| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mnflt | Structured version Visualization version GIF version | ||
| Description: Minus infinity is less than any (finite) real. (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| mnflt | ⊢ (𝐴 ∈ ℝ → -∞ < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . . 4 ⊢ -∞ = -∞ | |
| 2 | olc 868 | . . . 4 ⊢ ((-∞ = -∞ ∧ 𝐴 ∈ ℝ) → ((-∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (-∞ = -∞ ∧ 𝐴 ∈ ℝ))) | |
| 3 | 1, 2 | mpan 690 | . . 3 ⊢ (𝐴 ∈ ℝ → ((-∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (-∞ = -∞ ∧ 𝐴 ∈ ℝ))) |
| 4 | 3 | olcd 874 | . 2 ⊢ (𝐴 ∈ ℝ → ((((-∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ -∞ <ℝ 𝐴) ∨ (-∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((-∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (-∞ = -∞ ∧ 𝐴 ∈ ℝ)))) |
| 5 | mnfxr 11290 | . . 3 ⊢ -∞ ∈ ℝ* | |
| 6 | rexr 11279 | . . 3 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
| 7 | ltxr 13129 | . . 3 ⊢ ((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (-∞ < 𝐴 ↔ ((((-∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ -∞ <ℝ 𝐴) ∨ (-∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((-∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (-∞ = -∞ ∧ 𝐴 ∈ ℝ))))) | |
| 8 | 5, 6, 7 | sylancr 587 | . 2 ⊢ (𝐴 ∈ ℝ → (-∞ < 𝐴 ↔ ((((-∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ -∞ <ℝ 𝐴) ∨ (-∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((-∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (-∞ = -∞ ∧ 𝐴 ∈ ℝ))))) |
| 9 | 4, 8 | mpbird 257 | 1 ⊢ (𝐴 ∈ ℝ → -∞ < 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2108 class class class wbr 5119 ℝcr 11126 <ℝ cltrr 11131 +∞cpnf 11264 -∞cmnf 11265 ℝ*cxr 11266 < clt 11267 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-xp 5660 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 |
| This theorem is referenced by: mnfltd 13138 mnflt0 13139 mnfltxr 13141 xrlttri 13153 xrlttr 13154 xrrebnd 13182 xrre3 13185 qbtwnxr 13214 xrsupsslem 13321 xrub 13326 elico2 13425 elicc2 13426 ioomax 13437 elioomnf 13459 difreicc 13499 icopnfcld 24704 iocmnfcld 24705 xrtgioo 24744 bndth 24906 mbfmax 25600 itg2seq 25693 ellogdm 26598 esumcvgsum 34065 dya2iocbrsiga 34253 dya2icobrsiga 34254 orvclteel 34451 iooelexlt 37326 itg2addnclem 37641 asindmre 37673 dvasin 37674 dvacos 37675 rfcnpre4 45006 infrpge 45326 infxr 45342 infxrunb2 45343 infleinflem2 45346 icccncfext 45864 fourierdlem113 46196 fouriersw 46208 pimgtmnff 46699 iccpartigtl 47385 |
| Copyright terms: Public domain | W3C validator |