| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmex | Structured version Visualization version GIF version | ||
| Description: The domain of a set is a set. Corollary 6.8(2) of [TakeutiZaring] p. 26. (Contributed by NM, 7-Jul-2008.) |
| Ref | Expression |
|---|---|
| dmex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| dmex | ⊢ dom 𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | dmexg 7857 | . 2 ⊢ (𝐴 ∈ V → dom 𝐴 ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ dom 𝐴 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3444 dom cdm 5631 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-cnv 5639 df-dm 5641 df-rn 5642 |
| This theorem is referenced by: elxp4 7878 ofmres 7942 1stval 7949 fo1st 7967 frxp 8082 frxp2 8100 frxp3 8107 tfrlem8 8329 mapprc 8780 ixpprc 8869 bren 8905 brdomg 8907 fundmen 8979 domssex 9079 mapen 9082 ssenen 9092 hartogslem1 9471 wemapso 9480 brwdomn0 9498 unxpwdom2 9517 ixpiunwdom 9519 oemapwe 9623 cantnffval2 9624 r0weon 9941 fseqenlem2 9954 acndom 9980 acndom2 9983 dfac9 10066 ackbij2lem2 10168 ackbij2lem3 10169 cfsmolem 10199 coftr 10202 dcomex 10376 axdc3lem4 10382 axdclem 10448 axdclem2 10449 fodomb 10455 brdom3 10457 brdom5 10458 brdom4 10459 shftfval 15012 prdsvallem 17393 isoval 17703 issubc 17773 prfval 18136 psgnghm2 21466 psdmul 22029 dfac14 23481 indishmph 23661 ufldom 23825 tsmsval2 23993 dvmptadd 25840 dvmptmul 25841 dvmptco 25852 taylfval 26242 usgrsizedg 29118 usgredgleordALT 29137 vtxdun 29385 vtxdlfgrval 29389 vtxd0nedgb 29392 vtxdushgrfvedglem 29393 vtxdushgrfvedg 29394 vtxdginducedm1lem4 29446 vtxdginducedm1 29447 ewlksfval 29505 wksfval 29513 wlkiswwlksupgr2 29780 vdn0conngrumgrv2 30098 vdgn1frgrv2 30198 hmoval 30712 cyc3conja 33087 esum2d 34056 sitmval 34313 bnj893 34891 fmlafv 35340 fmla 35341 fmlasuc0 35344 dfrecs2 35911 dfrdg4 35912 indexdom 37701 dibfval 41108 aomclem1 43016 dfac21 43028 trclexi 43582 rtrclexi 43583 dfrtrcl5 43591 dfrcl2 43636 dvsubf 45885 dvdivf 45893 fouriersw 46202 smflimlem1 46742 smflimlem6 46747 smfpimcc 46779 smfsuplem1 46782 smfinflem 46788 smflimsuplem1 46791 smflimsuplem2 46792 smflimsuplem3 46793 smflimsuplem4 46794 smflimsuplem5 46795 smflimsuplem7 46797 smfliminflem 46801 fsupdm 46813 finfdm 46817 grimidvtxedg 47858 isuspgrim0 47867 cycldlenngric 47901 upwlksfval 48096 dfinito4 49463 dftermo4 49464 |
| Copyright terms: Public domain | W3C validator |