MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fseqenlem2 Structured version   Visualization version   GIF version

Theorem fseqenlem2 9923
Description: Lemma for fseqen 9925. (Contributed by Mario Carneiro, 17-May-2015.)
Hypotheses
Ref Expression
fseqenlem.a (𝜑𝐴𝑉)
fseqenlem.b (𝜑𝐵𝐴)
fseqenlem.f (𝜑𝐹:(𝐴 × 𝐴)–1-1-onto𝐴)
fseqenlem.g 𝐺 = seqω((𝑛 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (𝐴m suc 𝑛) ↦ ((𝑓‘(𝑥𝑛))𝐹(𝑥𝑛)))), {⟨∅, 𝐵⟩})
fseqenlem.k 𝐾 = (𝑦 𝑘 ∈ ω (𝐴m 𝑘) ↦ ⟨dom 𝑦, ((𝐺‘dom 𝑦)‘𝑦)⟩)
Assertion
Ref Expression
fseqenlem2 (𝜑𝐾: 𝑘 ∈ ω (𝐴m 𝑘)–1-1→(ω × 𝐴))
Distinct variable groups:   𝑦,𝐵   𝑓,𝑛,𝑥,𝐹   𝑦,𝑘,𝐺   𝑓,𝑘,𝑦,𝐴,𝑛,𝑥   𝜑,𝑘,𝑛,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑥,𝑓,𝑘,𝑛)   𝐹(𝑦,𝑘)   𝐺(𝑥,𝑓,𝑛)   𝐾(𝑥,𝑦,𝑓,𝑘,𝑛)   𝑉(𝑥,𝑦,𝑓,𝑘,𝑛)

Proof of Theorem fseqenlem2
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eliun 4945 . . . . 5 (𝑦 𝑘 ∈ ω (𝐴m 𝑘) ↔ ∃𝑘 ∈ ω 𝑦 ∈ (𝐴m 𝑘))
2 elmapi 8779 . . . . . . . . . 10 (𝑦 ∈ (𝐴m 𝑘) → 𝑦:𝑘𝐴)
32ad2antll 729 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ω ∧ 𝑦 ∈ (𝐴m 𝑘))) → 𝑦:𝑘𝐴)
43fdmd 6666 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ ω ∧ 𝑦 ∈ (𝐴m 𝑘))) → dom 𝑦 = 𝑘)
5 simprl 770 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ ω ∧ 𝑦 ∈ (𝐴m 𝑘))) → 𝑘 ∈ ω)
64, 5eqeltrd 2833 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ ω ∧ 𝑦 ∈ (𝐴m 𝑘))) → dom 𝑦 ∈ ω)
74fveq2d 6832 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ω ∧ 𝑦 ∈ (𝐴m 𝑘))) → (𝐺‘dom 𝑦) = (𝐺𝑘))
87fveq1d 6830 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ ω ∧ 𝑦 ∈ (𝐴m 𝑘))) → ((𝐺‘dom 𝑦)‘𝑦) = ((𝐺𝑘)‘𝑦))
9 fseqenlem.a . . . . . . . . . . . 12 (𝜑𝐴𝑉)
10 fseqenlem.b . . . . . . . . . . . 12 (𝜑𝐵𝐴)
11 fseqenlem.f . . . . . . . . . . . 12 (𝜑𝐹:(𝐴 × 𝐴)–1-1-onto𝐴)
12 fseqenlem.g . . . . . . . . . . . 12 𝐺 = seqω((𝑛 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (𝐴m suc 𝑛) ↦ ((𝑓‘(𝑥𝑛))𝐹(𝑥𝑛)))), {⟨∅, 𝐵⟩})
139, 10, 11, 12fseqenlem1 9922 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ω) → (𝐺𝑘):(𝐴m 𝑘)–1-1𝐴)
1413adantrr 717 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ ω ∧ 𝑦 ∈ (𝐴m 𝑘))) → (𝐺𝑘):(𝐴m 𝑘)–1-1𝐴)
15 f1f 6724 . . . . . . . . . 10 ((𝐺𝑘):(𝐴m 𝑘)–1-1𝐴 → (𝐺𝑘):(𝐴m 𝑘)⟶𝐴)
1614, 15syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ω ∧ 𝑦 ∈ (𝐴m 𝑘))) → (𝐺𝑘):(𝐴m 𝑘)⟶𝐴)
17 simprr 772 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ω ∧ 𝑦 ∈ (𝐴m 𝑘))) → 𝑦 ∈ (𝐴m 𝑘))
1816, 17ffvelcdmd 7024 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ ω ∧ 𝑦 ∈ (𝐴m 𝑘))) → ((𝐺𝑘)‘𝑦) ∈ 𝐴)
198, 18eqeltrd 2833 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ ω ∧ 𝑦 ∈ (𝐴m 𝑘))) → ((𝐺‘dom 𝑦)‘𝑦) ∈ 𝐴)
206, 19opelxpd 5658 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ ω ∧ 𝑦 ∈ (𝐴m 𝑘))) → ⟨dom 𝑦, ((𝐺‘dom 𝑦)‘𝑦)⟩ ∈ (ω × 𝐴))
2120rexlimdvaa 3135 . . . . 5 (𝜑 → (∃𝑘 ∈ ω 𝑦 ∈ (𝐴m 𝑘) → ⟨dom 𝑦, ((𝐺‘dom 𝑦)‘𝑦)⟩ ∈ (ω × 𝐴)))
221, 21biimtrid 242 . . . 4 (𝜑 → (𝑦 𝑘 ∈ ω (𝐴m 𝑘) → ⟨dom 𝑦, ((𝐺‘dom 𝑦)‘𝑦)⟩ ∈ (ω × 𝐴)))
2322imp 406 . . 3 ((𝜑𝑦 𝑘 ∈ ω (𝐴m 𝑘)) → ⟨dom 𝑦, ((𝐺‘dom 𝑦)‘𝑦)⟩ ∈ (ω × 𝐴))
24 fseqenlem.k . . 3 𝐾 = (𝑦 𝑘 ∈ ω (𝐴m 𝑘) ↦ ⟨dom 𝑦, ((𝐺‘dom 𝑦)‘𝑦)⟩)
2523, 24fmptd 7053 . 2 (𝜑𝐾: 𝑘 ∈ ω (𝐴m 𝑘)⟶(ω × 𝐴))
26 ffun 6659 . . . . . . . . . . . . . . 15 (𝐾: 𝑘 ∈ ω (𝐴m 𝑘)⟶(ω × 𝐴) → Fun 𝐾)
27 funbrfv2b 6885 . . . . . . . . . . . . . . 15 (Fun 𝐾 → (𝑧𝐾𝑤 ↔ (𝑧 ∈ dom 𝐾 ∧ (𝐾𝑧) = 𝑤)))
2825, 26, 273syl 18 . . . . . . . . . . . . . 14 (𝜑 → (𝑧𝐾𝑤 ↔ (𝑧 ∈ dom 𝐾 ∧ (𝐾𝑧) = 𝑤)))
2928simplbda 499 . . . . . . . . . . . . 13 ((𝜑𝑧𝐾𝑤) → (𝐾𝑧) = 𝑤)
3028simprbda 498 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝐾𝑤) → 𝑧 ∈ dom 𝐾)
3125fdmd 6666 . . . . . . . . . . . . . . . 16 (𝜑 → dom 𝐾 = 𝑘 ∈ ω (𝐴m 𝑘))
3231adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝐾𝑤) → dom 𝐾 = 𝑘 ∈ ω (𝐴m 𝑘))
3330, 32eleqtrd 2835 . . . . . . . . . . . . . 14 ((𝜑𝑧𝐾𝑤) → 𝑧 𝑘 ∈ ω (𝐴m 𝑘))
34 dmeq 5847 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑧 → dom 𝑦 = dom 𝑧)
3534fveq2d 6832 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑧 → (𝐺‘dom 𝑦) = (𝐺‘dom 𝑧))
36 id 22 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑧𝑦 = 𝑧)
3735, 36fveq12d 6835 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑧 → ((𝐺‘dom 𝑦)‘𝑦) = ((𝐺‘dom 𝑧)‘𝑧))
3834, 37opeq12d 4832 . . . . . . . . . . . . . . 15 (𝑦 = 𝑧 → ⟨dom 𝑦, ((𝐺‘dom 𝑦)‘𝑦)⟩ = ⟨dom 𝑧, ((𝐺‘dom 𝑧)‘𝑧)⟩)
39 opex 5407 . . . . . . . . . . . . . . 15 ⟨dom 𝑧, ((𝐺‘dom 𝑧)‘𝑧)⟩ ∈ V
4038, 24, 39fvmpt 6935 . . . . . . . . . . . . . 14 (𝑧 𝑘 ∈ ω (𝐴m 𝑘) → (𝐾𝑧) = ⟨dom 𝑧, ((𝐺‘dom 𝑧)‘𝑧)⟩)
4133, 40syl 17 . . . . . . . . . . . . 13 ((𝜑𝑧𝐾𝑤) → (𝐾𝑧) = ⟨dom 𝑧, ((𝐺‘dom 𝑧)‘𝑧)⟩)
4229, 41eqtr3d 2770 . . . . . . . . . . . 12 ((𝜑𝑧𝐾𝑤) → 𝑤 = ⟨dom 𝑧, ((𝐺‘dom 𝑧)‘𝑧)⟩)
4342fveq2d 6832 . . . . . . . . . . 11 ((𝜑𝑧𝐾𝑤) → (1st𝑤) = (1st ‘⟨dom 𝑧, ((𝐺‘dom 𝑧)‘𝑧)⟩))
44 vex 3441 . . . . . . . . . . . . 13 𝑧 ∈ V
4544dmex 7845 . . . . . . . . . . . 12 dom 𝑧 ∈ V
46 fvex 6841 . . . . . . . . . . . 12 ((𝐺‘dom 𝑧)‘𝑧) ∈ V
4745, 46op1st 7935 . . . . . . . . . . 11 (1st ‘⟨dom 𝑧, ((𝐺‘dom 𝑧)‘𝑧)⟩) = dom 𝑧
4843, 47eqtrdi 2784 . . . . . . . . . 10 ((𝜑𝑧𝐾𝑤) → (1st𝑤) = dom 𝑧)
4948fveq2d 6832 . . . . . . . . 9 ((𝜑𝑧𝐾𝑤) → (𝐺‘(1st𝑤)) = (𝐺‘dom 𝑧))
5049cnveqd 5819 . . . . . . . 8 ((𝜑𝑧𝐾𝑤) → (𝐺‘(1st𝑤)) = (𝐺‘dom 𝑧))
5142fveq2d 6832 . . . . . . . . 9 ((𝜑𝑧𝐾𝑤) → (2nd𝑤) = (2nd ‘⟨dom 𝑧, ((𝐺‘dom 𝑧)‘𝑧)⟩))
5245, 46op2nd 7936 . . . . . . . . 9 (2nd ‘⟨dom 𝑧, ((𝐺‘dom 𝑧)‘𝑧)⟩) = ((𝐺‘dom 𝑧)‘𝑧)
5351, 52eqtrdi 2784 . . . . . . . 8 ((𝜑𝑧𝐾𝑤) → (2nd𝑤) = ((𝐺‘dom 𝑧)‘𝑧))
5450, 53fveq12d 6835 . . . . . . 7 ((𝜑𝑧𝐾𝑤) → ((𝐺‘(1st𝑤))‘(2nd𝑤)) = ((𝐺‘dom 𝑧)‘((𝐺‘dom 𝑧)‘𝑧)))
55 eliun 4945 . . . . . . . . . . . . 13 (𝑧 𝑘 ∈ ω (𝐴m 𝑘) ↔ ∃𝑘 ∈ ω 𝑧 ∈ (𝐴m 𝑘))
56 elmapi 8779 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ (𝐴m 𝑘) → 𝑧:𝑘𝐴)
5756adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ω ∧ 𝑧 ∈ (𝐴m 𝑘)) → 𝑧:𝑘𝐴)
5857fdmd 6666 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ω ∧ 𝑧 ∈ (𝐴m 𝑘)) → dom 𝑧 = 𝑘)
59 simpl 482 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ω ∧ 𝑧 ∈ (𝐴m 𝑘)) → 𝑘 ∈ ω)
6058, 59eqeltrd 2833 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ω ∧ 𝑧 ∈ (𝐴m 𝑘)) → dom 𝑧 ∈ ω)
61 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ω ∧ 𝑧 ∈ (𝐴m 𝑘)) → 𝑧 ∈ (𝐴m 𝑘))
6258oveq2d 7368 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ω ∧ 𝑧 ∈ (𝐴m 𝑘)) → (𝐴m dom 𝑧) = (𝐴m 𝑘))
6361, 62eleqtrrd 2836 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ω ∧ 𝑧 ∈ (𝐴m 𝑘)) → 𝑧 ∈ (𝐴m dom 𝑧))
6460, 63jca 511 . . . . . . . . . . . . . 14 ((𝑘 ∈ ω ∧ 𝑧 ∈ (𝐴m 𝑘)) → (dom 𝑧 ∈ ω ∧ 𝑧 ∈ (𝐴m dom 𝑧)))
6564rexlimiva 3126 . . . . . . . . . . . . 13 (∃𝑘 ∈ ω 𝑧 ∈ (𝐴m 𝑘) → (dom 𝑧 ∈ ω ∧ 𝑧 ∈ (𝐴m dom 𝑧)))
6655, 65sylbi 217 . . . . . . . . . . . 12 (𝑧 𝑘 ∈ ω (𝐴m 𝑘) → (dom 𝑧 ∈ ω ∧ 𝑧 ∈ (𝐴m dom 𝑧)))
6733, 66syl 17 . . . . . . . . . . 11 ((𝜑𝑧𝐾𝑤) → (dom 𝑧 ∈ ω ∧ 𝑧 ∈ (𝐴m dom 𝑧)))
6867simpld 494 . . . . . . . . . 10 ((𝜑𝑧𝐾𝑤) → dom 𝑧 ∈ ω)
699, 10, 11, 12fseqenlem1 9922 . . . . . . . . . 10 ((𝜑 ∧ dom 𝑧 ∈ ω) → (𝐺‘dom 𝑧):(𝐴m dom 𝑧)–1-1𝐴)
7068, 69syldan 591 . . . . . . . . 9 ((𝜑𝑧𝐾𝑤) → (𝐺‘dom 𝑧):(𝐴m dom 𝑧)–1-1𝐴)
71 f1f1orn 6779 . . . . . . . . 9 ((𝐺‘dom 𝑧):(𝐴m dom 𝑧)–1-1𝐴 → (𝐺‘dom 𝑧):(𝐴m dom 𝑧)–1-1-onto→ran (𝐺‘dom 𝑧))
7270, 71syl 17 . . . . . . . 8 ((𝜑𝑧𝐾𝑤) → (𝐺‘dom 𝑧):(𝐴m dom 𝑧)–1-1-onto→ran (𝐺‘dom 𝑧))
7367simprd 495 . . . . . . . 8 ((𝜑𝑧𝐾𝑤) → 𝑧 ∈ (𝐴m dom 𝑧))
74 f1ocnvfv1 7216 . . . . . . . 8 (((𝐺‘dom 𝑧):(𝐴m dom 𝑧)–1-1-onto→ran (𝐺‘dom 𝑧) ∧ 𝑧 ∈ (𝐴m dom 𝑧)) → ((𝐺‘dom 𝑧)‘((𝐺‘dom 𝑧)‘𝑧)) = 𝑧)
7572, 73, 74syl2anc 584 . . . . . . 7 ((𝜑𝑧𝐾𝑤) → ((𝐺‘dom 𝑧)‘((𝐺‘dom 𝑧)‘𝑧)) = 𝑧)
7654, 75eqtr2d 2769 . . . . . 6 ((𝜑𝑧𝐾𝑤) → 𝑧 = ((𝐺‘(1st𝑤))‘(2nd𝑤)))
7776ex 412 . . . . 5 (𝜑 → (𝑧𝐾𝑤𝑧 = ((𝐺‘(1st𝑤))‘(2nd𝑤))))
7877alrimiv 1928 . . . 4 (𝜑 → ∀𝑧(𝑧𝐾𝑤𝑧 = ((𝐺‘(1st𝑤))‘(2nd𝑤))))
79 mo2icl 3669 . . . 4 (∀𝑧(𝑧𝐾𝑤𝑧 = ((𝐺‘(1st𝑤))‘(2nd𝑤))) → ∃*𝑧 𝑧𝐾𝑤)
8078, 79syl 17 . . 3 (𝜑 → ∃*𝑧 𝑧𝐾𝑤)
8180alrimiv 1928 . 2 (𝜑 → ∀𝑤∃*𝑧 𝑧𝐾𝑤)
82 dff12 6723 . 2 (𝐾: 𝑘 ∈ ω (𝐴m 𝑘)–1-1→(ω × 𝐴) ↔ (𝐾: 𝑘 ∈ ω (𝐴m 𝑘)⟶(ω × 𝐴) ∧ ∀𝑤∃*𝑧 𝑧𝐾𝑤))
8325, 81, 82sylanbrc 583 1 (𝜑𝐾: 𝑘 ∈ ω (𝐴m 𝑘)–1-1→(ω × 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1539   = wceq 1541  wcel 2113  ∃*wmo 2535  wrex 3057  Vcvv 3437  c0 4282  {csn 4575  cop 4581   ciun 4941   class class class wbr 5093  cmpt 5174   × cxp 5617  ccnv 5618  dom cdm 5619  ran crn 5620  cres 5621  suc csuc 6313  Fun wfun 6480  wf 6482  1-1wf1 6483  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7352  cmpo 7354  ωcom 7802  1st c1st 7925  2nd c2nd 7926  seqωcseqom 8372  m cmap 8756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-seqom 8373  df-1o 8391  df-map 8758
This theorem is referenced by:  fseqen  9925  pwfseqlem5  10561
  Copyright terms: Public domain W3C validator