Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mnfltxr | Structured version Visualization version GIF version |
Description: Minus infinity is less than an extended real that is either real or plus infinity. (Contributed by NM, 2-Feb-2006.) |
Ref | Expression |
---|---|
mnfltxr | ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) → -∞ < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnflt 12909 | . 2 ⊢ (𝐴 ∈ ℝ → -∞ < 𝐴) | |
2 | mnfltpnf 12912 | . . 3 ⊢ -∞ < +∞ | |
3 | breq2 5085 | . . 3 ⊢ (𝐴 = +∞ → (-∞ < 𝐴 ↔ -∞ < +∞)) | |
4 | 2, 3 | mpbiri 258 | . 2 ⊢ (𝐴 = +∞ → -∞ < 𝐴) |
5 | 1, 4 | jaoi 855 | 1 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) → -∞ < 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 845 = wceq 1539 ∈ wcel 2104 class class class wbr 5081 ℝcr 10920 +∞cpnf 11056 -∞cmnf 11057 < clt 11059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10977 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3063 df-rex 3072 df-rab 3306 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-xp 5606 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 |
This theorem is referenced by: supxrgtmnf 13113 nmogtmnf 29181 nmopgtmnf 30279 |
Copyright terms: Public domain | W3C validator |