MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mnflt Structured version   Visualization version   GIF version

Theorem mnflt 13162
Description: Minus infinity is less than any (finite) real. (Contributed by NM, 14-Oct-2005.)
Assertion
Ref Expression
mnflt (𝐴 ∈ ℝ → -∞ < 𝐴)

Proof of Theorem mnflt
StepHypRef Expression
1 eqid 2734 . . . 4 -∞ = -∞
2 olc 868 . . . 4 ((-∞ = -∞ ∧ 𝐴 ∈ ℝ) → ((-∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (-∞ = -∞ ∧ 𝐴 ∈ ℝ)))
31, 2mpan 690 . . 3 (𝐴 ∈ ℝ → ((-∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (-∞ = -∞ ∧ 𝐴 ∈ ℝ)))
43olcd 874 . 2 (𝐴 ∈ ℝ → ((((-∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ -∞ < 𝐴) ∨ (-∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((-∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (-∞ = -∞ ∧ 𝐴 ∈ ℝ))))
5 mnfxr 11315 . . 3 -∞ ∈ ℝ*
6 rexr 11304 . . 3 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
7 ltxr 13154 . . 3 ((-∞ ∈ ℝ*𝐴 ∈ ℝ*) → (-∞ < 𝐴 ↔ ((((-∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ -∞ < 𝐴) ∨ (-∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((-∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (-∞ = -∞ ∧ 𝐴 ∈ ℝ)))))
85, 6, 7sylancr 587 . 2 (𝐴 ∈ ℝ → (-∞ < 𝐴 ↔ ((((-∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ -∞ < 𝐴) ∨ (-∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((-∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (-∞ = -∞ ∧ 𝐴 ∈ ℝ)))))
94, 8mpbird 257 1 (𝐴 ∈ ℝ → -∞ < 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1536  wcel 2105   class class class wbr 5147  cr 11151   < cltrr 11156  +∞cpnf 11289  -∞cmnf 11290  *cxr 11291   < clt 11292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-xp 5694  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297
This theorem is referenced by:  mnfltd  13163  mnflt0  13164  mnfltxr  13166  xrlttri  13177  xrlttr  13178  xrrebnd  13206  xrre3  13209  qbtwnxr  13238  xrsupsslem  13345  xrub  13350  elico2  13447  elicc2  13448  ioomax  13458  elioomnf  13480  difreicc  13520  icopnfcld  24803  iocmnfcld  24804  xrtgioo  24841  bndth  25003  mbfmax  25697  itg2seq  25791  ellogdm  26695  esumcvgsum  34068  dya2iocbrsiga  34256  dya2icobrsiga  34257  orvclteel  34453  iooelexlt  37344  itg2addnclem  37657  asindmre  37689  dvasin  37690  dvacos  37691  rfcnpre4  44971  infrpge  45300  infxr  45316  infxrunb2  45317  infleinflem2  45320  icccncfext  45842  fourierdlem113  46174  fouriersw  46186  pimgtmnff  46677  iccpartigtl  47347
  Copyright terms: Public domain W3C validator