Proof of Theorem mdetunilem1
Step | Hyp | Ref
| Expression |
1 | | simpr3 1194 |
. 2
⊢ (((𝜑 ∧ 𝐸 ∈ 𝐵 ∧ ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝐺𝐸𝑤)) ∧ (𝐹 ∈ 𝑁 ∧ 𝐺 ∈ 𝑁 ∧ 𝐹 ≠ 𝐺)) → 𝐹 ≠ 𝐺) |
2 | | simpl3 1191 |
. 2
⊢ (((𝜑 ∧ 𝐸 ∈ 𝐵 ∧ ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝐺𝐸𝑤)) ∧ (𝐹 ∈ 𝑁 ∧ 𝐺 ∈ 𝑁 ∧ 𝐹 ≠ 𝐺)) → ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝐺𝐸𝑤)) |
3 | | neeq2 3006 |
. . . . 5
⊢ (𝑧 = 𝐺 → (𝐹 ≠ 𝑧 ↔ 𝐹 ≠ 𝐺)) |
4 | | oveq1 7262 |
. . . . . . 7
⊢ (𝑧 = 𝐺 → (𝑧𝐸𝑤) = (𝐺𝐸𝑤)) |
5 | 4 | eqeq2d 2749 |
. . . . . 6
⊢ (𝑧 = 𝐺 → ((𝐹𝐸𝑤) = (𝑧𝐸𝑤) ↔ (𝐹𝐸𝑤) = (𝐺𝐸𝑤))) |
6 | 5 | ralbidv 3120 |
. . . . 5
⊢ (𝑧 = 𝐺 → (∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝑧𝐸𝑤) ↔ ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝐺𝐸𝑤))) |
7 | 3, 6 | anbi12d 630 |
. . . 4
⊢ (𝑧 = 𝐺 → ((𝐹 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝑧𝐸𝑤)) ↔ (𝐹 ≠ 𝐺 ∧ ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝐺𝐸𝑤)))) |
8 | 7 | imbi1d 341 |
. . 3
⊢ (𝑧 = 𝐺 → (((𝐹 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝑧𝐸𝑤)) → (𝐷‘𝐸) = 0 ) ↔ ((𝐹 ≠ 𝐺 ∧ ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝐺𝐸𝑤)) → (𝐷‘𝐸) = 0 ))) |
9 | | simpl2 1190 |
. . . 4
⊢ (((𝜑 ∧ 𝐸 ∈ 𝐵 ∧ ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝐺𝐸𝑤)) ∧ (𝐹 ∈ 𝑁 ∧ 𝐺 ∈ 𝑁 ∧ 𝐹 ≠ 𝐺)) → 𝐸 ∈ 𝐵) |
10 | | simpr1 1192 |
. . . 4
⊢ (((𝜑 ∧ 𝐸 ∈ 𝐵 ∧ ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝐺𝐸𝑤)) ∧ (𝐹 ∈ 𝑁 ∧ 𝐺 ∈ 𝑁 ∧ 𝐹 ≠ 𝐺)) → 𝐹 ∈ 𝑁) |
11 | | simpl1 1189 |
. . . . 5
⊢ (((𝜑 ∧ 𝐸 ∈ 𝐵 ∧ ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝐺𝐸𝑤)) ∧ (𝐹 ∈ 𝑁 ∧ 𝐺 ∈ 𝑁 ∧ 𝐹 ≠ 𝐺)) → 𝜑) |
12 | | mdetuni.al |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑁 ∀𝑧 ∈ 𝑁 ((𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷‘𝑥) = 0 )) |
13 | 11, 12 | syl 17 |
. . . 4
⊢ (((𝜑 ∧ 𝐸 ∈ 𝐵 ∧ ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝐺𝐸𝑤)) ∧ (𝐹 ∈ 𝑁 ∧ 𝐺 ∈ 𝑁 ∧ 𝐹 ≠ 𝐺)) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑁 ∀𝑧 ∈ 𝑁 ((𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷‘𝑥) = 0 )) |
14 | | oveq 7261 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐸 → (𝑦𝑥𝑤) = (𝑦𝐸𝑤)) |
15 | | oveq 7261 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐸 → (𝑧𝑥𝑤) = (𝑧𝐸𝑤)) |
16 | 14, 15 | eqeq12d 2754 |
. . . . . . . . 9
⊢ (𝑥 = 𝐸 → ((𝑦𝑥𝑤) = (𝑧𝑥𝑤) ↔ (𝑦𝐸𝑤) = (𝑧𝐸𝑤))) |
17 | 16 | ralbidv 3120 |
. . . . . . . 8
⊢ (𝑥 = 𝐸 → (∀𝑤 ∈ 𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤) ↔ ∀𝑤 ∈ 𝑁 (𝑦𝐸𝑤) = (𝑧𝐸𝑤))) |
18 | 17 | anbi2d 628 |
. . . . . . 7
⊢ (𝑥 = 𝐸 → ((𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) ↔ (𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝐸𝑤) = (𝑧𝐸𝑤)))) |
19 | | fveqeq2 6765 |
. . . . . . 7
⊢ (𝑥 = 𝐸 → ((𝐷‘𝑥) = 0 ↔ (𝐷‘𝐸) = 0 )) |
20 | 18, 19 | imbi12d 344 |
. . . . . 6
⊢ (𝑥 = 𝐸 → (((𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷‘𝑥) = 0 ) ↔ ((𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝐸𝑤) = (𝑧𝐸𝑤)) → (𝐷‘𝐸) = 0 ))) |
21 | 20 | ralbidv 3120 |
. . . . 5
⊢ (𝑥 = 𝐸 → (∀𝑧 ∈ 𝑁 ((𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷‘𝑥) = 0 ) ↔ ∀𝑧 ∈ 𝑁 ((𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝐸𝑤) = (𝑧𝐸𝑤)) → (𝐷‘𝐸) = 0 ))) |
22 | | neeq1 3005 |
. . . . . . . 8
⊢ (𝑦 = 𝐹 → (𝑦 ≠ 𝑧 ↔ 𝐹 ≠ 𝑧)) |
23 | | oveq1 7262 |
. . . . . . . . . 10
⊢ (𝑦 = 𝐹 → (𝑦𝐸𝑤) = (𝐹𝐸𝑤)) |
24 | 23 | eqeq1d 2740 |
. . . . . . . . 9
⊢ (𝑦 = 𝐹 → ((𝑦𝐸𝑤) = (𝑧𝐸𝑤) ↔ (𝐹𝐸𝑤) = (𝑧𝐸𝑤))) |
25 | 24 | ralbidv 3120 |
. . . . . . . 8
⊢ (𝑦 = 𝐹 → (∀𝑤 ∈ 𝑁 (𝑦𝐸𝑤) = (𝑧𝐸𝑤) ↔ ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝑧𝐸𝑤))) |
26 | 22, 25 | anbi12d 630 |
. . . . . . 7
⊢ (𝑦 = 𝐹 → ((𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝐸𝑤) = (𝑧𝐸𝑤)) ↔ (𝐹 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝑧𝐸𝑤)))) |
27 | 26 | imbi1d 341 |
. . . . . 6
⊢ (𝑦 = 𝐹 → (((𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝐸𝑤) = (𝑧𝐸𝑤)) → (𝐷‘𝐸) = 0 ) ↔ ((𝐹 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝑧𝐸𝑤)) → (𝐷‘𝐸) = 0 ))) |
28 | 27 | ralbidv 3120 |
. . . . 5
⊢ (𝑦 = 𝐹 → (∀𝑧 ∈ 𝑁 ((𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝐸𝑤) = (𝑧𝐸𝑤)) → (𝐷‘𝐸) = 0 ) ↔ ∀𝑧 ∈ 𝑁 ((𝐹 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝑧𝐸𝑤)) → (𝐷‘𝐸) = 0 ))) |
29 | 21, 28 | rspc2va 3563 |
. . . 4
⊢ (((𝐸 ∈ 𝐵 ∧ 𝐹 ∈ 𝑁) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑁 ∀𝑧 ∈ 𝑁 ((𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷‘𝑥) = 0 )) → ∀𝑧 ∈ 𝑁 ((𝐹 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝑧𝐸𝑤)) → (𝐷‘𝐸) = 0 )) |
30 | 9, 10, 13, 29 | syl21anc 834 |
. . 3
⊢ (((𝜑 ∧ 𝐸 ∈ 𝐵 ∧ ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝐺𝐸𝑤)) ∧ (𝐹 ∈ 𝑁 ∧ 𝐺 ∈ 𝑁 ∧ 𝐹 ≠ 𝐺)) → ∀𝑧 ∈ 𝑁 ((𝐹 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝑧𝐸𝑤)) → (𝐷‘𝐸) = 0 )) |
31 | | simpr2 1193 |
. . 3
⊢ (((𝜑 ∧ 𝐸 ∈ 𝐵 ∧ ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝐺𝐸𝑤)) ∧ (𝐹 ∈ 𝑁 ∧ 𝐺 ∈ 𝑁 ∧ 𝐹 ≠ 𝐺)) → 𝐺 ∈ 𝑁) |
32 | 8, 30, 31 | rspcdva 3554 |
. 2
⊢ (((𝜑 ∧ 𝐸 ∈ 𝐵 ∧ ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝐺𝐸𝑤)) ∧ (𝐹 ∈ 𝑁 ∧ 𝐺 ∈ 𝑁 ∧ 𝐹 ≠ 𝐺)) → ((𝐹 ≠ 𝐺 ∧ ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝐺𝐸𝑤)) → (𝐷‘𝐸) = 0 )) |
33 | 1, 2, 32 | mp2and 695 |
1
⊢ (((𝜑 ∧ 𝐸 ∈ 𝐵 ∧ ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝐺𝐸𝑤)) ∧ (𝐹 ∈ 𝑁 ∧ 𝐺 ∈ 𝑁 ∧ 𝐹 ≠ 𝐺)) → (𝐷‘𝐸) = 0 ) |