| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mnfltxr | Structured version Visualization version GIF version | ||
| Description: Minus infinity is less than an extended real that is either real or plus infinity. (Contributed by NM, 2-Feb-2006.) |
| Ref | Expression |
|---|---|
| mnfltxr | ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) → -∞ < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnflt 13090 | . 2 ⊢ (𝐴 ∈ ℝ → -∞ < 𝐴) | |
| 2 | mnfltpnf 13093 | . . 3 ⊢ -∞ < +∞ | |
| 3 | breq2 5114 | . . 3 ⊢ (𝐴 = +∞ → (-∞ < 𝐴 ↔ -∞ < +∞)) | |
| 4 | 2, 3 | mpbiri 258 | . 2 ⊢ (𝐴 = +∞ → -∞ < 𝐴) |
| 5 | 1, 4 | jaoi 857 | 1 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) → -∞ < 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 ℝcr 11074 +∞cpnf 11212 -∞cmnf 11213 < clt 11215 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-xp 5647 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 |
| This theorem is referenced by: supxrgtmnf 13296 nmogtmnf 30706 nmopgtmnf 31804 |
| Copyright terms: Public domain | W3C validator |