MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fseqenlem2 Structured version   Visualization version   GIF version

Theorem fseqenlem2 9181
Description: Lemma for fseqen 9183. (Contributed by Mario Carneiro, 17-May-2015.)
Hypotheses
Ref Expression
fseqenlem.a (𝜑𝐴𝑉)
fseqenlem.b (𝜑𝐵𝐴)
fseqenlem.f (𝜑𝐹:(𝐴 × 𝐴)–1-1-onto𝐴)
fseqenlem.g 𝐺 = seq𝜔((𝑛 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (𝐴𝑚 suc 𝑛) ↦ ((𝑓‘(𝑥𝑛))𝐹(𝑥𝑛)))), {⟨∅, 𝐵⟩})
fseqenlem.k 𝐾 = (𝑦 𝑘 ∈ ω (𝐴𝑚 𝑘) ↦ ⟨dom 𝑦, ((𝐺‘dom 𝑦)‘𝑦)⟩)
Assertion
Ref Expression
fseqenlem2 (𝜑𝐾: 𝑘 ∈ ω (𝐴𝑚 𝑘)–1-1→(ω × 𝐴))
Distinct variable groups:   𝑦,𝐵   𝑓,𝑛,𝑥,𝐹   𝑦,𝑘,𝐺   𝑓,𝑘,𝑦,𝐴,𝑛,𝑥   𝜑,𝑘,𝑛,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑥,𝑓,𝑘,𝑛)   𝐹(𝑦,𝑘)   𝐺(𝑥,𝑓,𝑛)   𝐾(𝑥,𝑦,𝑓,𝑘,𝑛)   𝑉(𝑥,𝑦,𝑓,𝑘,𝑛)

Proof of Theorem fseqenlem2
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eliun 4757 . . . . 5 (𝑦 𝑘 ∈ ω (𝐴𝑚 𝑘) ↔ ∃𝑘 ∈ ω 𝑦 ∈ (𝐴𝑚 𝑘))
2 elmapi 8162 . . . . . . . . . 10 (𝑦 ∈ (𝐴𝑚 𝑘) → 𝑦:𝑘𝐴)
32ad2antll 719 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ω ∧ 𝑦 ∈ (𝐴𝑚 𝑘))) → 𝑦:𝑘𝐴)
43fdmd 6300 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ ω ∧ 𝑦 ∈ (𝐴𝑚 𝑘))) → dom 𝑦 = 𝑘)
5 simprl 761 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ ω ∧ 𝑦 ∈ (𝐴𝑚 𝑘))) → 𝑘 ∈ ω)
64, 5eqeltrd 2859 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ ω ∧ 𝑦 ∈ (𝐴𝑚 𝑘))) → dom 𝑦 ∈ ω)
74fveq2d 6450 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ω ∧ 𝑦 ∈ (𝐴𝑚 𝑘))) → (𝐺‘dom 𝑦) = (𝐺𝑘))
87fveq1d 6448 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ ω ∧ 𝑦 ∈ (𝐴𝑚 𝑘))) → ((𝐺‘dom 𝑦)‘𝑦) = ((𝐺𝑘)‘𝑦))
9 fseqenlem.a . . . . . . . . . . . 12 (𝜑𝐴𝑉)
10 fseqenlem.b . . . . . . . . . . . 12 (𝜑𝐵𝐴)
11 fseqenlem.f . . . . . . . . . . . 12 (𝜑𝐹:(𝐴 × 𝐴)–1-1-onto𝐴)
12 fseqenlem.g . . . . . . . . . . . 12 𝐺 = seq𝜔((𝑛 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (𝐴𝑚 suc 𝑛) ↦ ((𝑓‘(𝑥𝑛))𝐹(𝑥𝑛)))), {⟨∅, 𝐵⟩})
139, 10, 11, 12fseqenlem1 9180 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ω) → (𝐺𝑘):(𝐴𝑚 𝑘)–1-1𝐴)
1413adantrr 707 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ ω ∧ 𝑦 ∈ (𝐴𝑚 𝑘))) → (𝐺𝑘):(𝐴𝑚 𝑘)–1-1𝐴)
15 f1f 6351 . . . . . . . . . 10 ((𝐺𝑘):(𝐴𝑚 𝑘)–1-1𝐴 → (𝐺𝑘):(𝐴𝑚 𝑘)⟶𝐴)
1614, 15syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ω ∧ 𝑦 ∈ (𝐴𝑚 𝑘))) → (𝐺𝑘):(𝐴𝑚 𝑘)⟶𝐴)
17 simprr 763 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ω ∧ 𝑦 ∈ (𝐴𝑚 𝑘))) → 𝑦 ∈ (𝐴𝑚 𝑘))
1816, 17ffvelrnd 6624 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ ω ∧ 𝑦 ∈ (𝐴𝑚 𝑘))) → ((𝐺𝑘)‘𝑦) ∈ 𝐴)
198, 18eqeltrd 2859 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ ω ∧ 𝑦 ∈ (𝐴𝑚 𝑘))) → ((𝐺‘dom 𝑦)‘𝑦) ∈ 𝐴)
206, 19opelxpd 5393 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ ω ∧ 𝑦 ∈ (𝐴𝑚 𝑘))) → ⟨dom 𝑦, ((𝐺‘dom 𝑦)‘𝑦)⟩ ∈ (ω × 𝐴))
2120rexlimdvaa 3214 . . . . 5 (𝜑 → (∃𝑘 ∈ ω 𝑦 ∈ (𝐴𝑚 𝑘) → ⟨dom 𝑦, ((𝐺‘dom 𝑦)‘𝑦)⟩ ∈ (ω × 𝐴)))
221, 21syl5bi 234 . . . 4 (𝜑 → (𝑦 𝑘 ∈ ω (𝐴𝑚 𝑘) → ⟨dom 𝑦, ((𝐺‘dom 𝑦)‘𝑦)⟩ ∈ (ω × 𝐴)))
2322imp 397 . . 3 ((𝜑𝑦 𝑘 ∈ ω (𝐴𝑚 𝑘)) → ⟨dom 𝑦, ((𝐺‘dom 𝑦)‘𝑦)⟩ ∈ (ω × 𝐴))
24 fseqenlem.k . . 3 𝐾 = (𝑦 𝑘 ∈ ω (𝐴𝑚 𝑘) ↦ ⟨dom 𝑦, ((𝐺‘dom 𝑦)‘𝑦)⟩)
2523, 24fmptd 6648 . 2 (𝜑𝐾: 𝑘 ∈ ω (𝐴𝑚 𝑘)⟶(ω × 𝐴))
26 ffun 6294 . . . . . . . . . . . . . . 15 (𝐾: 𝑘 ∈ ω (𝐴𝑚 𝑘)⟶(ω × 𝐴) → Fun 𝐾)
27 funbrfv2b 6500 . . . . . . . . . . . . . . 15 (Fun 𝐾 → (𝑧𝐾𝑤 ↔ (𝑧 ∈ dom 𝐾 ∧ (𝐾𝑧) = 𝑤)))
2825, 26, 273syl 18 . . . . . . . . . . . . . 14 (𝜑 → (𝑧𝐾𝑤 ↔ (𝑧 ∈ dom 𝐾 ∧ (𝐾𝑧) = 𝑤)))
2928simplbda 495 . . . . . . . . . . . . 13 ((𝜑𝑧𝐾𝑤) → (𝐾𝑧) = 𝑤)
3028simprbda 494 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝐾𝑤) → 𝑧 ∈ dom 𝐾)
3125fdmd 6300 . . . . . . . . . . . . . . . 16 (𝜑 → dom 𝐾 = 𝑘 ∈ ω (𝐴𝑚 𝑘))
3231adantr 474 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝐾𝑤) → dom 𝐾 = 𝑘 ∈ ω (𝐴𝑚 𝑘))
3330, 32eleqtrd 2861 . . . . . . . . . . . . . 14 ((𝜑𝑧𝐾𝑤) → 𝑧 𝑘 ∈ ω (𝐴𝑚 𝑘))
34 dmeq 5569 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑧 → dom 𝑦 = dom 𝑧)
3534fveq2d 6450 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑧 → (𝐺‘dom 𝑦) = (𝐺‘dom 𝑧))
36 id 22 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑧𝑦 = 𝑧)
3735, 36fveq12d 6453 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑧 → ((𝐺‘dom 𝑦)‘𝑦) = ((𝐺‘dom 𝑧)‘𝑧))
3834, 37opeq12d 4644 . . . . . . . . . . . . . . 15 (𝑦 = 𝑧 → ⟨dom 𝑦, ((𝐺‘dom 𝑦)‘𝑦)⟩ = ⟨dom 𝑧, ((𝐺‘dom 𝑧)‘𝑧)⟩)
39 opex 5164 . . . . . . . . . . . . . . 15 ⟨dom 𝑧, ((𝐺‘dom 𝑧)‘𝑧)⟩ ∈ V
4038, 24, 39fvmpt 6542 . . . . . . . . . . . . . 14 (𝑧 𝑘 ∈ ω (𝐴𝑚 𝑘) → (𝐾𝑧) = ⟨dom 𝑧, ((𝐺‘dom 𝑧)‘𝑧)⟩)
4133, 40syl 17 . . . . . . . . . . . . 13 ((𝜑𝑧𝐾𝑤) → (𝐾𝑧) = ⟨dom 𝑧, ((𝐺‘dom 𝑧)‘𝑧)⟩)
4229, 41eqtr3d 2816 . . . . . . . . . . . 12 ((𝜑𝑧𝐾𝑤) → 𝑤 = ⟨dom 𝑧, ((𝐺‘dom 𝑧)‘𝑧)⟩)
4342fveq2d 6450 . . . . . . . . . . 11 ((𝜑𝑧𝐾𝑤) → (1st𝑤) = (1st ‘⟨dom 𝑧, ((𝐺‘dom 𝑧)‘𝑧)⟩))
44 vex 3401 . . . . . . . . . . . . 13 𝑧 ∈ V
4544dmex 7378 . . . . . . . . . . . 12 dom 𝑧 ∈ V
46 fvex 6459 . . . . . . . . . . . 12 ((𝐺‘dom 𝑧)‘𝑧) ∈ V
4745, 46op1st 7453 . . . . . . . . . . 11 (1st ‘⟨dom 𝑧, ((𝐺‘dom 𝑧)‘𝑧)⟩) = dom 𝑧
4843, 47syl6eq 2830 . . . . . . . . . 10 ((𝜑𝑧𝐾𝑤) → (1st𝑤) = dom 𝑧)
4948fveq2d 6450 . . . . . . . . 9 ((𝜑𝑧𝐾𝑤) → (𝐺‘(1st𝑤)) = (𝐺‘dom 𝑧))
5049cnveqd 5543 . . . . . . . 8 ((𝜑𝑧𝐾𝑤) → (𝐺‘(1st𝑤)) = (𝐺‘dom 𝑧))
5142fveq2d 6450 . . . . . . . . 9 ((𝜑𝑧𝐾𝑤) → (2nd𝑤) = (2nd ‘⟨dom 𝑧, ((𝐺‘dom 𝑧)‘𝑧)⟩))
5245, 46op2nd 7454 . . . . . . . . 9 (2nd ‘⟨dom 𝑧, ((𝐺‘dom 𝑧)‘𝑧)⟩) = ((𝐺‘dom 𝑧)‘𝑧)
5351, 52syl6eq 2830 . . . . . . . 8 ((𝜑𝑧𝐾𝑤) → (2nd𝑤) = ((𝐺‘dom 𝑧)‘𝑧))
5450, 53fveq12d 6453 . . . . . . 7 ((𝜑𝑧𝐾𝑤) → ((𝐺‘(1st𝑤))‘(2nd𝑤)) = ((𝐺‘dom 𝑧)‘((𝐺‘dom 𝑧)‘𝑧)))
55 eliun 4757 . . . . . . . . . . . . 13 (𝑧 𝑘 ∈ ω (𝐴𝑚 𝑘) ↔ ∃𝑘 ∈ ω 𝑧 ∈ (𝐴𝑚 𝑘))
56 elmapi 8162 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ (𝐴𝑚 𝑘) → 𝑧:𝑘𝐴)
5756adantl 475 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ω ∧ 𝑧 ∈ (𝐴𝑚 𝑘)) → 𝑧:𝑘𝐴)
5857fdmd 6300 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ω ∧ 𝑧 ∈ (𝐴𝑚 𝑘)) → dom 𝑧 = 𝑘)
59 simpl 476 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ω ∧ 𝑧 ∈ (𝐴𝑚 𝑘)) → 𝑘 ∈ ω)
6058, 59eqeltrd 2859 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ω ∧ 𝑧 ∈ (𝐴𝑚 𝑘)) → dom 𝑧 ∈ ω)
61 simpr 479 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ω ∧ 𝑧 ∈ (𝐴𝑚 𝑘)) → 𝑧 ∈ (𝐴𝑚 𝑘))
6258oveq2d 6938 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ω ∧ 𝑧 ∈ (𝐴𝑚 𝑘)) → (𝐴𝑚 dom 𝑧) = (𝐴𝑚 𝑘))
6361, 62eleqtrrd 2862 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ω ∧ 𝑧 ∈ (𝐴𝑚 𝑘)) → 𝑧 ∈ (𝐴𝑚 dom 𝑧))
6460, 63jca 507 . . . . . . . . . . . . . 14 ((𝑘 ∈ ω ∧ 𝑧 ∈ (𝐴𝑚 𝑘)) → (dom 𝑧 ∈ ω ∧ 𝑧 ∈ (𝐴𝑚 dom 𝑧)))
6564rexlimiva 3210 . . . . . . . . . . . . 13 (∃𝑘 ∈ ω 𝑧 ∈ (𝐴𝑚 𝑘) → (dom 𝑧 ∈ ω ∧ 𝑧 ∈ (𝐴𝑚 dom 𝑧)))
6655, 65sylbi 209 . . . . . . . . . . . 12 (𝑧 𝑘 ∈ ω (𝐴𝑚 𝑘) → (dom 𝑧 ∈ ω ∧ 𝑧 ∈ (𝐴𝑚 dom 𝑧)))
6733, 66syl 17 . . . . . . . . . . 11 ((𝜑𝑧𝐾𝑤) → (dom 𝑧 ∈ ω ∧ 𝑧 ∈ (𝐴𝑚 dom 𝑧)))
6867simpld 490 . . . . . . . . . 10 ((𝜑𝑧𝐾𝑤) → dom 𝑧 ∈ ω)
699, 10, 11, 12fseqenlem1 9180 . . . . . . . . . 10 ((𝜑 ∧ dom 𝑧 ∈ ω) → (𝐺‘dom 𝑧):(𝐴𝑚 dom 𝑧)–1-1𝐴)
7068, 69syldan 585 . . . . . . . . 9 ((𝜑𝑧𝐾𝑤) → (𝐺‘dom 𝑧):(𝐴𝑚 dom 𝑧)–1-1𝐴)
71 f1f1orn 6402 . . . . . . . . 9 ((𝐺‘dom 𝑧):(𝐴𝑚 dom 𝑧)–1-1𝐴 → (𝐺‘dom 𝑧):(𝐴𝑚 dom 𝑧)–1-1-onto→ran (𝐺‘dom 𝑧))
7270, 71syl 17 . . . . . . . 8 ((𝜑𝑧𝐾𝑤) → (𝐺‘dom 𝑧):(𝐴𝑚 dom 𝑧)–1-1-onto→ran (𝐺‘dom 𝑧))
7367simprd 491 . . . . . . . 8 ((𝜑𝑧𝐾𝑤) → 𝑧 ∈ (𝐴𝑚 dom 𝑧))
74 f1ocnvfv1 6804 . . . . . . . 8 (((𝐺‘dom 𝑧):(𝐴𝑚 dom 𝑧)–1-1-onto→ran (𝐺‘dom 𝑧) ∧ 𝑧 ∈ (𝐴𝑚 dom 𝑧)) → ((𝐺‘dom 𝑧)‘((𝐺‘dom 𝑧)‘𝑧)) = 𝑧)
7572, 73, 74syl2anc 579 . . . . . . 7 ((𝜑𝑧𝐾𝑤) → ((𝐺‘dom 𝑧)‘((𝐺‘dom 𝑧)‘𝑧)) = 𝑧)
7654, 75eqtr2d 2815 . . . . . 6 ((𝜑𝑧𝐾𝑤) → 𝑧 = ((𝐺‘(1st𝑤))‘(2nd𝑤)))
7776ex 403 . . . . 5 (𝜑 → (𝑧𝐾𝑤𝑧 = ((𝐺‘(1st𝑤))‘(2nd𝑤))))
7877alrimiv 1970 . . . 4 (𝜑 → ∀𝑧(𝑧𝐾𝑤𝑧 = ((𝐺‘(1st𝑤))‘(2nd𝑤))))
79 mo2icl 3597 . . . 4 (∀𝑧(𝑧𝐾𝑤𝑧 = ((𝐺‘(1st𝑤))‘(2nd𝑤))) → ∃*𝑧 𝑧𝐾𝑤)
8078, 79syl 17 . . 3 (𝜑 → ∃*𝑧 𝑧𝐾𝑤)
8180alrimiv 1970 . 2 (𝜑 → ∀𝑤∃*𝑧 𝑧𝐾𝑤)
82 dff12 6350 . 2 (𝐾: 𝑘 ∈ ω (𝐴𝑚 𝑘)–1-1→(ω × 𝐴) ↔ (𝐾: 𝑘 ∈ ω (𝐴𝑚 𝑘)⟶(ω × 𝐴) ∧ ∀𝑤∃*𝑧 𝑧𝐾𝑤))
8325, 81, 82sylanbrc 578 1 (𝜑𝐾: 𝑘 ∈ ω (𝐴𝑚 𝑘)–1-1→(ω × 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  wal 1599   = wceq 1601  wcel 2107  ∃*wmo 2549  wrex 3091  Vcvv 3398  c0 4141  {csn 4398  cop 4404   ciun 4753   class class class wbr 4886  cmpt 4965   × cxp 5353  ccnv 5354  dom cdm 5355  ran crn 5356  cres 5357  suc csuc 5978  Fun wfun 6129  wf 6131  1-1wf1 6132  1-1-ontowf1o 6134  cfv 6135  (class class class)co 6922  cmpt2 6924  ωcom 7343  1st c1st 7443  2nd c2nd 7444  seq𝜔cseqom 7825  𝑚 cmap 8140
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-seqom 7826  df-1o 7843  df-map 8142
This theorem is referenced by:  fseqen  9183  pwfseqlem5  9820
  Copyright terms: Public domain W3C validator