MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasvscafn Structured version   Visualization version   GIF version

Theorem imasvscafn 17507
Description: The image structure's scalar multiplication is a function. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
imasvscaf.u (𝜑𝑈 = (𝐹s 𝑅))
imasvscaf.v (𝜑𝑉 = (Base‘𝑅))
imasvscaf.f (𝜑𝐹:𝑉onto𝐵)
imasvscaf.r (𝜑𝑅𝑍)
imasvscaf.g 𝐺 = (Scalar‘𝑅)
imasvscaf.k 𝐾 = (Base‘𝐺)
imasvscaf.q · = ( ·𝑠𝑅)
imasvscaf.s = ( ·𝑠𝑈)
imasvscaf.e ((𝜑 ∧ (𝑝𝐾𝑎𝑉𝑞𝑉)) → ((𝐹𝑎) = (𝐹𝑞) → (𝐹‘(𝑝 · 𝑎)) = (𝐹‘(𝑝 · 𝑞))))
Assertion
Ref Expression
imasvscafn (𝜑 Fn (𝐾 × 𝐵))
Distinct variable groups:   𝑝,𝑎,𝑞,𝐹   𝐾,𝑎,𝑝,𝑞   𝜑,𝑎,𝑝,𝑞   𝐵,𝑝,𝑞   𝑅,𝑝,𝑞   · ,𝑝,𝑞   ,𝑎,𝑝,𝑞   𝑉,𝑎,𝑝,𝑞
Allowed substitution hints:   𝐵(𝑎)   𝑅(𝑎)   · (𝑎)   𝑈(𝑞,𝑝,𝑎)   𝐺(𝑞,𝑝,𝑎)   𝑍(𝑞,𝑝,𝑎)

Proof of Theorem imasvscafn
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . . . . . . 8 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) = (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))
2 fvex 6874 . . . . . . . 8 (𝐹‘(𝑝 · 𝑞)) ∈ V
31, 2fnmpoi 8052 . . . . . . 7 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) Fn (𝐾 × {(𝐹𝑞)})
4 fnrel 6623 . . . . . . 7 ((𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) Fn (𝐾 × {(𝐹𝑞)}) → Rel (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))))
53, 4ax-mp 5 . . . . . 6 Rel (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))
65rgenw 3049 . . . . 5 𝑞𝑉 Rel (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))
7 reliun 5782 . . . . 5 (Rel 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ↔ ∀𝑞𝑉 Rel (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))))
86, 7mpbir 231 . . . 4 Rel 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))
9 imasvscaf.u . . . . . 6 (𝜑𝑈 = (𝐹s 𝑅))
10 imasvscaf.v . . . . . 6 (𝜑𝑉 = (Base‘𝑅))
11 imasvscaf.f . . . . . 6 (𝜑𝐹:𝑉onto𝐵)
12 imasvscaf.r . . . . . 6 (𝜑𝑅𝑍)
13 imasvscaf.g . . . . . 6 𝐺 = (Scalar‘𝑅)
14 imasvscaf.k . . . . . 6 𝐾 = (Base‘𝐺)
15 imasvscaf.q . . . . . 6 · = ( ·𝑠𝑅)
16 imasvscaf.s . . . . . 6 = ( ·𝑠𝑈)
179, 10, 11, 12, 13, 14, 15, 16imasvsca 17490 . . . . 5 (𝜑 = 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))))
1817releqd 5744 . . . 4 (𝜑 → (Rel ↔ Rel 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))))
198, 18mpbiri 258 . . 3 (𝜑 → Rel )
20 dffn2 6693 . . . . . . . . . . . . 13 ((𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) Fn (𝐾 × {(𝐹𝑞)}) ↔ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))):(𝐾 × {(𝐹𝑞)})⟶V)
213, 20mpbi 230 . . . . . . . . . . . 12 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))):(𝐾 × {(𝐹𝑞)})⟶V
22 fssxp 6718 . . . . . . . . . . . 12 ((𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))):(𝐾 × {(𝐹𝑞)})⟶V → (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × {(𝐹𝑞)}) × V))
2321, 22ax-mp 5 . . . . . . . . . . 11 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × {(𝐹𝑞)}) × V)
24 fof 6775 . . . . . . . . . . . . . . 15 (𝐹:𝑉onto𝐵𝐹:𝑉𝐵)
2511, 24syl 17 . . . . . . . . . . . . . 14 (𝜑𝐹:𝑉𝐵)
2625ffvelcdmda 7059 . . . . . . . . . . . . 13 ((𝜑𝑞𝑉) → (𝐹𝑞) ∈ 𝐵)
2726snssd 4776 . . . . . . . . . . . 12 ((𝜑𝑞𝑉) → {(𝐹𝑞)} ⊆ 𝐵)
28 xpss2 5661 . . . . . . . . . . . 12 ({(𝐹𝑞)} ⊆ 𝐵 → (𝐾 × {(𝐹𝑞)}) ⊆ (𝐾 × 𝐵))
29 xpss1 5660 . . . . . . . . . . . 12 ((𝐾 × {(𝐹𝑞)}) ⊆ (𝐾 × 𝐵) → ((𝐾 × {(𝐹𝑞)}) × V) ⊆ ((𝐾 × 𝐵) × V))
3027, 28, 293syl 18 . . . . . . . . . . 11 ((𝜑𝑞𝑉) → ((𝐾 × {(𝐹𝑞)}) × V) ⊆ ((𝐾 × 𝐵) × V))
3123, 30sstrid 3961 . . . . . . . . . 10 ((𝜑𝑞𝑉) → (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × V))
3231ralrimiva 3126 . . . . . . . . 9 (𝜑 → ∀𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × V))
33 iunss 5012 . . . . . . . . 9 ( 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × V) ↔ ∀𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × V))
3432, 33sylibr 234 . . . . . . . 8 (𝜑 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × V))
3517, 34eqsstrd 3984 . . . . . . 7 (𝜑 ⊆ ((𝐾 × 𝐵) × V))
36 dmss 5869 . . . . . . 7 ( ⊆ ((𝐾 × 𝐵) × V) → dom ⊆ dom ((𝐾 × 𝐵) × V))
3735, 36syl 17 . . . . . 6 (𝜑 → dom ⊆ dom ((𝐾 × 𝐵) × V))
38 vn0 4311 . . . . . . 7 V ≠ ∅
39 dmxp 5895 . . . . . . 7 (V ≠ ∅ → dom ((𝐾 × 𝐵) × V) = (𝐾 × 𝐵))
4038, 39ax-mp 5 . . . . . 6 dom ((𝐾 × 𝐵) × V) = (𝐾 × 𝐵)
4137, 40sseqtrdi 3990 . . . . 5 (𝜑 → dom ⊆ (𝐾 × 𝐵))
42 forn 6778 . . . . . . 7 (𝐹:𝑉onto𝐵 → ran 𝐹 = 𝐵)
4311, 42syl 17 . . . . . 6 (𝜑 → ran 𝐹 = 𝐵)
4443xpeq2d 5671 . . . . 5 (𝜑 → (𝐾 × ran 𝐹) = (𝐾 × 𝐵))
4541, 44sseqtrrd 3987 . . . 4 (𝜑 → dom ⊆ (𝐾 × ran 𝐹))
46 df-br 5111 . . . . . . . . . 10 (⟨𝑝, (𝐹𝑎)⟩ 𝑤 ↔ ⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ )
4717eleq2d 2815 . . . . . . . . . . . 12 (𝜑 → (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ ↔ ⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))))
4847adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑝𝐾𝑎𝑉)) → (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ ↔ ⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))))
49 eliun 4962 . . . . . . . . . . . 12 (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ↔ ∃𝑞𝑉 ⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))))
50 df-3an 1088 . . . . . . . . . . . . . . 15 ((𝑝𝐾𝑎𝑉𝑞𝑉) ↔ ((𝑝𝐾𝑎𝑉) ∧ 𝑞𝑉))
511mpofun 7516 . . . . . . . . . . . . . . . . . . . 20 Fun (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))
52 funopfv 6913 . . . . . . . . . . . . . . . . . . . 20 (Fun (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → ((𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))‘⟨𝑝, (𝐹𝑎)⟩) = 𝑤))
5351, 52ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → ((𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))‘⟨𝑝, (𝐹𝑎)⟩) = 𝑤)
54 df-ov 7393 . . . . . . . . . . . . . . . . . . . 20 (𝑝(𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))(𝐹𝑎)) = ((𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))‘⟨𝑝, (𝐹𝑎)⟩)
55 opex 5427 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑝, (𝐹𝑎)⟩ ∈ V
56 vex 3454 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑤 ∈ V
5755, 56opeldm 5874 . . . . . . . . . . . . . . . . . . . . . . 23 (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → ⟨𝑝, (𝐹𝑎)⟩ ∈ dom (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))))
581, 2dmmpo 8053 . . . . . . . . . . . . . . . . . . . . . . 23 dom (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) = (𝐾 × {(𝐹𝑞)})
5957, 58eleqtrdi 2839 . . . . . . . . . . . . . . . . . . . . . 22 (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → ⟨𝑝, (𝐹𝑎)⟩ ∈ (𝐾 × {(𝐹𝑞)}))
60 opelxp 5677 . . . . . . . . . . . . . . . . . . . . . 22 (⟨𝑝, (𝐹𝑎)⟩ ∈ (𝐾 × {(𝐹𝑞)}) ↔ (𝑝𝐾 ∧ (𝐹𝑎) ∈ {(𝐹𝑞)}))
6159, 60sylib 218 . . . . . . . . . . . . . . . . . . . . 21 (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → (𝑝𝐾 ∧ (𝐹𝑎) ∈ {(𝐹𝑞)}))
62 fvoveq1 7413 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = 𝑝 → (𝐹‘(𝑧 · 𝑞)) = (𝐹‘(𝑝 · 𝑞)))
63 eqidd 2731 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = (𝐹𝑎) → (𝐹‘(𝑝 · 𝑞)) = (𝐹‘(𝑝 · 𝑞)))
64 fvoveq1 7413 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑝 = 𝑧 → (𝐹‘(𝑝 · 𝑞)) = (𝐹‘(𝑧 · 𝑞)))
65 eqidd 2731 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑦 → (𝐹‘(𝑧 · 𝑞)) = (𝐹‘(𝑧 · 𝑞)))
6664, 65cbvmpov 7487 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) = (𝑧𝐾, 𝑦 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑧 · 𝑞)))
6762, 63, 66, 2ovmpo 7552 . . . . . . . . . . . . . . . . . . . . 21 ((𝑝𝐾 ∧ (𝐹𝑎) ∈ {(𝐹𝑞)}) → (𝑝(𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))(𝐹𝑎)) = (𝐹‘(𝑝 · 𝑞)))
6861, 67syl 17 . . . . . . . . . . . . . . . . . . . 20 (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → (𝑝(𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))(𝐹𝑎)) = (𝐹‘(𝑝 · 𝑞)))
6954, 68eqtr3id 2779 . . . . . . . . . . . . . . . . . . 19 (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → ((𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))‘⟨𝑝, (𝐹𝑎)⟩) = (𝐹‘(𝑝 · 𝑞)))
7053, 69eqtr3d 2767 . . . . . . . . . . . . . . . . . 18 (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → 𝑤 = (𝐹‘(𝑝 · 𝑞)))
7170adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑝𝐾𝑎𝑉𝑞𝑉)) ∧ ⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))) → 𝑤 = (𝐹‘(𝑝 · 𝑞)))
72 imasvscaf.e . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑝𝐾𝑎𝑉𝑞𝑉)) → ((𝐹𝑎) = (𝐹𝑞) → (𝐹‘(𝑝 · 𝑎)) = (𝐹‘(𝑝 · 𝑞))))
73 elsni 4609 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑎) ∈ {(𝐹𝑞)} → (𝐹𝑎) = (𝐹𝑞))
7461, 73simpl2im 503 . . . . . . . . . . . . . . . . . 18 (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → (𝐹𝑎) = (𝐹𝑞))
7572, 74impel 505 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑝𝐾𝑎𝑉𝑞𝑉)) ∧ ⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))) → (𝐹‘(𝑝 · 𝑎)) = (𝐹‘(𝑝 · 𝑞)))
7671, 75eqtr4d 2768 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑝𝐾𝑎𝑉𝑞𝑉)) ∧ ⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))) → 𝑤 = (𝐹‘(𝑝 · 𝑎)))
7776ex 412 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑝𝐾𝑎𝑉𝑞𝑉)) → (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → 𝑤 = (𝐹‘(𝑝 · 𝑎))))
7850, 77sylan2br 595 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑝𝐾𝑎𝑉) ∧ 𝑞𝑉)) → (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → 𝑤 = (𝐹‘(𝑝 · 𝑎))))
7978anassrs 467 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑝𝐾𝑎𝑉)) ∧ 𝑞𝑉) → (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → 𝑤 = (𝐹‘(𝑝 · 𝑎))))
8079rexlimdva 3135 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑝𝐾𝑎𝑉)) → (∃𝑞𝑉 ⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → 𝑤 = (𝐹‘(𝑝 · 𝑎))))
8149, 80biimtrid 242 . . . . . . . . . . 11 ((𝜑 ∧ (𝑝𝐾𝑎𝑉)) → (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → 𝑤 = (𝐹‘(𝑝 · 𝑎))))
8248, 81sylbid 240 . . . . . . . . . 10 ((𝜑 ∧ (𝑝𝐾𝑎𝑉)) → (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ 𝑤 = (𝐹‘(𝑝 · 𝑎))))
8346, 82biimtrid 242 . . . . . . . . 9 ((𝜑 ∧ (𝑝𝐾𝑎𝑉)) → (⟨𝑝, (𝐹𝑎)⟩ 𝑤𝑤 = (𝐹‘(𝑝 · 𝑎))))
8483alrimiv 1927 . . . . . . . 8 ((𝜑 ∧ (𝑝𝐾𝑎𝑉)) → ∀𝑤(⟨𝑝, (𝐹𝑎)⟩ 𝑤𝑤 = (𝐹‘(𝑝 · 𝑎))))
85 mo2icl 3688 . . . . . . . 8 (∀𝑤(⟨𝑝, (𝐹𝑎)⟩ 𝑤𝑤 = (𝐹‘(𝑝 · 𝑎))) → ∃*𝑤𝑝, (𝐹𝑎)⟩ 𝑤)
8684, 85syl 17 . . . . . . 7 ((𝜑 ∧ (𝑝𝐾𝑎𝑉)) → ∃*𝑤𝑝, (𝐹𝑎)⟩ 𝑤)
8786ralrimivva 3181 . . . . . 6 (𝜑 → ∀𝑝𝐾𝑎𝑉 ∃*𝑤𝑝, (𝐹𝑎)⟩ 𝑤)
88 fofn 6777 . . . . . . . 8 (𝐹:𝑉onto𝐵𝐹 Fn 𝑉)
89 opeq2 4841 . . . . . . . . . . 11 (𝑦 = (𝐹𝑎) → ⟨𝑝, 𝑦⟩ = ⟨𝑝, (𝐹𝑎)⟩)
9089breq1d 5120 . . . . . . . . . 10 (𝑦 = (𝐹𝑎) → (⟨𝑝, 𝑦 𝑤 ↔ ⟨𝑝, (𝐹𝑎)⟩ 𝑤))
9190mobidv 2543 . . . . . . . . 9 (𝑦 = (𝐹𝑎) → (∃*𝑤𝑝, 𝑦 𝑤 ↔ ∃*𝑤𝑝, (𝐹𝑎)⟩ 𝑤))
9291ralrn 7063 . . . . . . . 8 (𝐹 Fn 𝑉 → (∀𝑦 ∈ ran 𝐹∃*𝑤𝑝, 𝑦 𝑤 ↔ ∀𝑎𝑉 ∃*𝑤𝑝, (𝐹𝑎)⟩ 𝑤))
9311, 88, 923syl 18 . . . . . . 7 (𝜑 → (∀𝑦 ∈ ran 𝐹∃*𝑤𝑝, 𝑦 𝑤 ↔ ∀𝑎𝑉 ∃*𝑤𝑝, (𝐹𝑎)⟩ 𝑤))
9493ralbidv 3157 . . . . . 6 (𝜑 → (∀𝑝𝐾𝑦 ∈ ran 𝐹∃*𝑤𝑝, 𝑦 𝑤 ↔ ∀𝑝𝐾𝑎𝑉 ∃*𝑤𝑝, (𝐹𝑎)⟩ 𝑤))
9587, 94mpbird 257 . . . . 5 (𝜑 → ∀𝑝𝐾𝑦 ∈ ran 𝐹∃*𝑤𝑝, 𝑦 𝑤)
96 breq1 5113 . . . . . . 7 (𝑥 = ⟨𝑝, 𝑦⟩ → (𝑥 𝑤 ↔ ⟨𝑝, 𝑦 𝑤))
9796mobidv 2543 . . . . . 6 (𝑥 = ⟨𝑝, 𝑦⟩ → (∃*𝑤 𝑥 𝑤 ↔ ∃*𝑤𝑝, 𝑦 𝑤))
9897ralxp 5808 . . . . 5 (∀𝑥 ∈ (𝐾 × ran 𝐹)∃*𝑤 𝑥 𝑤 ↔ ∀𝑝𝐾𝑦 ∈ ran 𝐹∃*𝑤𝑝, 𝑦 𝑤)
9995, 98sylibr 234 . . . 4 (𝜑 → ∀𝑥 ∈ (𝐾 × ran 𝐹)∃*𝑤 𝑥 𝑤)
100 ssralv 4018 . . . 4 (dom ⊆ (𝐾 × ran 𝐹) → (∀𝑥 ∈ (𝐾 × ran 𝐹)∃*𝑤 𝑥 𝑤 → ∀𝑥 ∈ dom ∃*𝑤 𝑥 𝑤))
10145, 99, 100sylc 65 . . 3 (𝜑 → ∀𝑥 ∈ dom ∃*𝑤 𝑥 𝑤)
102 dffun7 6546 . . 3 (Fun ↔ (Rel ∧ ∀𝑥 ∈ dom ∃*𝑤 𝑥 𝑤))
10319, 101, 102sylanbrc 583 . 2 (𝜑 → Fun )
104 eqimss2 4009 . . . . . . . . . . . . . . 15 ( = 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ )
10517, 104syl 17 . . . . . . . . . . . . . 14 (𝜑 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ )
106 iunss 5012 . . . . . . . . . . . . . 14 ( 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ↔ ∀𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ )
107105, 106sylib 218 . . . . . . . . . . . . 13 (𝜑 → ∀𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ )
108107r19.21bi 3230 . . . . . . . . . . . 12 ((𝜑𝑞𝑉) → (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ )
109108adantrl 716 . . . . . . . . . . 11 ((𝜑 ∧ (𝑝𝐾𝑞𝑉)) → (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ )
110 dmss 5869 . . . . . . . . . . 11 ((𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ → dom (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ dom )
111109, 110syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑝𝐾𝑞𝑉)) → dom (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ dom )
11258, 111eqsstrrid 3989 . . . . . . . . 9 ((𝜑 ∧ (𝑝𝐾𝑞𝑉)) → (𝐾 × {(𝐹𝑞)}) ⊆ dom )
113 simprl 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑝𝐾𝑞𝑉)) → 𝑝𝐾)
114 fvex 6874 . . . . . . . . . . 11 (𝐹𝑞) ∈ V
115114snid 4629 . . . . . . . . . 10 (𝐹𝑞) ∈ {(𝐹𝑞)}
116 opelxpi 5678 . . . . . . . . . 10 ((𝑝𝐾 ∧ (𝐹𝑞) ∈ {(𝐹𝑞)}) → ⟨𝑝, (𝐹𝑞)⟩ ∈ (𝐾 × {(𝐹𝑞)}))
117113, 115, 116sylancl 586 . . . . . . . . 9 ((𝜑 ∧ (𝑝𝐾𝑞𝑉)) → ⟨𝑝, (𝐹𝑞)⟩ ∈ (𝐾 × {(𝐹𝑞)}))
118112, 117sseldd 3950 . . . . . . . 8 ((𝜑 ∧ (𝑝𝐾𝑞𝑉)) → ⟨𝑝, (𝐹𝑞)⟩ ∈ dom )
119118ralrimivva 3181 . . . . . . 7 (𝜑 → ∀𝑝𝐾𝑞𝑉𝑝, (𝐹𝑞)⟩ ∈ dom )
120 opeq2 4841 . . . . . . . . . . 11 (𝑦 = (𝐹𝑞) → ⟨𝑝, 𝑦⟩ = ⟨𝑝, (𝐹𝑞)⟩)
121120eleq1d 2814 . . . . . . . . . 10 (𝑦 = (𝐹𝑞) → (⟨𝑝, 𝑦⟩ ∈ dom ↔ ⟨𝑝, (𝐹𝑞)⟩ ∈ dom ))
122121ralrn 7063 . . . . . . . . 9 (𝐹 Fn 𝑉 → (∀𝑦 ∈ ran 𝐹𝑝, 𝑦⟩ ∈ dom ↔ ∀𝑞𝑉𝑝, (𝐹𝑞)⟩ ∈ dom ))
12311, 88, 1223syl 18 . . . . . . . 8 (𝜑 → (∀𝑦 ∈ ran 𝐹𝑝, 𝑦⟩ ∈ dom ↔ ∀𝑞𝑉𝑝, (𝐹𝑞)⟩ ∈ dom ))
124123ralbidv 3157 . . . . . . 7 (𝜑 → (∀𝑝𝐾𝑦 ∈ ran 𝐹𝑝, 𝑦⟩ ∈ dom ↔ ∀𝑝𝐾𝑞𝑉𝑝, (𝐹𝑞)⟩ ∈ dom ))
125119, 124mpbird 257 . . . . . 6 (𝜑 → ∀𝑝𝐾𝑦 ∈ ran 𝐹𝑝, 𝑦⟩ ∈ dom )
126 eleq1 2817 . . . . . . 7 (𝑥 = ⟨𝑝, 𝑦⟩ → (𝑥 ∈ dom ↔ ⟨𝑝, 𝑦⟩ ∈ dom ))
127126ralxp 5808 . . . . . 6 (∀𝑥 ∈ (𝐾 × ran 𝐹)𝑥 ∈ dom ↔ ∀𝑝𝐾𝑦 ∈ ran 𝐹𝑝, 𝑦⟩ ∈ dom )
128125, 127sylibr 234 . . . . 5 (𝜑 → ∀𝑥 ∈ (𝐾 × ran 𝐹)𝑥 ∈ dom )
129 dfss3 3938 . . . . 5 ((𝐾 × ran 𝐹) ⊆ dom ↔ ∀𝑥 ∈ (𝐾 × ran 𝐹)𝑥 ∈ dom )
130128, 129sylibr 234 . . . 4 (𝜑 → (𝐾 × ran 𝐹) ⊆ dom )
13144, 130eqsstrrd 3985 . . 3 (𝜑 → (𝐾 × 𝐵) ⊆ dom )
13241, 131eqssd 3967 . 2 (𝜑 → dom = (𝐾 × 𝐵))
133 df-fn 6517 . 2 ( Fn (𝐾 × 𝐵) ↔ (Fun ∧ dom = (𝐾 × 𝐵)))
134103, 132, 133sylanbrc 583 1 (𝜑 Fn (𝐾 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1538   = wceq 1540  wcel 2109  ∃*wmo 2532  wne 2926  wral 3045  wrex 3054  Vcvv 3450  wss 3917  c0 4299  {csn 4592  cop 4598   ciun 4958   class class class wbr 5110   × cxp 5639  dom cdm 5641  ran crn 5642  Rel wrel 5646  Fun wfun 6508   Fn wfn 6509  wf 6510  ontowfo 6512  cfv 6514  (class class class)co 7390  cmpo 7392  Basecbs 17186  Scalarcsca 17230   ·𝑠 cvsca 17231  s cimas 17474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-struct 17124  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-imas 17478
This theorem is referenced by:  imasvscaval  17508  imasvscaf  17509
  Copyright terms: Public domain W3C validator