![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mnflt | Structured version Visualization version GIF version |
Description: Minus infinity is less than any (finite) real. (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
mnflt | ⊢ (𝐴 ∈ ℝ → -∞ < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2730 | . . . 4 ⊢ -∞ = -∞ | |
2 | olc 864 | . . . 4 ⊢ ((-∞ = -∞ ∧ 𝐴 ∈ ℝ) → ((-∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (-∞ = -∞ ∧ 𝐴 ∈ ℝ))) | |
3 | 1, 2 | mpan 686 | . . 3 ⊢ (𝐴 ∈ ℝ → ((-∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (-∞ = -∞ ∧ 𝐴 ∈ ℝ))) |
4 | 3 | olcd 870 | . 2 ⊢ (𝐴 ∈ ℝ → ((((-∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ -∞ <ℝ 𝐴) ∨ (-∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((-∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (-∞ = -∞ ∧ 𝐴 ∈ ℝ)))) |
5 | mnfxr 11277 | . . 3 ⊢ -∞ ∈ ℝ* | |
6 | rexr 11266 | . . 3 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
7 | ltxr 13101 | . . 3 ⊢ ((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (-∞ < 𝐴 ↔ ((((-∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ -∞ <ℝ 𝐴) ∨ (-∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((-∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (-∞ = -∞ ∧ 𝐴 ∈ ℝ))))) | |
8 | 5, 6, 7 | sylancr 585 | . 2 ⊢ (𝐴 ∈ ℝ → (-∞ < 𝐴 ↔ ((((-∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ -∞ <ℝ 𝐴) ∨ (-∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((-∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (-∞ = -∞ ∧ 𝐴 ∈ ℝ))))) |
9 | 4, 8 | mpbird 256 | 1 ⊢ (𝐴 ∈ ℝ → -∞ < 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∨ wo 843 = wceq 1539 ∈ wcel 2104 class class class wbr 5149 ℝcr 11113 <ℝ cltrr 11118 +∞cpnf 11251 -∞cmnf 11252 ℝ*cxr 11253 < clt 11254 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-cnex 11170 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-xp 5683 df-pnf 11256 df-mnf 11257 df-xr 11258 df-ltxr 11259 |
This theorem is referenced by: mnfltd 13110 mnflt0 13111 mnfltxr 13113 xrlttri 13124 xrlttr 13125 xrrebnd 13153 xrre3 13156 qbtwnxr 13185 xrsupsslem 13292 xrub 13297 elico2 13394 elicc2 13395 ioomax 13405 elioomnf 13427 difreicc 13467 icopnfcld 24506 iocmnfcld 24507 xrtgioo 24544 bndth 24706 mbfmax 25400 itg2seq 25494 ellogdm 26381 esumcvgsum 33382 dya2iocbrsiga 33570 dya2icobrsiga 33571 orvclteel 33767 iooelexlt 36548 itg2addnclem 36844 asindmre 36876 dvasin 36877 dvacos 36878 rfcnpre4 44022 infrpge 44361 infxr 44377 infxrunb2 44378 infleinflem2 44381 icccncfext 44903 fourierdlem113 45235 fouriersw 45247 pimgtmnff 45738 iccpartigtl 46391 |
Copyright terms: Public domain | W3C validator |