| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mnfltpnf | Structured version Visualization version GIF version | ||
| Description: Minus infinity is less than plus infinity. (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| mnfltpnf | ⊢ -∞ < +∞ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . 4 ⊢ -∞ = -∞ | |
| 2 | eqid 2731 | . . . 4 ⊢ +∞ = +∞ | |
| 3 | olc 868 | . . . 4 ⊢ ((-∞ = -∞ ∧ +∞ = +∞) → (((-∞ ∈ ℝ ∧ +∞ ∈ ℝ) ∧ -∞ <ℝ +∞) ∨ (-∞ = -∞ ∧ +∞ = +∞))) | |
| 4 | 1, 2, 3 | mp2an 692 | . . 3 ⊢ (((-∞ ∈ ℝ ∧ +∞ ∈ ℝ) ∧ -∞ <ℝ +∞) ∨ (-∞ = -∞ ∧ +∞ = +∞)) |
| 5 | 4 | orci 865 | . 2 ⊢ ((((-∞ ∈ ℝ ∧ +∞ ∈ ℝ) ∧ -∞ <ℝ +∞) ∨ (-∞ = -∞ ∧ +∞ = +∞)) ∨ ((-∞ ∈ ℝ ∧ +∞ = +∞) ∨ (-∞ = -∞ ∧ +∞ ∈ ℝ))) |
| 6 | mnfxr 11169 | . . 3 ⊢ -∞ ∈ ℝ* | |
| 7 | pnfxr 11166 | . . 3 ⊢ +∞ ∈ ℝ* | |
| 8 | ltxr 13014 | . . 3 ⊢ ((-∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-∞ < +∞ ↔ ((((-∞ ∈ ℝ ∧ +∞ ∈ ℝ) ∧ -∞ <ℝ +∞) ∨ (-∞ = -∞ ∧ +∞ = +∞)) ∨ ((-∞ ∈ ℝ ∧ +∞ = +∞) ∨ (-∞ = -∞ ∧ +∞ ∈ ℝ))))) | |
| 9 | 6, 7, 8 | mp2an 692 | . 2 ⊢ (-∞ < +∞ ↔ ((((-∞ ∈ ℝ ∧ +∞ ∈ ℝ) ∧ -∞ <ℝ +∞) ∨ (-∞ = -∞ ∧ +∞ = +∞)) ∨ ((-∞ ∈ ℝ ∧ +∞ = +∞) ∨ (-∞ = -∞ ∧ +∞ ∈ ℝ)))) |
| 10 | 5, 9 | mpbir 231 | 1 ⊢ -∞ < +∞ |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 class class class wbr 5091 ℝcr 11005 <ℝ cltrr 11010 +∞cpnf 11143 -∞cmnf 11144 ℝ*cxr 11145 < clt 11146 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-xp 5622 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 |
| This theorem is referenced by: mnfltxr 13026 xrlttri 13038 xrlttr 13039 xltnegi 13115 supxrltinfxr 45493 liminflelimsupcex 45841 |
| Copyright terms: Public domain | W3C validator |