966 fundmen 9039 domssex 9146 mapen 9149 ssenen 9159 hartogslem1 9548 wemapso 9557 brwdomn0 9575 unxpwdom2 9594 ixpiunwdom 9596 oemapwe 9700 cantnffval2 9701 r0weon 10018 fseqenlem2 10031 acndom 10057 acndom2 10060 dfac9 10143 ackbij2lem2 10245 ackbij2lem3 10246 cfsmolem 10276 coftr 10279 dcomex 10453 axdc3lem4 10459 axdclem 10525 axdclem2 10526 fodomb 10532 brdom3 10534 brdom5 10535 brdom4 10536 shftfval 15076 prdsvallem 17453 isoval 17763 issubc 17833 prfval 18196 psgnghm2 21526 psdmul 22089 dfac14 23541 indishmph 23721 ufldom 23885 tsmsval2 24053 dvmptadd 25901 dvmptmul 25902 dvmptco 25913 taylfval 26303 usgrsizedg 29126 usgredgleordALT 29145 vtxdun 29393 vtxdlfgrval 29397 vtxd0nedgb 29400 vtxdushgrfvedglem 29401 vtxdushgrfvedg 29402 vtxdginducedm1lem4 29454 vtxdginducedm1 29455 ewlksfval 29513 wksfval 29521 wksvOLD 29532 wlkiswwlksupgr2 29791 vdn0conngrumgrv2 30109 vdgn1frgrv2 30209 hmoval 30723 cyc3conja 33086 esum2d 34032 sitmval 34289 bnj893 34880 fmlafv 35323 fmla 35324 fmlasuc0 35327 dfrecs2 35889 dfrdg4 35890 indexdom 37679 dibfval 41081 aomclem1 43003 dfac21 43015 trclexi 43569 rtrclexi 43570 dfrtrcl5 43578 dfrcl2 43623 dvsubf 45873 dvdivf 45881 fouriersw 46190 smflimlem1 46730 smflimlem6 46735 smfpimcc 46767 smfsuplem1 46770 smfinflem 46776 smflimsuplem1 46779 smflimsuplem2 46780 smflimsuplem3 46781 smflimsuplem4 46782 smflimsuplem5 46783 smflimsuplem7 46785 smfliminflem 46789 fsupdm 46801 finfdm 46805 isuspgrim0 47817 grimidvtxedg 47821 upwlksfval 47996 dfinito4 49171 dftermo4 49172 |
| Copyright terms: Public domain | W3C validator |