| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mnflt | Structured version Visualization version GIF version | ||
| Description: Minus infinity is less than any (finite) real. (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| mnflt | ⊢ (𝐴 ∈ ℝ → -∞ < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . 4 ⊢ -∞ = -∞ | |
| 2 | olc 868 | . . . 4 ⊢ ((-∞ = -∞ ∧ 𝐴 ∈ ℝ) → ((-∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (-∞ = -∞ ∧ 𝐴 ∈ ℝ))) | |
| 3 | 1, 2 | mpan 690 | . . 3 ⊢ (𝐴 ∈ ℝ → ((-∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (-∞ = -∞ ∧ 𝐴 ∈ ℝ))) |
| 4 | 3 | olcd 874 | . 2 ⊢ (𝐴 ∈ ℝ → ((((-∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ -∞ <ℝ 𝐴) ∨ (-∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((-∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (-∞ = -∞ ∧ 𝐴 ∈ ℝ)))) |
| 5 | mnfxr 11169 | . . 3 ⊢ -∞ ∈ ℝ* | |
| 6 | rexr 11158 | . . 3 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
| 7 | ltxr 13014 | . . 3 ⊢ ((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (-∞ < 𝐴 ↔ ((((-∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ -∞ <ℝ 𝐴) ∨ (-∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((-∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (-∞ = -∞ ∧ 𝐴 ∈ ℝ))))) | |
| 8 | 5, 6, 7 | sylancr 587 | . 2 ⊢ (𝐴 ∈ ℝ → (-∞ < 𝐴 ↔ ((((-∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ -∞ <ℝ 𝐴) ∨ (-∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((-∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (-∞ = -∞ ∧ 𝐴 ∈ ℝ))))) |
| 9 | 4, 8 | mpbird 257 | 1 ⊢ (𝐴 ∈ ℝ → -∞ < 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 class class class wbr 5091 ℝcr 11005 <ℝ cltrr 11010 +∞cpnf 11143 -∞cmnf 11144 ℝ*cxr 11145 < clt 11146 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-xp 5622 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 |
| This theorem is referenced by: mnfltd 13023 mnflt0 13024 mnfltxr 13026 xrlttri 13038 xrlttr 13039 xrrebnd 13067 xrre3 13070 qbtwnxr 13099 xrsupsslem 13206 xrub 13211 elico2 13310 elicc2 13311 ioomax 13322 elioomnf 13344 difreicc 13384 icopnfcld 24683 iocmnfcld 24684 xrtgioo 24723 bndth 24885 mbfmax 25578 itg2seq 25671 ellogdm 26576 esumcvgsum 34099 dya2iocbrsiga 34286 dya2icobrsiga 34287 orvclteel 34484 iooelexlt 37402 itg2addnclem 37717 asindmre 37749 dvasin 37750 dvacos 37751 rfcnpre4 45077 infrpge 45396 infxr 45411 infxrunb2 45412 infleinflem2 45415 icccncfext 45931 fourierdlem113 46263 fouriersw 46275 pimgtmnff 46766 iccpartigtl 47460 |
| Copyright terms: Public domain | W3C validator |