Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mnfltpnf | Structured version Visualization version GIF version |
Description: Minus infinity is less than plus infinity. (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
mnfltpnf | ⊢ -∞ < +∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2739 | . . . 4 ⊢ -∞ = -∞ | |
2 | eqid 2739 | . . . 4 ⊢ +∞ = +∞ | |
3 | olc 864 | . . . 4 ⊢ ((-∞ = -∞ ∧ +∞ = +∞) → (((-∞ ∈ ℝ ∧ +∞ ∈ ℝ) ∧ -∞ <ℝ +∞) ∨ (-∞ = -∞ ∧ +∞ = +∞))) | |
4 | 1, 2, 3 | mp2an 688 | . . 3 ⊢ (((-∞ ∈ ℝ ∧ +∞ ∈ ℝ) ∧ -∞ <ℝ +∞) ∨ (-∞ = -∞ ∧ +∞ = +∞)) |
5 | 4 | orci 861 | . 2 ⊢ ((((-∞ ∈ ℝ ∧ +∞ ∈ ℝ) ∧ -∞ <ℝ +∞) ∨ (-∞ = -∞ ∧ +∞ = +∞)) ∨ ((-∞ ∈ ℝ ∧ +∞ = +∞) ∨ (-∞ = -∞ ∧ +∞ ∈ ℝ))) |
6 | mnfxr 11016 | . . 3 ⊢ -∞ ∈ ℝ* | |
7 | pnfxr 11013 | . . 3 ⊢ +∞ ∈ ℝ* | |
8 | ltxr 12833 | . . 3 ⊢ ((-∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-∞ < +∞ ↔ ((((-∞ ∈ ℝ ∧ +∞ ∈ ℝ) ∧ -∞ <ℝ +∞) ∨ (-∞ = -∞ ∧ +∞ = +∞)) ∨ ((-∞ ∈ ℝ ∧ +∞ = +∞) ∨ (-∞ = -∞ ∧ +∞ ∈ ℝ))))) | |
9 | 6, 7, 8 | mp2an 688 | . 2 ⊢ (-∞ < +∞ ↔ ((((-∞ ∈ ℝ ∧ +∞ ∈ ℝ) ∧ -∞ <ℝ +∞) ∨ (-∞ = -∞ ∧ +∞ = +∞)) ∨ ((-∞ ∈ ℝ ∧ +∞ = +∞) ∨ (-∞ = -∞ ∧ +∞ ∈ ℝ)))) |
10 | 5, 9 | mpbir 230 | 1 ⊢ -∞ < +∞ |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∨ wo 843 = wceq 1541 ∈ wcel 2109 class class class wbr 5078 ℝcr 10854 <ℝ cltrr 10859 +∞cpnf 10990 -∞cmnf 10991 ℝ*cxr 10992 < clt 10993 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-xp 5594 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 |
This theorem is referenced by: mnfltxr 12845 xrlttri 12855 xrlttr 12856 xltnegi 12932 supxrltinfxr 42943 liminflelimsupcex 43292 |
Copyright terms: Public domain | W3C validator |