![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mnflt | Structured version Visualization version GIF version |
Description: Minus infinity is less than any (finite) real. (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
mnflt | ⊢ (𝐴 ∈ ℝ → -∞ < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2734 | . . . 4 ⊢ -∞ = -∞ | |
2 | olc 868 | . . . 4 ⊢ ((-∞ = -∞ ∧ 𝐴 ∈ ℝ) → ((-∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (-∞ = -∞ ∧ 𝐴 ∈ ℝ))) | |
3 | 1, 2 | mpan 690 | . . 3 ⊢ (𝐴 ∈ ℝ → ((-∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (-∞ = -∞ ∧ 𝐴 ∈ ℝ))) |
4 | 3 | olcd 874 | . 2 ⊢ (𝐴 ∈ ℝ → ((((-∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ -∞ <ℝ 𝐴) ∨ (-∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((-∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (-∞ = -∞ ∧ 𝐴 ∈ ℝ)))) |
5 | mnfxr 11315 | . . 3 ⊢ -∞ ∈ ℝ* | |
6 | rexr 11304 | . . 3 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
7 | ltxr 13154 | . . 3 ⊢ ((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (-∞ < 𝐴 ↔ ((((-∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ -∞ <ℝ 𝐴) ∨ (-∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((-∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (-∞ = -∞ ∧ 𝐴 ∈ ℝ))))) | |
8 | 5, 6, 7 | sylancr 587 | . 2 ⊢ (𝐴 ∈ ℝ → (-∞ < 𝐴 ↔ ((((-∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ -∞ <ℝ 𝐴) ∨ (-∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((-∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (-∞ = -∞ ∧ 𝐴 ∈ ℝ))))) |
9 | 4, 8 | mpbird 257 | 1 ⊢ (𝐴 ∈ ℝ → -∞ < 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1536 ∈ wcel 2105 class class class wbr 5147 ℝcr 11151 <ℝ cltrr 11156 +∞cpnf 11289 -∞cmnf 11290 ℝ*cxr 11291 < clt 11292 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-xp 5694 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 |
This theorem is referenced by: mnfltd 13163 mnflt0 13164 mnfltxr 13166 xrlttri 13177 xrlttr 13178 xrrebnd 13206 xrre3 13209 qbtwnxr 13238 xrsupsslem 13345 xrub 13350 elico2 13447 elicc2 13448 ioomax 13458 elioomnf 13480 difreicc 13520 icopnfcld 24803 iocmnfcld 24804 xrtgioo 24841 bndth 25003 mbfmax 25697 itg2seq 25791 ellogdm 26695 esumcvgsum 34068 dya2iocbrsiga 34256 dya2icobrsiga 34257 orvclteel 34453 iooelexlt 37344 itg2addnclem 37657 asindmre 37689 dvasin 37690 dvacos 37691 rfcnpre4 44971 infrpge 45300 infxr 45316 infxrunb2 45317 infleinflem2 45320 icccncfext 45842 fourierdlem113 46174 fouriersw 46186 pimgtmnff 46677 iccpartigtl 47347 |
Copyright terms: Public domain | W3C validator |