![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mnfltpnf | Structured version Visualization version GIF version |
Description: Minus infinity is less than plus infinity. (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
mnfltpnf | ⊢ -∞ < +∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . . 4 ⊢ -∞ = -∞ | |
2 | eqid 2732 | . . . 4 ⊢ +∞ = +∞ | |
3 | olc 866 | . . . 4 ⊢ ((-∞ = -∞ ∧ +∞ = +∞) → (((-∞ ∈ ℝ ∧ +∞ ∈ ℝ) ∧ -∞ <ℝ +∞) ∨ (-∞ = -∞ ∧ +∞ = +∞))) | |
4 | 1, 2, 3 | mp2an 690 | . . 3 ⊢ (((-∞ ∈ ℝ ∧ +∞ ∈ ℝ) ∧ -∞ <ℝ +∞) ∨ (-∞ = -∞ ∧ +∞ = +∞)) |
5 | 4 | orci 863 | . 2 ⊢ ((((-∞ ∈ ℝ ∧ +∞ ∈ ℝ) ∧ -∞ <ℝ +∞) ∨ (-∞ = -∞ ∧ +∞ = +∞)) ∨ ((-∞ ∈ ℝ ∧ +∞ = +∞) ∨ (-∞ = -∞ ∧ +∞ ∈ ℝ))) |
6 | mnfxr 11267 | . . 3 ⊢ -∞ ∈ ℝ* | |
7 | pnfxr 11264 | . . 3 ⊢ +∞ ∈ ℝ* | |
8 | ltxr 13091 | . . 3 ⊢ ((-∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-∞ < +∞ ↔ ((((-∞ ∈ ℝ ∧ +∞ ∈ ℝ) ∧ -∞ <ℝ +∞) ∨ (-∞ = -∞ ∧ +∞ = +∞)) ∨ ((-∞ ∈ ℝ ∧ +∞ = +∞) ∨ (-∞ = -∞ ∧ +∞ ∈ ℝ))))) | |
9 | 6, 7, 8 | mp2an 690 | . 2 ⊢ (-∞ < +∞ ↔ ((((-∞ ∈ ℝ ∧ +∞ ∈ ℝ) ∧ -∞ <ℝ +∞) ∨ (-∞ = -∞ ∧ +∞ = +∞)) ∨ ((-∞ ∈ ℝ ∧ +∞ = +∞) ∨ (-∞ = -∞ ∧ +∞ ∈ ℝ)))) |
10 | 5, 9 | mpbir 230 | 1 ⊢ -∞ < +∞ |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∨ wo 845 = wceq 1541 ∈ wcel 2106 class class class wbr 5147 ℝcr 11105 <ℝ cltrr 11110 +∞cpnf 11241 -∞cmnf 11242 ℝ*cxr 11243 < clt 11244 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-xp 5681 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 |
This theorem is referenced by: mnfltxr 13103 xrlttri 13114 xrlttr 13115 xltnegi 13191 supxrltinfxr 44145 liminflelimsupcex 44499 |
Copyright terms: Public domain | W3C validator |