Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mnflt | Structured version Visualization version GIF version |
Description: Minus infinity is less than any (finite) real. (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
mnflt | ⊢ (𝐴 ∈ ℝ → -∞ < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . . 4 ⊢ -∞ = -∞ | |
2 | olc 868 | . . . 4 ⊢ ((-∞ = -∞ ∧ 𝐴 ∈ ℝ) → ((-∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (-∞ = -∞ ∧ 𝐴 ∈ ℝ))) | |
3 | 1, 2 | mpan 690 | . . 3 ⊢ (𝐴 ∈ ℝ → ((-∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (-∞ = -∞ ∧ 𝐴 ∈ ℝ))) |
4 | 3 | olcd 874 | . 2 ⊢ (𝐴 ∈ ℝ → ((((-∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ -∞ <ℝ 𝐴) ∨ (-∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((-∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (-∞ = -∞ ∧ 𝐴 ∈ ℝ)))) |
5 | mnfxr 10890 | . . 3 ⊢ -∞ ∈ ℝ* | |
6 | rexr 10879 | . . 3 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
7 | ltxr 12707 | . . 3 ⊢ ((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (-∞ < 𝐴 ↔ ((((-∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ -∞ <ℝ 𝐴) ∨ (-∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((-∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (-∞ = -∞ ∧ 𝐴 ∈ ℝ))))) | |
8 | 5, 6, 7 | sylancr 590 | . 2 ⊢ (𝐴 ∈ ℝ → (-∞ < 𝐴 ↔ ((((-∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ -∞ <ℝ 𝐴) ∨ (-∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((-∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (-∞ = -∞ ∧ 𝐴 ∈ ℝ))))) |
9 | 4, 8 | mpbird 260 | 1 ⊢ (𝐴 ∈ ℝ → -∞ < 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∨ wo 847 = wceq 1543 ∈ wcel 2110 class class class wbr 5053 ℝcr 10728 <ℝ cltrr 10733 +∞cpnf 10864 -∞cmnf 10865 ℝ*cxr 10866 < clt 10867 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-xp 5557 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 |
This theorem is referenced by: mnfltd 12716 mnflt0 12717 mnfltxr 12719 xrlttri 12729 xrlttr 12730 xrrebnd 12758 xrre3 12761 qbtwnxr 12790 xrsupsslem 12897 xrub 12902 elico2 12999 elicc2 13000 ioomax 13010 elioomnf 13032 difreicc 13072 icopnfcld 23665 iocmnfcld 23666 xrtgioo 23703 bndth 23855 mbfmax 24546 itg2seq 24640 ellogdm 25527 esumcvgsum 31768 dya2iocbrsiga 31954 dya2icobrsiga 31955 orvclteel 32151 iooelexlt 35270 itg2addnclem 35565 asindmre 35597 dvasin 35598 dvacos 35599 rfcnpre4 42250 infrpge 42563 infxr 42579 infxrunb2 42580 infleinflem2 42583 icccncfext 43103 fourierdlem113 43435 fouriersw 43447 iccpartigtl 44548 |
Copyright terms: Public domain | W3C validator |