MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mnfltxr Structured version   Visualization version   GIF version

Theorem mnfltxr 13169
Description: Minus infinity is less than an extended real that is either real or plus infinity. (Contributed by NM, 2-Feb-2006.)
Assertion
Ref Expression
mnfltxr ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) → -∞ < 𝐴)

Proof of Theorem mnfltxr
StepHypRef Expression
1 mnflt 13165 . 2 (𝐴 ∈ ℝ → -∞ < 𝐴)
2 mnfltpnf 13168 . . 3 -∞ < +∞
3 breq2 5147 . . 3 (𝐴 = +∞ → (-∞ < 𝐴 ↔ -∞ < +∞))
42, 3mpbiri 258 . 2 (𝐴 = +∞ → -∞ < 𝐴)
51, 4jaoi 858 1 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) → -∞ < 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 848   = wceq 1540  wcel 2108   class class class wbr 5143  cr 11154  +∞cpnf 11292  -∞cmnf 11293   < clt 11295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-xp 5691  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300
This theorem is referenced by:  supxrgtmnf  13371  nmogtmnf  30789  nmopgtmnf  31887
  Copyright terms: Public domain W3C validator