MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mnflt Structured version   Visualization version   GIF version

Theorem mnflt 13137
Description: Minus infinity is less than any (finite) real. (Contributed by NM, 14-Oct-2005.)
Assertion
Ref Expression
mnflt (𝐴 ∈ ℝ → -∞ < 𝐴)

Proof of Theorem mnflt
StepHypRef Expression
1 eqid 2735 . . . 4 -∞ = -∞
2 olc 868 . . . 4 ((-∞ = -∞ ∧ 𝐴 ∈ ℝ) → ((-∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (-∞ = -∞ ∧ 𝐴 ∈ ℝ)))
31, 2mpan 690 . . 3 (𝐴 ∈ ℝ → ((-∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (-∞ = -∞ ∧ 𝐴 ∈ ℝ)))
43olcd 874 . 2 (𝐴 ∈ ℝ → ((((-∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ -∞ < 𝐴) ∨ (-∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((-∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (-∞ = -∞ ∧ 𝐴 ∈ ℝ))))
5 mnfxr 11290 . . 3 -∞ ∈ ℝ*
6 rexr 11279 . . 3 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
7 ltxr 13129 . . 3 ((-∞ ∈ ℝ*𝐴 ∈ ℝ*) → (-∞ < 𝐴 ↔ ((((-∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ -∞ < 𝐴) ∨ (-∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((-∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (-∞ = -∞ ∧ 𝐴 ∈ ℝ)))))
85, 6, 7sylancr 587 . 2 (𝐴 ∈ ℝ → (-∞ < 𝐴 ↔ ((((-∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ -∞ < 𝐴) ∨ (-∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((-∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (-∞ = -∞ ∧ 𝐴 ∈ ℝ)))))
94, 8mpbird 257 1 (𝐴 ∈ ℝ → -∞ < 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2108   class class class wbr 5119  cr 11126   < cltrr 11131  +∞cpnf 11264  -∞cmnf 11265  *cxr 11266   < clt 11267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-xp 5660  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272
This theorem is referenced by:  mnfltd  13138  mnflt0  13139  mnfltxr  13141  xrlttri  13153  xrlttr  13154  xrrebnd  13182  xrre3  13185  qbtwnxr  13214  xrsupsslem  13321  xrub  13326  elico2  13425  elicc2  13426  ioomax  13437  elioomnf  13459  difreicc  13499  icopnfcld  24704  iocmnfcld  24705  xrtgioo  24744  bndth  24906  mbfmax  25600  itg2seq  25693  ellogdm  26598  esumcvgsum  34065  dya2iocbrsiga  34253  dya2icobrsiga  34254  orvclteel  34451  iooelexlt  37326  itg2addnclem  37641  asindmre  37673  dvasin  37674  dvacos  37675  rfcnpre4  45006  infrpge  45326  infxr  45342  infxrunb2  45343  infleinflem2  45346  icccncfext  45864  fourierdlem113  46196  fouriersw  46208  pimgtmnff  46699  iccpartigtl  47385
  Copyright terms: Public domain W3C validator