MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supxrgtmnf Structured version   Visualization version   GIF version

Theorem supxrgtmnf 12712
Description: The supremum of a nonempty set of reals is greater than minus infinity. (Contributed by NM, 2-Feb-2006.)
Assertion
Ref Expression
supxrgtmnf ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → -∞ < sup(𝐴, ℝ*, < ))

Proof of Theorem supxrgtmnf
StepHypRef Expression
1 supxrbnd 12711 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ sup(𝐴, ℝ*, < ) < +∞) → sup(𝐴, ℝ*, < ) ∈ ℝ)
213expia 1115 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → (sup(𝐴, ℝ*, < ) < +∞ → sup(𝐴, ℝ*, < ) ∈ ℝ))
32con3d 155 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → (¬ sup(𝐴, ℝ*, < ) ∈ ℝ → ¬ sup(𝐴, ℝ*, < ) < +∞))
4 ressxr 10674 . . . . . . . 8 ℝ ⊆ ℝ*
5 sstr 3979 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ ℝ ⊆ ℝ*) → 𝐴 ⊆ ℝ*)
64, 5mpan2 687 . . . . . . 7 (𝐴 ⊆ ℝ → 𝐴 ⊆ ℝ*)
7 supxrcl 12698 . . . . . . 7 (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*)
86, 7syl 17 . . . . . 6 (𝐴 ⊆ ℝ → sup(𝐴, ℝ*, < ) ∈ ℝ*)
98adantr 481 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
10 nltpnft 12547 . . . . 5 (sup(𝐴, ℝ*, < ) ∈ ℝ* → (sup(𝐴, ℝ*, < ) = +∞ ↔ ¬ sup(𝐴, ℝ*, < ) < +∞))
119, 10syl 17 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → (sup(𝐴, ℝ*, < ) = +∞ ↔ ¬ sup(𝐴, ℝ*, < ) < +∞))
123, 11sylibrd 260 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → (¬ sup(𝐴, ℝ*, < ) ∈ ℝ → sup(𝐴, ℝ*, < ) = +∞))
1312orrd 859 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → (sup(𝐴, ℝ*, < ) ∈ ℝ ∨ sup(𝐴, ℝ*, < ) = +∞))
14 mnfltxr 12512 . 2 ((sup(𝐴, ℝ*, < ) ∈ ℝ ∨ sup(𝐴, ℝ*, < ) = +∞) → -∞ < sup(𝐴, ℝ*, < ))
1513, 14syl 17 1 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → -∞ < sup(𝐴, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 843   = wceq 1530  wcel 2107  wne 3021  wss 3940  c0 4295   class class class wbr 5063  supcsup 8893  cr 10525  +∞cpnf 10661  -∞cmnf 10662  *cxr 10663   < clt 10664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4838  df-br 5064  df-opab 5126  df-mpt 5144  df-id 5459  df-po 5473  df-so 5474  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-er 8279  df-en 8499  df-dom 8500  df-sdom 8501  df-sup 8895  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862
This theorem is referenced by:  supxrre1  12713  ovolunlem1a  24012  suplesup  41472
  Copyright terms: Public domain W3C validator