MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mnfltpnf Structured version   Visualization version   GIF version

Theorem mnfltpnf 13025
Description: Minus infinity is less than plus infinity. (Contributed by NM, 14-Oct-2005.)
Assertion
Ref Expression
mnfltpnf -∞ < +∞

Proof of Theorem mnfltpnf
StepHypRef Expression
1 eqid 2731 . . . 4 -∞ = -∞
2 eqid 2731 . . . 4 +∞ = +∞
3 olc 868 . . . 4 ((-∞ = -∞ ∧ +∞ = +∞) → (((-∞ ∈ ℝ ∧ +∞ ∈ ℝ) ∧ -∞ < +∞) ∨ (-∞ = -∞ ∧ +∞ = +∞)))
41, 2, 3mp2an 692 . . 3 (((-∞ ∈ ℝ ∧ +∞ ∈ ℝ) ∧ -∞ < +∞) ∨ (-∞ = -∞ ∧ +∞ = +∞))
54orci 865 . 2 ((((-∞ ∈ ℝ ∧ +∞ ∈ ℝ) ∧ -∞ < +∞) ∨ (-∞ = -∞ ∧ +∞ = +∞)) ∨ ((-∞ ∈ ℝ ∧ +∞ = +∞) ∨ (-∞ = -∞ ∧ +∞ ∈ ℝ)))
6 mnfxr 11169 . . 3 -∞ ∈ ℝ*
7 pnfxr 11166 . . 3 +∞ ∈ ℝ*
8 ltxr 13014 . . 3 ((-∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-∞ < +∞ ↔ ((((-∞ ∈ ℝ ∧ +∞ ∈ ℝ) ∧ -∞ < +∞) ∨ (-∞ = -∞ ∧ +∞ = +∞)) ∨ ((-∞ ∈ ℝ ∧ +∞ = +∞) ∨ (-∞ = -∞ ∧ +∞ ∈ ℝ)))))
96, 7, 8mp2an 692 . 2 (-∞ < +∞ ↔ ((((-∞ ∈ ℝ ∧ +∞ ∈ ℝ) ∧ -∞ < +∞) ∨ (-∞ = -∞ ∧ +∞ = +∞)) ∨ ((-∞ ∈ ℝ ∧ +∞ = +∞) ∨ (-∞ = -∞ ∧ +∞ ∈ ℝ))))
105, 9mpbir 231 1 -∞ < +∞
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111   class class class wbr 5091  cr 11005   < cltrr 11010  +∞cpnf 11143  -∞cmnf 11144  *cxr 11145   < clt 11146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-xp 5622  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151
This theorem is referenced by:  mnfltxr  13026  xrlttri  13038  xrlttr  13039  xltnegi  13115  supxrltinfxr  45493  liminflelimsupcex  45841
  Copyright terms: Public domain W3C validator