![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mnfltxr | Structured version Visualization version GIF version |
Description: Minus infinity is less than an extended real that is either real or plus infinity. (Contributed by NM, 2-Feb-2006.) |
Ref | Expression |
---|---|
mnfltxr | ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) → -∞ < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnflt 13186 | . 2 ⊢ (𝐴 ∈ ℝ → -∞ < 𝐴) | |
2 | mnfltpnf 13189 | . . 3 ⊢ -∞ < +∞ | |
3 | breq2 5170 | . . 3 ⊢ (𝐴 = +∞ → (-∞ < 𝐴 ↔ -∞ < +∞)) | |
4 | 2, 3 | mpbiri 258 | . 2 ⊢ (𝐴 = +∞ → -∞ < 𝐴) |
5 | 1, 4 | jaoi 856 | 1 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) → -∞ < 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 846 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 ℝcr 11183 +∞cpnf 11321 -∞cmnf 11322 < clt 11324 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 |
This theorem is referenced by: supxrgtmnf 13391 nmogtmnf 30802 nmopgtmnf 31900 |
Copyright terms: Public domain | W3C validator |