MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetunilem2 Structured version   Visualization version   GIF version

Theorem mdetunilem2 20916
Description: Lemma for mdetuni 20925. (Contributed by SO, 15-Jul-2018.)
Hypotheses
Ref Expression
mdetuni.a 𝐴 = (𝑁 Mat 𝑅)
mdetuni.b 𝐵 = (Base‘𝐴)
mdetuni.k 𝐾 = (Base‘𝑅)
mdetuni.0g 0 = (0g𝑅)
mdetuni.1r 1 = (1r𝑅)
mdetuni.pg + = (+g𝑅)
mdetuni.tg · = (.r𝑅)
mdetuni.n (𝜑𝑁 ∈ Fin)
mdetuni.r (𝜑𝑅 ∈ Ring)
mdetuni.ff (𝜑𝐷:𝐵𝐾)
mdetuni.al (𝜑 → ∀𝑥𝐵𝑦𝑁𝑧𝑁 ((𝑦𝑧 ∧ ∀𝑤𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷𝑥) = 0 ))
mdetuni.li (𝜑 → ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = ((𝐷𝑦) + (𝐷𝑧))))
mdetuni.sc (𝜑 → ∀𝑥𝐵𝑦𝐾𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = (𝑦 · (𝐷𝑧))))
mdetunilem2.ph (𝜓𝜑)
mdetunilem2.eg (𝜓 → (𝐸𝑁𝐺𝑁𝐸𝐺))
mdetunilem2.f ((𝜓𝑏𝑁) → 𝐹𝐾)
mdetunilem2.h ((𝜓𝑎𝑁𝑏𝑁) → 𝐻𝐾)
Assertion
Ref Expression
mdetunilem2 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, if(𝑎 = 𝐺, 𝐹, 𝐻)))) = 0 )
Distinct variable groups:   𝜑,𝑥,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝐵,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝐾,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝑁,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝐷,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥, · ,𝑦,𝑧,𝑤   + ,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   0 ,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   1 ,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   𝑥,𝑅,𝑦,𝑧,𝑤   𝐴,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   𝑥,𝐸,𝑦,𝑧,𝑤   𝑥,𝐹,𝑦,𝑧,𝑤   𝑥,𝐺,𝑦,𝑧,𝑤   𝑥,𝐻,𝑦,𝑧,𝑤   𝜓,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   𝐸,𝑎,𝑏   𝐺,𝑎,𝑏   𝐹,𝑎
Allowed substitution hints:   𝑅(𝑎,𝑏)   · (𝑎,𝑏)   𝐹(𝑏)   𝐻(𝑎,𝑏)

Proof of Theorem mdetunilem2
StepHypRef Expression
1 mdetunilem2.ph . 2 (𝜓𝜑)
2 mdetuni.a . . 3 𝐴 = (𝑁 Mat 𝑅)
3 mdetuni.k . . 3 𝐾 = (Base‘𝑅)
4 mdetuni.b . . 3 𝐵 = (Base‘𝐴)
5 mdetuni.n . . . 4 (𝜑𝑁 ∈ Fin)
61, 5syl 17 . . 3 (𝜓𝑁 ∈ Fin)
7 mdetuni.r . . . 4 (𝜑𝑅 ∈ Ring)
81, 7syl 17 . . 3 (𝜓𝑅 ∈ Ring)
9 mdetunilem2.f . . . . 5 ((𝜓𝑏𝑁) → 𝐹𝐾)
1093adant2 1111 . . . 4 ((𝜓𝑎𝑁𝑏𝑁) → 𝐹𝐾)
11 mdetunilem2.h . . . . 5 ((𝜓𝑎𝑁𝑏𝑁) → 𝐻𝐾)
1210, 11ifcld 4389 . . . 4 ((𝜓𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐺, 𝐹, 𝐻) ∈ 𝐾)
1310, 12ifcld 4389 . . 3 ((𝜓𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐸, 𝐹, if(𝑎 = 𝐺, 𝐹, 𝐻)) ∈ 𝐾)
142, 3, 4, 6, 8, 13matbas2d 20726 . 2 (𝜓 → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, if(𝑎 = 𝐺, 𝐹, 𝐻))) ∈ 𝐵)
15 eqidd 2773 . . . . 5 ((𝜓𝑤𝑁) → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, if(𝑎 = 𝐺, 𝐹, 𝐻))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, if(𝑎 = 𝐺, 𝐹, 𝐻))))
16 iftrue 4350 . . . . . . 7 (𝑎 = 𝐸 → if(𝑎 = 𝐸, 𝐹, if(𝑎 = 𝐺, 𝐹, 𝐻)) = 𝐹)
17 csbeq1a 3791 . . . . . . 7 (𝑏 = 𝑤𝐹 = 𝑤 / 𝑏𝐹)
1816, 17sylan9eq 2828 . . . . . 6 ((𝑎 = 𝐸𝑏 = 𝑤) → if(𝑎 = 𝐸, 𝐹, if(𝑎 = 𝐺, 𝐹, 𝐻)) = 𝑤 / 𝑏𝐹)
1918adantl 474 . . . . 5 (((𝜓𝑤𝑁) ∧ (𝑎 = 𝐸𝑏 = 𝑤)) → if(𝑎 = 𝐸, 𝐹, if(𝑎 = 𝐺, 𝐹, 𝐻)) = 𝑤 / 𝑏𝐹)
20 eqidd 2773 . . . . 5 (((𝜓𝑤𝑁) ∧ 𝑎 = 𝐸) → 𝑁 = 𝑁)
21 mdetunilem2.eg . . . . . . 7 (𝜓 → (𝐸𝑁𝐺𝑁𝐸𝐺))
2221simp1d 1122 . . . . . 6 (𝜓𝐸𝑁)
2322adantr 473 . . . . 5 ((𝜓𝑤𝑁) → 𝐸𝑁)
24 simpr 477 . . . . 5 ((𝜓𝑤𝑁) → 𝑤𝑁)
25 nfv 1873 . . . . . . 7 𝑏(𝜓𝑤𝑁)
26 nfcsb1v 3800 . . . . . . . 8 𝑏𝑤 / 𝑏𝐹
2726nfel1 2940 . . . . . . 7 𝑏𝑤 / 𝑏𝐹𝐾
2825, 27nfim 1859 . . . . . 6 𝑏((𝜓𝑤𝑁) → 𝑤 / 𝑏𝐹𝐾)
29 eleq1w 2842 . . . . . . . 8 (𝑏 = 𝑤 → (𝑏𝑁𝑤𝑁))
3029anbi2d 619 . . . . . . 7 (𝑏 = 𝑤 → ((𝜓𝑏𝑁) ↔ (𝜓𝑤𝑁)))
3117eleq1d 2844 . . . . . . 7 (𝑏 = 𝑤 → (𝐹𝐾𝑤 / 𝑏𝐹𝐾))
3230, 31imbi12d 337 . . . . . 6 (𝑏 = 𝑤 → (((𝜓𝑏𝑁) → 𝐹𝐾) ↔ ((𝜓𝑤𝑁) → 𝑤 / 𝑏𝐹𝐾)))
3328, 32, 9chvar 2324 . . . . 5 ((𝜓𝑤𝑁) → 𝑤 / 𝑏𝐹𝐾)
34 nfv 1873 . . . . 5 𝑎(𝜓𝑤𝑁)
35 nfcv 2926 . . . . 5 𝑏𝐸
36 nfcv 2926 . . . . 5 𝑎𝑤
37 nfcv 2926 . . . . 5 𝑎𝑤 / 𝑏𝐹
3815, 19, 20, 23, 24, 33, 34, 25, 35, 36, 37, 26ovmpodxf 7110 . . . 4 ((𝜓𝑤𝑁) → (𝐸(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, if(𝑎 = 𝐺, 𝐹, 𝐻)))𝑤) = 𝑤 / 𝑏𝐹)
3921simp3d 1124 . . . . . . . . . . . . 13 (𝜓𝐸𝐺)
4039adantr 473 . . . . . . . . . . . 12 ((𝜓𝑤𝑁) → 𝐸𝐺)
41 neeq2 3024 . . . . . . . . . . . 12 (𝑎 = 𝐺 → (𝐸𝑎𝐸𝐺))
4240, 41syl5ibrcom 239 . . . . . . . . . . 11 ((𝜓𝑤𝑁) → (𝑎 = 𝐺𝐸𝑎))
4342imp 398 . . . . . . . . . 10 (((𝜓𝑤𝑁) ∧ 𝑎 = 𝐺) → 𝐸𝑎)
4443necomd 3016 . . . . . . . . 9 (((𝜓𝑤𝑁) ∧ 𝑎 = 𝐺) → 𝑎𝐸)
4544neneqd 2966 . . . . . . . 8 (((𝜓𝑤𝑁) ∧ 𝑎 = 𝐺) → ¬ 𝑎 = 𝐸)
4645adantrr 704 . . . . . . 7 (((𝜓𝑤𝑁) ∧ (𝑎 = 𝐺𝑏 = 𝑤)) → ¬ 𝑎 = 𝐸)
4746iffalsed 4355 . . . . . 6 (((𝜓𝑤𝑁) ∧ (𝑎 = 𝐺𝑏 = 𝑤)) → if(𝑎 = 𝐸, 𝐹, if(𝑎 = 𝐺, 𝐹, 𝐻)) = if(𝑎 = 𝐺, 𝐹, 𝐻))
48 iftrue 4350 . . . . . . . 8 (𝑎 = 𝐺 → if(𝑎 = 𝐺, 𝐹, 𝐻) = 𝐹)
4948, 17sylan9eq 2828 . . . . . . 7 ((𝑎 = 𝐺𝑏 = 𝑤) → if(𝑎 = 𝐺, 𝐹, 𝐻) = 𝑤 / 𝑏𝐹)
5049adantl 474 . . . . . 6 (((𝜓𝑤𝑁) ∧ (𝑎 = 𝐺𝑏 = 𝑤)) → if(𝑎 = 𝐺, 𝐹, 𝐻) = 𝑤 / 𝑏𝐹)
5147, 50eqtrd 2808 . . . . 5 (((𝜓𝑤𝑁) ∧ (𝑎 = 𝐺𝑏 = 𝑤)) → if(𝑎 = 𝐸, 𝐹, if(𝑎 = 𝐺, 𝐹, 𝐻)) = 𝑤 / 𝑏𝐹)
52 eqidd 2773 . . . . 5 (((𝜓𝑤𝑁) ∧ 𝑎 = 𝐺) → 𝑁 = 𝑁)
5321simp2d 1123 . . . . . 6 (𝜓𝐺𝑁)
5453adantr 473 . . . . 5 ((𝜓𝑤𝑁) → 𝐺𝑁)
55 nfcv 2926 . . . . 5 𝑏𝐺
5615, 51, 52, 54, 24, 33, 34, 25, 55, 36, 37, 26ovmpodxf 7110 . . . 4 ((𝜓𝑤𝑁) → (𝐺(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, if(𝑎 = 𝐺, 𝐹, 𝐻)))𝑤) = 𝑤 / 𝑏𝐹)
5738, 56eqtr4d 2811 . . 3 ((𝜓𝑤𝑁) → (𝐸(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, if(𝑎 = 𝐺, 𝐹, 𝐻)))𝑤) = (𝐺(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, if(𝑎 = 𝐺, 𝐹, 𝐻)))𝑤))
5857ralrimiva 3126 . 2 (𝜓 → ∀𝑤𝑁 (𝐸(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, if(𝑎 = 𝐺, 𝐹, 𝐻)))𝑤) = (𝐺(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, if(𝑎 = 𝐺, 𝐹, 𝐻)))𝑤))
59 mdetuni.0g . . 3 0 = (0g𝑅)
60 mdetuni.1r . . 3 1 = (1r𝑅)
61 mdetuni.pg . . 3 + = (+g𝑅)
62 mdetuni.tg . . 3 · = (.r𝑅)
63 mdetuni.ff . . 3 (𝜑𝐷:𝐵𝐾)
64 mdetuni.al . . 3 (𝜑 → ∀𝑥𝐵𝑦𝑁𝑧𝑁 ((𝑦𝑧 ∧ ∀𝑤𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷𝑥) = 0 ))
65 mdetuni.li . . 3 (𝜑 → ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = ((𝐷𝑦) + (𝐷𝑧))))
66 mdetuni.sc . . 3 (𝜑 → ∀𝑥𝐵𝑦𝐾𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = (𝑦 · (𝐷𝑧))))
672, 4, 3, 59, 60, 61, 62, 5, 7, 63, 64, 65, 66mdetunilem1 20915 . 2 (((𝜑 ∧ (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, if(𝑎 = 𝐺, 𝐹, 𝐻))) ∈ 𝐵 ∧ ∀𝑤𝑁 (𝐸(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, if(𝑎 = 𝐺, 𝐹, 𝐻)))𝑤) = (𝐺(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, if(𝑎 = 𝐺, 𝐹, 𝐻)))𝑤)) ∧ (𝐸𝑁𝐺𝑁𝐸𝐺)) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, if(𝑎 = 𝐺, 𝐹, 𝐻)))) = 0 )
681, 14, 58, 21, 67syl31anc 1353 1 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, if(𝑎 = 𝐺, 𝐹, 𝐻)))) = 0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 387  w3a 1068   = wceq 1507  wcel 2048  wne 2961  wral 3082  csb 3782  cdif 3822  ifcif 4344  {csn 4435   × cxp 5398  cres 5402  wf 6178  cfv 6182  (class class class)co 6970  cmpo 6972  𝑓 cof 7219  Fincfn 8298  Basecbs 16329  +gcplusg 16411  .rcmulr 16412  0gc0g 16559  1rcur 18964  Ringcrg 19010   Mat cmat 20710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10383  ax-resscn 10384  ax-1cn 10385  ax-icn 10386  ax-addcl 10387  ax-addrcl 10388  ax-mulcl 10389  ax-mulrcl 10390  ax-mulcom 10391  ax-addass 10392  ax-mulass 10393  ax-distr 10394  ax-i2m1 10395  ax-1ne0 10396  ax-1rid 10397  ax-rnegex 10398  ax-rrecex 10399  ax-cnre 10400  ax-pre-lttri 10401  ax-pre-lttrn 10402  ax-pre-ltadd 10403  ax-pre-mulgt0 10404
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-pss 3841  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-ot 4444  df-uni 4707  df-int 4744  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5305  df-eprel 5310  df-po 5319  df-so 5320  df-fr 5359  df-we 5361  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-1st 7494  df-2nd 7495  df-supp 7627  df-wrecs 7743  df-recs 7805  df-rdg 7843  df-1o 7897  df-oadd 7901  df-er 8081  df-map 8200  df-ixp 8252  df-en 8299  df-dom 8300  df-sdom 8301  df-fin 8302  df-fsupp 8621  df-sup 8693  df-pnf 10468  df-mnf 10469  df-xr 10470  df-ltxr 10471  df-le 10472  df-sub 10664  df-neg 10665  df-nn 11432  df-2 11496  df-3 11497  df-4 11498  df-5 11499  df-6 11500  df-7 11501  df-8 11502  df-9 11503  df-n0 11701  df-z 11787  df-dec 11905  df-uz 12052  df-fz 12702  df-struct 16331  df-ndx 16332  df-slot 16333  df-base 16335  df-sets 16336  df-ress 16337  df-plusg 16424  df-mulr 16425  df-sca 16427  df-vsca 16428  df-ip 16429  df-tset 16430  df-ple 16431  df-ds 16433  df-hom 16435  df-cco 16436  df-0g 16561  df-prds 16567  df-pws 16569  df-sra 19656  df-rgmod 19657  df-dsmm 20568  df-frlm 20583  df-mat 20711
This theorem is referenced by:  mdetunilem6  20920  mdetunilem8  20922
  Copyright terms: Public domain W3C validator