| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mnfltxr | Structured version Visualization version GIF version | ||
| Description: Minus infinity is less than an extended real that is either real or plus infinity. (Contributed by NM, 2-Feb-2006.) |
| Ref | Expression |
|---|---|
| mnfltxr | ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) → -∞ < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnflt 13024 | . 2 ⊢ (𝐴 ∈ ℝ → -∞ < 𝐴) | |
| 2 | mnfltpnf 13027 | . . 3 ⊢ -∞ < +∞ | |
| 3 | breq2 5097 | . . 3 ⊢ (𝐴 = +∞ → (-∞ < 𝐴 ↔ -∞ < +∞)) | |
| 4 | 2, 3 | mpbiri 258 | . 2 ⊢ (𝐴 = +∞ → -∞ < 𝐴) |
| 5 | 1, 4 | jaoi 857 | 1 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) → -∞ < 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1541 ∈ wcel 2113 class class class wbr 5093 ℝcr 11012 +∞cpnf 11150 -∞cmnf 11151 < clt 11153 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-xp 5625 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 |
| This theorem is referenced by: supxrgtmnf 13230 nmogtmnf 30752 nmopgtmnf 31850 |
| Copyright terms: Public domain | W3C validator |