MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supxrgtmnf Structured version   Visualization version   GIF version

Theorem supxrgtmnf 13367
Description: The supremum of a nonempty set of reals is greater than minus infinity. (Contributed by NM, 2-Feb-2006.)
Assertion
Ref Expression
supxrgtmnf ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → -∞ < sup(𝐴, ℝ*, < ))

Proof of Theorem supxrgtmnf
StepHypRef Expression
1 supxrbnd 13366 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ sup(𝐴, ℝ*, < ) < +∞) → sup(𝐴, ℝ*, < ) ∈ ℝ)
213expia 1120 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → (sup(𝐴, ℝ*, < ) < +∞ → sup(𝐴, ℝ*, < ) ∈ ℝ))
32con3d 152 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → (¬ sup(𝐴, ℝ*, < ) ∈ ℝ → ¬ sup(𝐴, ℝ*, < ) < +∞))
4 ressxr 11302 . . . . . . . 8 ℝ ⊆ ℝ*
5 sstr 4003 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ ℝ ⊆ ℝ*) → 𝐴 ⊆ ℝ*)
64, 5mpan2 691 . . . . . . 7 (𝐴 ⊆ ℝ → 𝐴 ⊆ ℝ*)
7 supxrcl 13353 . . . . . . 7 (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*)
86, 7syl 17 . . . . . 6 (𝐴 ⊆ ℝ → sup(𝐴, ℝ*, < ) ∈ ℝ*)
98adantr 480 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → sup(𝐴, ℝ*, < ) ∈ ℝ*)
10 nltpnft 13202 . . . . 5 (sup(𝐴, ℝ*, < ) ∈ ℝ* → (sup(𝐴, ℝ*, < ) = +∞ ↔ ¬ sup(𝐴, ℝ*, < ) < +∞))
119, 10syl 17 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → (sup(𝐴, ℝ*, < ) = +∞ ↔ ¬ sup(𝐴, ℝ*, < ) < +∞))
123, 11sylibrd 259 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → (¬ sup(𝐴, ℝ*, < ) ∈ ℝ → sup(𝐴, ℝ*, < ) = +∞))
1312orrd 863 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → (sup(𝐴, ℝ*, < ) ∈ ℝ ∨ sup(𝐴, ℝ*, < ) = +∞))
14 mnfltxr 13166 . 2 ((sup(𝐴, ℝ*, < ) ∈ ℝ ∨ sup(𝐴, ℝ*, < ) = +∞) → -∞ < sup(𝐴, ℝ*, < ))
1513, 14syl 17 1 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → -∞ < sup(𝐴, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1536  wcel 2105  wne 2937  wss 3962  c0 4338   class class class wbr 5147  supcsup 9477  cr 11151  +∞cpnf 11289  -∞cmnf 11290  *cxr 11291   < clt 11292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-po 5596  df-so 5597  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-sup 9479  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492
This theorem is referenced by:  supxrre1  13368  ovolunlem1a  25544  suplesup  45288
  Copyright terms: Public domain W3C validator