MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mnfltxr Structured version   Visualization version   GIF version

Theorem mnfltxr 13047
Description: Minus infinity is less than an extended real that is either real or plus infinity. (Contributed by NM, 2-Feb-2006.)
Assertion
Ref Expression
mnfltxr ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) → -∞ < 𝐴)

Proof of Theorem mnfltxr
StepHypRef Expression
1 mnflt 13043 . 2 (𝐴 ∈ ℝ → -∞ < 𝐴)
2 mnfltpnf 13046 . . 3 -∞ < +∞
3 breq2 5099 . . 3 (𝐴 = +∞ → (-∞ < 𝐴 ↔ -∞ < +∞))
42, 3mpbiri 258 . 2 (𝐴 = +∞ → -∞ < 𝐴)
51, 4jaoi 857 1 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) → -∞ < 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1540  wcel 2109   class class class wbr 5095  cr 11027  +∞cpnf 11165  -∞cmnf 11166   < clt 11168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-xp 5629  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173
This theorem is referenced by:  supxrgtmnf  13249  nmogtmnf  30732  nmopgtmnf  31830
  Copyright terms: Public domain W3C validator