Proof of Theorem mdetunilem2
| Step | Hyp | Ref
| Expression |
| 1 | | mdetunilem2.ph |
. 2
⊢ (𝜓 → 𝜑) |
| 2 | | mdetuni.a |
. . 3
⊢ 𝐴 = (𝑁 Mat 𝑅) |
| 3 | | mdetuni.k |
. . 3
⊢ 𝐾 = (Base‘𝑅) |
| 4 | | mdetuni.b |
. . 3
⊢ 𝐵 = (Base‘𝐴) |
| 5 | | mdetuni.n |
. . . 4
⊢ (𝜑 → 𝑁 ∈ Fin) |
| 6 | 1, 5 | syl 17 |
. . 3
⊢ (𝜓 → 𝑁 ∈ Fin) |
| 7 | | mdetuni.r |
. . . 4
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 8 | 1, 7 | syl 17 |
. . 3
⊢ (𝜓 → 𝑅 ∈ Ring) |
| 9 | | mdetunilem2.f |
. . . . 5
⊢ ((𝜓 ∧ 𝑏 ∈ 𝑁) → 𝐹 ∈ 𝐾) |
| 10 | 9 | 3adant2 1131 |
. . . 4
⊢ ((𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → 𝐹 ∈ 𝐾) |
| 11 | | mdetunilem2.h |
. . . . 5
⊢ ((𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → 𝐻 ∈ 𝐾) |
| 12 | 10, 11 | ifcld 4547 |
. . . 4
⊢ ((𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → if(𝑎 = 𝐺, 𝐹, 𝐻) ∈ 𝐾) |
| 13 | 10, 12 | ifcld 4547 |
. . 3
⊢ ((𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → if(𝑎 = 𝐸, 𝐹, if(𝑎 = 𝐺, 𝐹, 𝐻)) ∈ 𝐾) |
| 14 | 2, 3, 4, 6, 8, 13 | matbas2d 22361 |
. 2
⊢ (𝜓 → (𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐹, if(𝑎 = 𝐺, 𝐹, 𝐻))) ∈ 𝐵) |
| 15 | | eqidd 2736 |
. . . . 5
⊢ ((𝜓 ∧ 𝑤 ∈ 𝑁) → (𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐹, if(𝑎 = 𝐺, 𝐹, 𝐻))) = (𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐹, if(𝑎 = 𝐺, 𝐹, 𝐻)))) |
| 16 | | iftrue 4506 |
. . . . . . 7
⊢ (𝑎 = 𝐸 → if(𝑎 = 𝐸, 𝐹, if(𝑎 = 𝐺, 𝐹, 𝐻)) = 𝐹) |
| 17 | | csbeq1a 3888 |
. . . . . . 7
⊢ (𝑏 = 𝑤 → 𝐹 = ⦋𝑤 / 𝑏⦌𝐹) |
| 18 | 16, 17 | sylan9eq 2790 |
. . . . . 6
⊢ ((𝑎 = 𝐸 ∧ 𝑏 = 𝑤) → if(𝑎 = 𝐸, 𝐹, if(𝑎 = 𝐺, 𝐹, 𝐻)) = ⦋𝑤 / 𝑏⦌𝐹) |
| 19 | 18 | adantl 481 |
. . . . 5
⊢ (((𝜓 ∧ 𝑤 ∈ 𝑁) ∧ (𝑎 = 𝐸 ∧ 𝑏 = 𝑤)) → if(𝑎 = 𝐸, 𝐹, if(𝑎 = 𝐺, 𝐹, 𝐻)) = ⦋𝑤 / 𝑏⦌𝐹) |
| 20 | | eqidd 2736 |
. . . . 5
⊢ (((𝜓 ∧ 𝑤 ∈ 𝑁) ∧ 𝑎 = 𝐸) → 𝑁 = 𝑁) |
| 21 | | mdetunilem2.eg |
. . . . . . 7
⊢ (𝜓 → (𝐸 ∈ 𝑁 ∧ 𝐺 ∈ 𝑁 ∧ 𝐸 ≠ 𝐺)) |
| 22 | 21 | simp1d 1142 |
. . . . . 6
⊢ (𝜓 → 𝐸 ∈ 𝑁) |
| 23 | 22 | adantr 480 |
. . . . 5
⊢ ((𝜓 ∧ 𝑤 ∈ 𝑁) → 𝐸 ∈ 𝑁) |
| 24 | | simpr 484 |
. . . . 5
⊢ ((𝜓 ∧ 𝑤 ∈ 𝑁) → 𝑤 ∈ 𝑁) |
| 25 | | nfv 1914 |
. . . . . . 7
⊢
Ⅎ𝑏(𝜓 ∧ 𝑤 ∈ 𝑁) |
| 26 | | nfcsb1v 3898 |
. . . . . . . 8
⊢
Ⅎ𝑏⦋𝑤 / 𝑏⦌𝐹 |
| 27 | 26 | nfel1 2915 |
. . . . . . 7
⊢
Ⅎ𝑏⦋𝑤 / 𝑏⦌𝐹 ∈ 𝐾 |
| 28 | 25, 27 | nfim 1896 |
. . . . . 6
⊢
Ⅎ𝑏((𝜓 ∧ 𝑤 ∈ 𝑁) → ⦋𝑤 / 𝑏⦌𝐹 ∈ 𝐾) |
| 29 | | eleq1w 2817 |
. . . . . . . 8
⊢ (𝑏 = 𝑤 → (𝑏 ∈ 𝑁 ↔ 𝑤 ∈ 𝑁)) |
| 30 | 29 | anbi2d 630 |
. . . . . . 7
⊢ (𝑏 = 𝑤 → ((𝜓 ∧ 𝑏 ∈ 𝑁) ↔ (𝜓 ∧ 𝑤 ∈ 𝑁))) |
| 31 | 17 | eleq1d 2819 |
. . . . . . 7
⊢ (𝑏 = 𝑤 → (𝐹 ∈ 𝐾 ↔ ⦋𝑤 / 𝑏⦌𝐹 ∈ 𝐾)) |
| 32 | 30, 31 | imbi12d 344 |
. . . . . 6
⊢ (𝑏 = 𝑤 → (((𝜓 ∧ 𝑏 ∈ 𝑁) → 𝐹 ∈ 𝐾) ↔ ((𝜓 ∧ 𝑤 ∈ 𝑁) → ⦋𝑤 / 𝑏⦌𝐹 ∈ 𝐾))) |
| 33 | 28, 32, 9 | chvarfv 2240 |
. . . . 5
⊢ ((𝜓 ∧ 𝑤 ∈ 𝑁) → ⦋𝑤 / 𝑏⦌𝐹 ∈ 𝐾) |
| 34 | | nfv 1914 |
. . . . 5
⊢
Ⅎ𝑎(𝜓 ∧ 𝑤 ∈ 𝑁) |
| 35 | | nfcv 2898 |
. . . . 5
⊢
Ⅎ𝑏𝐸 |
| 36 | | nfcv 2898 |
. . . . 5
⊢
Ⅎ𝑎𝑤 |
| 37 | | nfcv 2898 |
. . . . 5
⊢
Ⅎ𝑎⦋𝑤 / 𝑏⦌𝐹 |
| 38 | 15, 19, 20, 23, 24, 33, 34, 25, 35, 36, 37, 26 | ovmpodxf 7557 |
. . . 4
⊢ ((𝜓 ∧ 𝑤 ∈ 𝑁) → (𝐸(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐹, if(𝑎 = 𝐺, 𝐹, 𝐻)))𝑤) = ⦋𝑤 / 𝑏⦌𝐹) |
| 39 | 21 | simp3d 1144 |
. . . . . . . . . . . . 13
⊢ (𝜓 → 𝐸 ≠ 𝐺) |
| 40 | 39 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜓 ∧ 𝑤 ∈ 𝑁) → 𝐸 ≠ 𝐺) |
| 41 | | neeq2 2995 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝐺 → (𝐸 ≠ 𝑎 ↔ 𝐸 ≠ 𝐺)) |
| 42 | 40, 41 | syl5ibrcom 247 |
. . . . . . . . . . 11
⊢ ((𝜓 ∧ 𝑤 ∈ 𝑁) → (𝑎 = 𝐺 → 𝐸 ≠ 𝑎)) |
| 43 | 42 | imp 406 |
. . . . . . . . . 10
⊢ (((𝜓 ∧ 𝑤 ∈ 𝑁) ∧ 𝑎 = 𝐺) → 𝐸 ≠ 𝑎) |
| 44 | 43 | necomd 2987 |
. . . . . . . . 9
⊢ (((𝜓 ∧ 𝑤 ∈ 𝑁) ∧ 𝑎 = 𝐺) → 𝑎 ≠ 𝐸) |
| 45 | 44 | neneqd 2937 |
. . . . . . . 8
⊢ (((𝜓 ∧ 𝑤 ∈ 𝑁) ∧ 𝑎 = 𝐺) → ¬ 𝑎 = 𝐸) |
| 46 | 45 | adantrr 717 |
. . . . . . 7
⊢ (((𝜓 ∧ 𝑤 ∈ 𝑁) ∧ (𝑎 = 𝐺 ∧ 𝑏 = 𝑤)) → ¬ 𝑎 = 𝐸) |
| 47 | 46 | iffalsed 4511 |
. . . . . 6
⊢ (((𝜓 ∧ 𝑤 ∈ 𝑁) ∧ (𝑎 = 𝐺 ∧ 𝑏 = 𝑤)) → if(𝑎 = 𝐸, 𝐹, if(𝑎 = 𝐺, 𝐹, 𝐻)) = if(𝑎 = 𝐺, 𝐹, 𝐻)) |
| 48 | | iftrue 4506 |
. . . . . . . 8
⊢ (𝑎 = 𝐺 → if(𝑎 = 𝐺, 𝐹, 𝐻) = 𝐹) |
| 49 | 48, 17 | sylan9eq 2790 |
. . . . . . 7
⊢ ((𝑎 = 𝐺 ∧ 𝑏 = 𝑤) → if(𝑎 = 𝐺, 𝐹, 𝐻) = ⦋𝑤 / 𝑏⦌𝐹) |
| 50 | 49 | adantl 481 |
. . . . . 6
⊢ (((𝜓 ∧ 𝑤 ∈ 𝑁) ∧ (𝑎 = 𝐺 ∧ 𝑏 = 𝑤)) → if(𝑎 = 𝐺, 𝐹, 𝐻) = ⦋𝑤 / 𝑏⦌𝐹) |
| 51 | 47, 50 | eqtrd 2770 |
. . . . 5
⊢ (((𝜓 ∧ 𝑤 ∈ 𝑁) ∧ (𝑎 = 𝐺 ∧ 𝑏 = 𝑤)) → if(𝑎 = 𝐸, 𝐹, if(𝑎 = 𝐺, 𝐹, 𝐻)) = ⦋𝑤 / 𝑏⦌𝐹) |
| 52 | | eqidd 2736 |
. . . . 5
⊢ (((𝜓 ∧ 𝑤 ∈ 𝑁) ∧ 𝑎 = 𝐺) → 𝑁 = 𝑁) |
| 53 | 21 | simp2d 1143 |
. . . . . 6
⊢ (𝜓 → 𝐺 ∈ 𝑁) |
| 54 | 53 | adantr 480 |
. . . . 5
⊢ ((𝜓 ∧ 𝑤 ∈ 𝑁) → 𝐺 ∈ 𝑁) |
| 55 | | nfcv 2898 |
. . . . 5
⊢
Ⅎ𝑏𝐺 |
| 56 | 15, 51, 52, 54, 24, 33, 34, 25, 55, 36, 37, 26 | ovmpodxf 7557 |
. . . 4
⊢ ((𝜓 ∧ 𝑤 ∈ 𝑁) → (𝐺(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐹, if(𝑎 = 𝐺, 𝐹, 𝐻)))𝑤) = ⦋𝑤 / 𝑏⦌𝐹) |
| 57 | 38, 56 | eqtr4d 2773 |
. . 3
⊢ ((𝜓 ∧ 𝑤 ∈ 𝑁) → (𝐸(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐹, if(𝑎 = 𝐺, 𝐹, 𝐻)))𝑤) = (𝐺(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐹, if(𝑎 = 𝐺, 𝐹, 𝐻)))𝑤)) |
| 58 | 57 | ralrimiva 3132 |
. 2
⊢ (𝜓 → ∀𝑤 ∈ 𝑁 (𝐸(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐹, if(𝑎 = 𝐺, 𝐹, 𝐻)))𝑤) = (𝐺(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐹, if(𝑎 = 𝐺, 𝐹, 𝐻)))𝑤)) |
| 59 | | mdetuni.0g |
. . 3
⊢ 0 =
(0g‘𝑅) |
| 60 | | mdetuni.1r |
. . 3
⊢ 1 =
(1r‘𝑅) |
| 61 | | mdetuni.pg |
. . 3
⊢ + =
(+g‘𝑅) |
| 62 | | mdetuni.tg |
. . 3
⊢ · =
(.r‘𝑅) |
| 63 | | mdetuni.ff |
. . 3
⊢ (𝜑 → 𝐷:𝐵⟶𝐾) |
| 64 | | mdetuni.al |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑁 ∀𝑧 ∈ 𝑁 ((𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷‘𝑥) = 0 )) |
| 65 | | mdetuni.li |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = ((𝐷‘𝑦) + (𝐷‘𝑧)))) |
| 66 | | mdetuni.sc |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐾 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = (𝑦 · (𝐷‘𝑧)))) |
| 67 | 2, 4, 3, 59, 60, 61, 62, 5, 7, 63, 64, 65, 66 | mdetunilem1 22550 |
. 2
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐹, if(𝑎 = 𝐺, 𝐹, 𝐻))) ∈ 𝐵 ∧ ∀𝑤 ∈ 𝑁 (𝐸(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐹, if(𝑎 = 𝐺, 𝐹, 𝐻)))𝑤) = (𝐺(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐹, if(𝑎 = 𝐺, 𝐹, 𝐻)))𝑤)) ∧ (𝐸 ∈ 𝑁 ∧ 𝐺 ∈ 𝑁 ∧ 𝐸 ≠ 𝐺)) → (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐹, if(𝑎 = 𝐺, 𝐹, 𝐻)))) = 0 ) |
| 68 | 1, 14, 58, 21, 67 | syl31anc 1375 |
1
⊢ (𝜓 → (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐹, if(𝑎 = 𝐺, 𝐹, 𝐻)))) = 0 ) |