| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mnflt | Structured version Visualization version GIF version | ||
| Description: Minus infinity is less than any (finite) real. (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| mnflt | ⊢ (𝐴 ∈ ℝ → -∞ < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . . 4 ⊢ -∞ = -∞ | |
| 2 | olc 868 | . . . 4 ⊢ ((-∞ = -∞ ∧ 𝐴 ∈ ℝ) → ((-∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (-∞ = -∞ ∧ 𝐴 ∈ ℝ))) | |
| 3 | 1, 2 | mpan 690 | . . 3 ⊢ (𝐴 ∈ ℝ → ((-∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (-∞ = -∞ ∧ 𝐴 ∈ ℝ))) |
| 4 | 3 | olcd 874 | . 2 ⊢ (𝐴 ∈ ℝ → ((((-∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ -∞ <ℝ 𝐴) ∨ (-∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((-∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (-∞ = -∞ ∧ 𝐴 ∈ ℝ)))) |
| 5 | mnfxr 11178 | . . 3 ⊢ -∞ ∈ ℝ* | |
| 6 | rexr 11167 | . . 3 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
| 7 | ltxr 13018 | . . 3 ⊢ ((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (-∞ < 𝐴 ↔ ((((-∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ -∞ <ℝ 𝐴) ∨ (-∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((-∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (-∞ = -∞ ∧ 𝐴 ∈ ℝ))))) | |
| 8 | 5, 6, 7 | sylancr 587 | . 2 ⊢ (𝐴 ∈ ℝ → (-∞ < 𝐴 ↔ ((((-∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ -∞ <ℝ 𝐴) ∨ (-∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((-∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (-∞ = -∞ ∧ 𝐴 ∈ ℝ))))) |
| 9 | 4, 8 | mpbird 257 | 1 ⊢ (𝐴 ∈ ℝ → -∞ < 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2113 class class class wbr 5095 ℝcr 11014 <ℝ cltrr 11019 +∞cpnf 11152 -∞cmnf 11153 ℝ*cxr 11154 < clt 11155 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-xp 5627 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 |
| This theorem is referenced by: mnfltd 13027 mnflt0 13028 mnfltxr 13030 xrlttri 13042 xrlttr 13043 xrrebnd 13071 xrre3 13074 qbtwnxr 13103 xrsupsslem 13210 xrub 13215 elico2 13314 elicc2 13315 ioomax 13326 elioomnf 13348 difreicc 13388 icopnfcld 24685 iocmnfcld 24686 xrtgioo 24725 bndth 24887 mbfmax 25580 itg2seq 25673 ellogdm 26578 esumcvgsum 34124 dya2iocbrsiga 34311 dya2icobrsiga 34312 orvclteel 34509 iooelexlt 37429 itg2addnclem 37734 asindmre 37766 dvasin 37767 dvacos 37768 rfcnpre4 45158 infrpge 45477 infxr 45492 infxrunb2 45493 infleinflem2 45496 icccncfext 46012 fourierdlem113 46344 fouriersw 46356 pimgtmnff 46847 iccpartigtl 47550 |
| Copyright terms: Public domain | W3C validator |