Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mnfltxr | Structured version Visualization version GIF version |
Description: Minus infinity is less than an extended real that is either real or plus infinity. (Contributed by NM, 2-Feb-2006.) |
Ref | Expression |
---|---|
mnfltxr | ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) → -∞ < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnflt 12841 | . 2 ⊢ (𝐴 ∈ ℝ → -∞ < 𝐴) | |
2 | mnfltpnf 12844 | . . 3 ⊢ -∞ < +∞ | |
3 | breq2 5082 | . . 3 ⊢ (𝐴 = +∞ → (-∞ < 𝐴 ↔ -∞ < +∞)) | |
4 | 2, 3 | mpbiri 257 | . 2 ⊢ (𝐴 = +∞ → -∞ < 𝐴) |
5 | 1, 4 | jaoi 853 | 1 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) → -∞ < 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 843 = wceq 1541 ∈ wcel 2109 class class class wbr 5078 ℝcr 10854 +∞cpnf 10990 -∞cmnf 10991 < clt 10993 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-xp 5594 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 |
This theorem is referenced by: supxrgtmnf 13045 nmogtmnf 29111 nmopgtmnf 30209 |
Copyright terms: Public domain | W3C validator |