MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mnfltxr Structured version   Visualization version   GIF version

Theorem mnfltxr 13028
Description: Minus infinity is less than an extended real that is either real or plus infinity. (Contributed by NM, 2-Feb-2006.)
Assertion
Ref Expression
mnfltxr ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) → -∞ < 𝐴)

Proof of Theorem mnfltxr
StepHypRef Expression
1 mnflt 13024 . 2 (𝐴 ∈ ℝ → -∞ < 𝐴)
2 mnfltpnf 13027 . . 3 -∞ < +∞
3 breq2 5097 . . 3 (𝐴 = +∞ → (-∞ < 𝐴 ↔ -∞ < +∞))
42, 3mpbiri 258 . 2 (𝐴 = +∞ → -∞ < 𝐴)
51, 4jaoi 857 1 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) → -∞ < 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1541  wcel 2113   class class class wbr 5093  cr 11012  +∞cpnf 11150  -∞cmnf 11151   < clt 11153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-xp 5625  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158
This theorem is referenced by:  supxrgtmnf  13230  nmogtmnf  30752  nmopgtmnf  31850
  Copyright terms: Public domain W3C validator