MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fseqenlem2 Structured version   Visualization version   GIF version

Theorem fseqenlem2 9445
Description: Lemma for fseqen 9447. (Contributed by Mario Carneiro, 17-May-2015.)
Hypotheses
Ref Expression
fseqenlem.a (𝜑𝐴𝑉)
fseqenlem.b (𝜑𝐵𝐴)
fseqenlem.f (𝜑𝐹:(𝐴 × 𝐴)–1-1-onto𝐴)
fseqenlem.g 𝐺 = seqω((𝑛 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (𝐴m suc 𝑛) ↦ ((𝑓‘(𝑥𝑛))𝐹(𝑥𝑛)))), {⟨∅, 𝐵⟩})
fseqenlem.k 𝐾 = (𝑦 𝑘 ∈ ω (𝐴m 𝑘) ↦ ⟨dom 𝑦, ((𝐺‘dom 𝑦)‘𝑦)⟩)
Assertion
Ref Expression
fseqenlem2 (𝜑𝐾: 𝑘 ∈ ω (𝐴m 𝑘)–1-1→(ω × 𝐴))
Distinct variable groups:   𝑦,𝐵   𝑓,𝑛,𝑥,𝐹   𝑦,𝑘,𝐺   𝑓,𝑘,𝑦,𝐴,𝑛,𝑥   𝜑,𝑘,𝑛,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑥,𝑓,𝑘,𝑛)   𝐹(𝑦,𝑘)   𝐺(𝑥,𝑓,𝑛)   𝐾(𝑥,𝑦,𝑓,𝑘,𝑛)   𝑉(𝑥,𝑦,𝑓,𝑘,𝑛)

Proof of Theorem fseqenlem2
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eliun 4915 . . . . 5 (𝑦 𝑘 ∈ ω (𝐴m 𝑘) ↔ ∃𝑘 ∈ ω 𝑦 ∈ (𝐴m 𝑘))
2 elmapi 8422 . . . . . . . . . 10 (𝑦 ∈ (𝐴m 𝑘) → 𝑦:𝑘𝐴)
32ad2antll 727 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ω ∧ 𝑦 ∈ (𝐴m 𝑘))) → 𝑦:𝑘𝐴)
43fdmd 6517 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ ω ∧ 𝑦 ∈ (𝐴m 𝑘))) → dom 𝑦 = 𝑘)
5 simprl 769 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ ω ∧ 𝑦 ∈ (𝐴m 𝑘))) → 𝑘 ∈ ω)
64, 5eqeltrd 2913 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ ω ∧ 𝑦 ∈ (𝐴m 𝑘))) → dom 𝑦 ∈ ω)
74fveq2d 6668 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ω ∧ 𝑦 ∈ (𝐴m 𝑘))) → (𝐺‘dom 𝑦) = (𝐺𝑘))
87fveq1d 6666 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ ω ∧ 𝑦 ∈ (𝐴m 𝑘))) → ((𝐺‘dom 𝑦)‘𝑦) = ((𝐺𝑘)‘𝑦))
9 fseqenlem.a . . . . . . . . . . . 12 (𝜑𝐴𝑉)
10 fseqenlem.b . . . . . . . . . . . 12 (𝜑𝐵𝐴)
11 fseqenlem.f . . . . . . . . . . . 12 (𝜑𝐹:(𝐴 × 𝐴)–1-1-onto𝐴)
12 fseqenlem.g . . . . . . . . . . . 12 𝐺 = seqω((𝑛 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (𝐴m suc 𝑛) ↦ ((𝑓‘(𝑥𝑛))𝐹(𝑥𝑛)))), {⟨∅, 𝐵⟩})
139, 10, 11, 12fseqenlem1 9444 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ω) → (𝐺𝑘):(𝐴m 𝑘)–1-1𝐴)
1413adantrr 715 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ ω ∧ 𝑦 ∈ (𝐴m 𝑘))) → (𝐺𝑘):(𝐴m 𝑘)–1-1𝐴)
15 f1f 6569 . . . . . . . . . 10 ((𝐺𝑘):(𝐴m 𝑘)–1-1𝐴 → (𝐺𝑘):(𝐴m 𝑘)⟶𝐴)
1614, 15syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ω ∧ 𝑦 ∈ (𝐴m 𝑘))) → (𝐺𝑘):(𝐴m 𝑘)⟶𝐴)
17 simprr 771 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ω ∧ 𝑦 ∈ (𝐴m 𝑘))) → 𝑦 ∈ (𝐴m 𝑘))
1816, 17ffvelrnd 6846 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ ω ∧ 𝑦 ∈ (𝐴m 𝑘))) → ((𝐺𝑘)‘𝑦) ∈ 𝐴)
198, 18eqeltrd 2913 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ ω ∧ 𝑦 ∈ (𝐴m 𝑘))) → ((𝐺‘dom 𝑦)‘𝑦) ∈ 𝐴)
206, 19opelxpd 5587 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ ω ∧ 𝑦 ∈ (𝐴m 𝑘))) → ⟨dom 𝑦, ((𝐺‘dom 𝑦)‘𝑦)⟩ ∈ (ω × 𝐴))
2120rexlimdvaa 3285 . . . . 5 (𝜑 → (∃𝑘 ∈ ω 𝑦 ∈ (𝐴m 𝑘) → ⟨dom 𝑦, ((𝐺‘dom 𝑦)‘𝑦)⟩ ∈ (ω × 𝐴)))
221, 21syl5bi 244 . . . 4 (𝜑 → (𝑦 𝑘 ∈ ω (𝐴m 𝑘) → ⟨dom 𝑦, ((𝐺‘dom 𝑦)‘𝑦)⟩ ∈ (ω × 𝐴)))
2322imp 409 . . 3 ((𝜑𝑦 𝑘 ∈ ω (𝐴m 𝑘)) → ⟨dom 𝑦, ((𝐺‘dom 𝑦)‘𝑦)⟩ ∈ (ω × 𝐴))
24 fseqenlem.k . . 3 𝐾 = (𝑦 𝑘 ∈ ω (𝐴m 𝑘) ↦ ⟨dom 𝑦, ((𝐺‘dom 𝑦)‘𝑦)⟩)
2523, 24fmptd 6872 . 2 (𝜑𝐾: 𝑘 ∈ ω (𝐴m 𝑘)⟶(ω × 𝐴))
26 ffun 6511 . . . . . . . . . . . . . . 15 (𝐾: 𝑘 ∈ ω (𝐴m 𝑘)⟶(ω × 𝐴) → Fun 𝐾)
27 funbrfv2b 6717 . . . . . . . . . . . . . . 15 (Fun 𝐾 → (𝑧𝐾𝑤 ↔ (𝑧 ∈ dom 𝐾 ∧ (𝐾𝑧) = 𝑤)))
2825, 26, 273syl 18 . . . . . . . . . . . . . 14 (𝜑 → (𝑧𝐾𝑤 ↔ (𝑧 ∈ dom 𝐾 ∧ (𝐾𝑧) = 𝑤)))
2928simplbda 502 . . . . . . . . . . . . 13 ((𝜑𝑧𝐾𝑤) → (𝐾𝑧) = 𝑤)
3028simprbda 501 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝐾𝑤) → 𝑧 ∈ dom 𝐾)
3125fdmd 6517 . . . . . . . . . . . . . . . 16 (𝜑 → dom 𝐾 = 𝑘 ∈ ω (𝐴m 𝑘))
3231adantr 483 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝐾𝑤) → dom 𝐾 = 𝑘 ∈ ω (𝐴m 𝑘))
3330, 32eleqtrd 2915 . . . . . . . . . . . . . 14 ((𝜑𝑧𝐾𝑤) → 𝑧 𝑘 ∈ ω (𝐴m 𝑘))
34 dmeq 5766 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑧 → dom 𝑦 = dom 𝑧)
3534fveq2d 6668 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑧 → (𝐺‘dom 𝑦) = (𝐺‘dom 𝑧))
36 id 22 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑧𝑦 = 𝑧)
3735, 36fveq12d 6671 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑧 → ((𝐺‘dom 𝑦)‘𝑦) = ((𝐺‘dom 𝑧)‘𝑧))
3834, 37opeq12d 4804 . . . . . . . . . . . . . . 15 (𝑦 = 𝑧 → ⟨dom 𝑦, ((𝐺‘dom 𝑦)‘𝑦)⟩ = ⟨dom 𝑧, ((𝐺‘dom 𝑧)‘𝑧)⟩)
39 opex 5348 . . . . . . . . . . . . . . 15 ⟨dom 𝑧, ((𝐺‘dom 𝑧)‘𝑧)⟩ ∈ V
4038, 24, 39fvmpt 6762 . . . . . . . . . . . . . 14 (𝑧 𝑘 ∈ ω (𝐴m 𝑘) → (𝐾𝑧) = ⟨dom 𝑧, ((𝐺‘dom 𝑧)‘𝑧)⟩)
4133, 40syl 17 . . . . . . . . . . . . 13 ((𝜑𝑧𝐾𝑤) → (𝐾𝑧) = ⟨dom 𝑧, ((𝐺‘dom 𝑧)‘𝑧)⟩)
4229, 41eqtr3d 2858 . . . . . . . . . . . 12 ((𝜑𝑧𝐾𝑤) → 𝑤 = ⟨dom 𝑧, ((𝐺‘dom 𝑧)‘𝑧)⟩)
4342fveq2d 6668 . . . . . . . . . . 11 ((𝜑𝑧𝐾𝑤) → (1st𝑤) = (1st ‘⟨dom 𝑧, ((𝐺‘dom 𝑧)‘𝑧)⟩))
44 vex 3497 . . . . . . . . . . . . 13 𝑧 ∈ V
4544dmex 7610 . . . . . . . . . . . 12 dom 𝑧 ∈ V
46 fvex 6677 . . . . . . . . . . . 12 ((𝐺‘dom 𝑧)‘𝑧) ∈ V
4745, 46op1st 7691 . . . . . . . . . . 11 (1st ‘⟨dom 𝑧, ((𝐺‘dom 𝑧)‘𝑧)⟩) = dom 𝑧
4843, 47syl6eq 2872 . . . . . . . . . 10 ((𝜑𝑧𝐾𝑤) → (1st𝑤) = dom 𝑧)
4948fveq2d 6668 . . . . . . . . 9 ((𝜑𝑧𝐾𝑤) → (𝐺‘(1st𝑤)) = (𝐺‘dom 𝑧))
5049cnveqd 5740 . . . . . . . 8 ((𝜑𝑧𝐾𝑤) → (𝐺‘(1st𝑤)) = (𝐺‘dom 𝑧))
5142fveq2d 6668 . . . . . . . . 9 ((𝜑𝑧𝐾𝑤) → (2nd𝑤) = (2nd ‘⟨dom 𝑧, ((𝐺‘dom 𝑧)‘𝑧)⟩))
5245, 46op2nd 7692 . . . . . . . . 9 (2nd ‘⟨dom 𝑧, ((𝐺‘dom 𝑧)‘𝑧)⟩) = ((𝐺‘dom 𝑧)‘𝑧)
5351, 52syl6eq 2872 . . . . . . . 8 ((𝜑𝑧𝐾𝑤) → (2nd𝑤) = ((𝐺‘dom 𝑧)‘𝑧))
5450, 53fveq12d 6671 . . . . . . 7 ((𝜑𝑧𝐾𝑤) → ((𝐺‘(1st𝑤))‘(2nd𝑤)) = ((𝐺‘dom 𝑧)‘((𝐺‘dom 𝑧)‘𝑧)))
55 eliun 4915 . . . . . . . . . . . . 13 (𝑧 𝑘 ∈ ω (𝐴m 𝑘) ↔ ∃𝑘 ∈ ω 𝑧 ∈ (𝐴m 𝑘))
56 elmapi 8422 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ (𝐴m 𝑘) → 𝑧:𝑘𝐴)
5756adantl 484 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ω ∧ 𝑧 ∈ (𝐴m 𝑘)) → 𝑧:𝑘𝐴)
5857fdmd 6517 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ω ∧ 𝑧 ∈ (𝐴m 𝑘)) → dom 𝑧 = 𝑘)
59 simpl 485 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ω ∧ 𝑧 ∈ (𝐴m 𝑘)) → 𝑘 ∈ ω)
6058, 59eqeltrd 2913 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ω ∧ 𝑧 ∈ (𝐴m 𝑘)) → dom 𝑧 ∈ ω)
61 simpr 487 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ω ∧ 𝑧 ∈ (𝐴m 𝑘)) → 𝑧 ∈ (𝐴m 𝑘))
6258oveq2d 7166 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ω ∧ 𝑧 ∈ (𝐴m 𝑘)) → (𝐴m dom 𝑧) = (𝐴m 𝑘))
6361, 62eleqtrrd 2916 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ω ∧ 𝑧 ∈ (𝐴m 𝑘)) → 𝑧 ∈ (𝐴m dom 𝑧))
6460, 63jca 514 . . . . . . . . . . . . . 14 ((𝑘 ∈ ω ∧ 𝑧 ∈ (𝐴m 𝑘)) → (dom 𝑧 ∈ ω ∧ 𝑧 ∈ (𝐴m dom 𝑧)))
6564rexlimiva 3281 . . . . . . . . . . . . 13 (∃𝑘 ∈ ω 𝑧 ∈ (𝐴m 𝑘) → (dom 𝑧 ∈ ω ∧ 𝑧 ∈ (𝐴m dom 𝑧)))
6655, 65sylbi 219 . . . . . . . . . . . 12 (𝑧 𝑘 ∈ ω (𝐴m 𝑘) → (dom 𝑧 ∈ ω ∧ 𝑧 ∈ (𝐴m dom 𝑧)))
6733, 66syl 17 . . . . . . . . . . 11 ((𝜑𝑧𝐾𝑤) → (dom 𝑧 ∈ ω ∧ 𝑧 ∈ (𝐴m dom 𝑧)))
6867simpld 497 . . . . . . . . . 10 ((𝜑𝑧𝐾𝑤) → dom 𝑧 ∈ ω)
699, 10, 11, 12fseqenlem1 9444 . . . . . . . . . 10 ((𝜑 ∧ dom 𝑧 ∈ ω) → (𝐺‘dom 𝑧):(𝐴m dom 𝑧)–1-1𝐴)
7068, 69syldan 593 . . . . . . . . 9 ((𝜑𝑧𝐾𝑤) → (𝐺‘dom 𝑧):(𝐴m dom 𝑧)–1-1𝐴)
71 f1f1orn 6620 . . . . . . . . 9 ((𝐺‘dom 𝑧):(𝐴m dom 𝑧)–1-1𝐴 → (𝐺‘dom 𝑧):(𝐴m dom 𝑧)–1-1-onto→ran (𝐺‘dom 𝑧))
7270, 71syl 17 . . . . . . . 8 ((𝜑𝑧𝐾𝑤) → (𝐺‘dom 𝑧):(𝐴m dom 𝑧)–1-1-onto→ran (𝐺‘dom 𝑧))
7367simprd 498 . . . . . . . 8 ((𝜑𝑧𝐾𝑤) → 𝑧 ∈ (𝐴m dom 𝑧))
74 f1ocnvfv1 7027 . . . . . . . 8 (((𝐺‘dom 𝑧):(𝐴m dom 𝑧)–1-1-onto→ran (𝐺‘dom 𝑧) ∧ 𝑧 ∈ (𝐴m dom 𝑧)) → ((𝐺‘dom 𝑧)‘((𝐺‘dom 𝑧)‘𝑧)) = 𝑧)
7572, 73, 74syl2anc 586 . . . . . . 7 ((𝜑𝑧𝐾𝑤) → ((𝐺‘dom 𝑧)‘((𝐺‘dom 𝑧)‘𝑧)) = 𝑧)
7654, 75eqtr2d 2857 . . . . . 6 ((𝜑𝑧𝐾𝑤) → 𝑧 = ((𝐺‘(1st𝑤))‘(2nd𝑤)))
7776ex 415 . . . . 5 (𝜑 → (𝑧𝐾𝑤𝑧 = ((𝐺‘(1st𝑤))‘(2nd𝑤))))
7877alrimiv 1924 . . . 4 (𝜑 → ∀𝑧(𝑧𝐾𝑤𝑧 = ((𝐺‘(1st𝑤))‘(2nd𝑤))))
79 mo2icl 3704 . . . 4 (∀𝑧(𝑧𝐾𝑤𝑧 = ((𝐺‘(1st𝑤))‘(2nd𝑤))) → ∃*𝑧 𝑧𝐾𝑤)
8078, 79syl 17 . . 3 (𝜑 → ∃*𝑧 𝑧𝐾𝑤)
8180alrimiv 1924 . 2 (𝜑 → ∀𝑤∃*𝑧 𝑧𝐾𝑤)
82 dff12 6568 . 2 (𝐾: 𝑘 ∈ ω (𝐴m 𝑘)–1-1→(ω × 𝐴) ↔ (𝐾: 𝑘 ∈ ω (𝐴m 𝑘)⟶(ω × 𝐴) ∧ ∀𝑤∃*𝑧 𝑧𝐾𝑤))
8325, 81, 82sylanbrc 585 1 (𝜑𝐾: 𝑘 ∈ ω (𝐴m 𝑘)–1-1→(ω × 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wal 1531   = wceq 1533  wcel 2110  ∃*wmo 2616  wrex 3139  Vcvv 3494  c0 4290  {csn 4560  cop 4566   ciun 4911   class class class wbr 5058  cmpt 5138   × cxp 5547  ccnv 5548  dom cdm 5549  ran crn 5550  cres 5551  suc csuc 6187  Fun wfun 6343  wf 6345  1-1wf1 6346  1-1-ontowf1o 6348  cfv 6349  (class class class)co 7150  cmpo 7152  ωcom 7574  1st c1st 7681  2nd c2nd 7682  seqωcseqom 8077  m cmap 8400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-seqom 8078  df-1o 8096  df-map 8402
This theorem is referenced by:  fseqen  9447  pwfseqlem5  10079
  Copyright terms: Public domain W3C validator