| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mnflt | Structured version Visualization version GIF version | ||
| Description: Minus infinity is less than any (finite) real. (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| mnflt | ⊢ (𝐴 ∈ ℝ → -∞ < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . . 4 ⊢ -∞ = -∞ | |
| 2 | olc 868 | . . . 4 ⊢ ((-∞ = -∞ ∧ 𝐴 ∈ ℝ) → ((-∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (-∞ = -∞ ∧ 𝐴 ∈ ℝ))) | |
| 3 | 1, 2 | mpan 690 | . . 3 ⊢ (𝐴 ∈ ℝ → ((-∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (-∞ = -∞ ∧ 𝐴 ∈ ℝ))) |
| 4 | 3 | olcd 874 | . 2 ⊢ (𝐴 ∈ ℝ → ((((-∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ -∞ <ℝ 𝐴) ∨ (-∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((-∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (-∞ = -∞ ∧ 𝐴 ∈ ℝ)))) |
| 5 | mnfxr 11238 | . . 3 ⊢ -∞ ∈ ℝ* | |
| 6 | rexr 11227 | . . 3 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
| 7 | ltxr 13082 | . . 3 ⊢ ((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (-∞ < 𝐴 ↔ ((((-∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ -∞ <ℝ 𝐴) ∨ (-∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((-∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (-∞ = -∞ ∧ 𝐴 ∈ ℝ))))) | |
| 8 | 5, 6, 7 | sylancr 587 | . 2 ⊢ (𝐴 ∈ ℝ → (-∞ < 𝐴 ↔ ((((-∞ ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ -∞ <ℝ 𝐴) ∨ (-∞ = -∞ ∧ 𝐴 = +∞)) ∨ ((-∞ ∈ ℝ ∧ 𝐴 = +∞) ∨ (-∞ = -∞ ∧ 𝐴 ∈ ℝ))))) |
| 9 | 4, 8 | mpbird 257 | 1 ⊢ (𝐴 ∈ ℝ → -∞ < 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 ℝcr 11074 <ℝ cltrr 11079 +∞cpnf 11212 -∞cmnf 11213 ℝ*cxr 11214 < clt 11215 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-xp 5647 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 |
| This theorem is referenced by: mnfltd 13091 mnflt0 13092 mnfltxr 13094 xrlttri 13106 xrlttr 13107 xrrebnd 13135 xrre3 13138 qbtwnxr 13167 xrsupsslem 13274 xrub 13279 elico2 13378 elicc2 13379 ioomax 13390 elioomnf 13412 difreicc 13452 icopnfcld 24662 iocmnfcld 24663 xrtgioo 24702 bndth 24864 mbfmax 25557 itg2seq 25650 ellogdm 26555 esumcvgsum 34085 dya2iocbrsiga 34273 dya2icobrsiga 34274 orvclteel 34471 iooelexlt 37357 itg2addnclem 37672 asindmre 37704 dvasin 37705 dvacos 37706 rfcnpre4 45035 infrpge 45354 infxr 45370 infxrunb2 45371 infleinflem2 45374 icccncfext 45892 fourierdlem113 46224 fouriersw 46236 pimgtmnff 46727 iccpartigtl 47428 |
| Copyright terms: Public domain | W3C validator |