MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasvscafn Structured version   Visualization version   GIF version

Theorem imasvscafn 17419
Description: The image structure's scalar multiplication is a function. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
imasvscaf.u (𝜑𝑈 = (𝐹s 𝑅))
imasvscaf.v (𝜑𝑉 = (Base‘𝑅))
imasvscaf.f (𝜑𝐹:𝑉onto𝐵)
imasvscaf.r (𝜑𝑅𝑍)
imasvscaf.g 𝐺 = (Scalar‘𝑅)
imasvscaf.k 𝐾 = (Base‘𝐺)
imasvscaf.q · = ( ·𝑠𝑅)
imasvscaf.s = ( ·𝑠𝑈)
imasvscaf.e ((𝜑 ∧ (𝑝𝐾𝑎𝑉𝑞𝑉)) → ((𝐹𝑎) = (𝐹𝑞) → (𝐹‘(𝑝 · 𝑎)) = (𝐹‘(𝑝 · 𝑞))))
Assertion
Ref Expression
imasvscafn (𝜑 Fn (𝐾 × 𝐵))
Distinct variable groups:   𝑝,𝑎,𝑞,𝐹   𝐾,𝑎,𝑝,𝑞   𝜑,𝑎,𝑝,𝑞   𝐵,𝑝,𝑞   𝑅,𝑝,𝑞   · ,𝑝,𝑞   ,𝑎,𝑝,𝑞   𝑉,𝑎,𝑝,𝑞
Allowed substitution hints:   𝐵(𝑎)   𝑅(𝑎)   · (𝑎)   𝑈(𝑞,𝑝,𝑎)   𝐺(𝑞,𝑝,𝑎)   𝑍(𝑞,𝑝,𝑎)

Proof of Theorem imasvscafn
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . . . . . 8 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) = (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))
2 fvex 6855 . . . . . . . 8 (𝐹‘(𝑝 · 𝑞)) ∈ V
31, 2fnmpoi 8002 . . . . . . 7 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) Fn (𝐾 × {(𝐹𝑞)})
4 fnrel 6604 . . . . . . 7 ((𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) Fn (𝐾 × {(𝐹𝑞)}) → Rel (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))))
53, 4ax-mp 5 . . . . . 6 Rel (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))
65rgenw 3068 . . . . 5 𝑞𝑉 Rel (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))
7 reliun 5772 . . . . 5 (Rel 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ↔ ∀𝑞𝑉 Rel (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))))
86, 7mpbir 230 . . . 4 Rel 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))
9 imasvscaf.u . . . . . 6 (𝜑𝑈 = (𝐹s 𝑅))
10 imasvscaf.v . . . . . 6 (𝜑𝑉 = (Base‘𝑅))
11 imasvscaf.f . . . . . 6 (𝜑𝐹:𝑉onto𝐵)
12 imasvscaf.r . . . . . 6 (𝜑𝑅𝑍)
13 imasvscaf.g . . . . . 6 𝐺 = (Scalar‘𝑅)
14 imasvscaf.k . . . . . 6 𝐾 = (Base‘𝐺)
15 imasvscaf.q . . . . . 6 · = ( ·𝑠𝑅)
16 imasvscaf.s . . . . . 6 = ( ·𝑠𝑈)
179, 10, 11, 12, 13, 14, 15, 16imasvsca 17402 . . . . 5 (𝜑 = 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))))
1817releqd 5734 . . . 4 (𝜑 → (Rel ↔ Rel 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))))
198, 18mpbiri 257 . . 3 (𝜑 → Rel )
20 dffn2 6670 . . . . . . . . . . . . 13 ((𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) Fn (𝐾 × {(𝐹𝑞)}) ↔ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))):(𝐾 × {(𝐹𝑞)})⟶V)
213, 20mpbi 229 . . . . . . . . . . . 12 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))):(𝐾 × {(𝐹𝑞)})⟶V
22 fssxp 6696 . . . . . . . . . . . 12 ((𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))):(𝐾 × {(𝐹𝑞)})⟶V → (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × {(𝐹𝑞)}) × V))
2321, 22ax-mp 5 . . . . . . . . . . 11 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × {(𝐹𝑞)}) × V)
24 fof 6756 . . . . . . . . . . . . . . 15 (𝐹:𝑉onto𝐵𝐹:𝑉𝐵)
2511, 24syl 17 . . . . . . . . . . . . . 14 (𝜑𝐹:𝑉𝐵)
2625ffvelcdmda 7035 . . . . . . . . . . . . 13 ((𝜑𝑞𝑉) → (𝐹𝑞) ∈ 𝐵)
2726snssd 4769 . . . . . . . . . . . 12 ((𝜑𝑞𝑉) → {(𝐹𝑞)} ⊆ 𝐵)
28 xpss2 5653 . . . . . . . . . . . 12 ({(𝐹𝑞)} ⊆ 𝐵 → (𝐾 × {(𝐹𝑞)}) ⊆ (𝐾 × 𝐵))
29 xpss1 5652 . . . . . . . . . . . 12 ((𝐾 × {(𝐹𝑞)}) ⊆ (𝐾 × 𝐵) → ((𝐾 × {(𝐹𝑞)}) × V) ⊆ ((𝐾 × 𝐵) × V))
3027, 28, 293syl 18 . . . . . . . . . . 11 ((𝜑𝑞𝑉) → ((𝐾 × {(𝐹𝑞)}) × V) ⊆ ((𝐾 × 𝐵) × V))
3123, 30sstrid 3955 . . . . . . . . . 10 ((𝜑𝑞𝑉) → (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × V))
3231ralrimiva 3143 . . . . . . . . 9 (𝜑 → ∀𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × V))
33 iunss 5005 . . . . . . . . 9 ( 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × V) ↔ ∀𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × V))
3432, 33sylibr 233 . . . . . . . 8 (𝜑 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × V))
3517, 34eqsstrd 3982 . . . . . . 7 (𝜑 ⊆ ((𝐾 × 𝐵) × V))
36 dmss 5858 . . . . . . 7 ( ⊆ ((𝐾 × 𝐵) × V) → dom ⊆ dom ((𝐾 × 𝐵) × V))
3735, 36syl 17 . . . . . 6 (𝜑 → dom ⊆ dom ((𝐾 × 𝐵) × V))
38 vn0 4298 . . . . . . 7 V ≠ ∅
39 dmxp 5884 . . . . . . 7 (V ≠ ∅ → dom ((𝐾 × 𝐵) × V) = (𝐾 × 𝐵))
4038, 39ax-mp 5 . . . . . 6 dom ((𝐾 × 𝐵) × V) = (𝐾 × 𝐵)
4137, 40sseqtrdi 3994 . . . . 5 (𝜑 → dom ⊆ (𝐾 × 𝐵))
42 forn 6759 . . . . . . 7 (𝐹:𝑉onto𝐵 → ran 𝐹 = 𝐵)
4311, 42syl 17 . . . . . 6 (𝜑 → ran 𝐹 = 𝐵)
4443xpeq2d 5663 . . . . 5 (𝜑 → (𝐾 × ran 𝐹) = (𝐾 × 𝐵))
4541, 44sseqtrrd 3985 . . . 4 (𝜑 → dom ⊆ (𝐾 × ran 𝐹))
46 df-br 5106 . . . . . . . . . 10 (⟨𝑝, (𝐹𝑎)⟩ 𝑤 ↔ ⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ )
4717eleq2d 2823 . . . . . . . . . . . 12 (𝜑 → (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ ↔ ⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))))
4847adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑝𝐾𝑎𝑉)) → (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ ↔ ⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))))
49 eliun 4958 . . . . . . . . . . . 12 (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ↔ ∃𝑞𝑉 ⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))))
50 df-3an 1089 . . . . . . . . . . . . . . 15 ((𝑝𝐾𝑎𝑉𝑞𝑉) ↔ ((𝑝𝐾𝑎𝑉) ∧ 𝑞𝑉))
511mpofun 7480 . . . . . . . . . . . . . . . . . . . 20 Fun (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))
52 funopfv 6894 . . . . . . . . . . . . . . . . . . . 20 (Fun (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → ((𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))‘⟨𝑝, (𝐹𝑎)⟩) = 𝑤))
5351, 52ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → ((𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))‘⟨𝑝, (𝐹𝑎)⟩) = 𝑤)
54 df-ov 7360 . . . . . . . . . . . . . . . . . . . 20 (𝑝(𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))(𝐹𝑎)) = ((𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))‘⟨𝑝, (𝐹𝑎)⟩)
55 opex 5421 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑝, (𝐹𝑎)⟩ ∈ V
56 vex 3449 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑤 ∈ V
5755, 56opeldm 5863 . . . . . . . . . . . . . . . . . . . . . . 23 (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → ⟨𝑝, (𝐹𝑎)⟩ ∈ dom (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))))
581, 2dmmpo 8003 . . . . . . . . . . . . . . . . . . . . . . 23 dom (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) = (𝐾 × {(𝐹𝑞)})
5957, 58eleqtrdi 2848 . . . . . . . . . . . . . . . . . . . . . 22 (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → ⟨𝑝, (𝐹𝑎)⟩ ∈ (𝐾 × {(𝐹𝑞)}))
60 opelxp 5669 . . . . . . . . . . . . . . . . . . . . . 22 (⟨𝑝, (𝐹𝑎)⟩ ∈ (𝐾 × {(𝐹𝑞)}) ↔ (𝑝𝐾 ∧ (𝐹𝑎) ∈ {(𝐹𝑞)}))
6159, 60sylib 217 . . . . . . . . . . . . . . . . . . . . 21 (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → (𝑝𝐾 ∧ (𝐹𝑎) ∈ {(𝐹𝑞)}))
62 fvoveq1 7380 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = 𝑝 → (𝐹‘(𝑧 · 𝑞)) = (𝐹‘(𝑝 · 𝑞)))
63 eqidd 2737 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = (𝐹𝑎) → (𝐹‘(𝑝 · 𝑞)) = (𝐹‘(𝑝 · 𝑞)))
64 fvoveq1 7380 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑝 = 𝑧 → (𝐹‘(𝑝 · 𝑞)) = (𝐹‘(𝑧 · 𝑞)))
65 eqidd 2737 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑦 → (𝐹‘(𝑧 · 𝑞)) = (𝐹‘(𝑧 · 𝑞)))
6664, 65cbvmpov 7452 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) = (𝑧𝐾, 𝑦 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑧 · 𝑞)))
6762, 63, 66, 2ovmpo 7515 . . . . . . . . . . . . . . . . . . . . 21 ((𝑝𝐾 ∧ (𝐹𝑎) ∈ {(𝐹𝑞)}) → (𝑝(𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))(𝐹𝑎)) = (𝐹‘(𝑝 · 𝑞)))
6861, 67syl 17 . . . . . . . . . . . . . . . . . . . 20 (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → (𝑝(𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))(𝐹𝑎)) = (𝐹‘(𝑝 · 𝑞)))
6954, 68eqtr3id 2790 . . . . . . . . . . . . . . . . . . 19 (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → ((𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))‘⟨𝑝, (𝐹𝑎)⟩) = (𝐹‘(𝑝 · 𝑞)))
7053, 69eqtr3d 2778 . . . . . . . . . . . . . . . . . 18 (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → 𝑤 = (𝐹‘(𝑝 · 𝑞)))
7170adantl 482 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑝𝐾𝑎𝑉𝑞𝑉)) ∧ ⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))) → 𝑤 = (𝐹‘(𝑝 · 𝑞)))
72 imasvscaf.e . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑝𝐾𝑎𝑉𝑞𝑉)) → ((𝐹𝑎) = (𝐹𝑞) → (𝐹‘(𝑝 · 𝑎)) = (𝐹‘(𝑝 · 𝑞))))
73 elsni 4603 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑎) ∈ {(𝐹𝑞)} → (𝐹𝑎) = (𝐹𝑞))
7461, 73simpl2im 504 . . . . . . . . . . . . . . . . . 18 (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → (𝐹𝑎) = (𝐹𝑞))
7572, 74impel 506 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑝𝐾𝑎𝑉𝑞𝑉)) ∧ ⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))) → (𝐹‘(𝑝 · 𝑎)) = (𝐹‘(𝑝 · 𝑞)))
7671, 75eqtr4d 2779 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑝𝐾𝑎𝑉𝑞𝑉)) ∧ ⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))) → 𝑤 = (𝐹‘(𝑝 · 𝑎)))
7776ex 413 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑝𝐾𝑎𝑉𝑞𝑉)) → (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → 𝑤 = (𝐹‘(𝑝 · 𝑎))))
7850, 77sylan2br 595 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑝𝐾𝑎𝑉) ∧ 𝑞𝑉)) → (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → 𝑤 = (𝐹‘(𝑝 · 𝑎))))
7978anassrs 468 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑝𝐾𝑎𝑉)) ∧ 𝑞𝑉) → (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → 𝑤 = (𝐹‘(𝑝 · 𝑎))))
8079rexlimdva 3152 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑝𝐾𝑎𝑉)) → (∃𝑞𝑉 ⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → 𝑤 = (𝐹‘(𝑝 · 𝑎))))
8149, 80biimtrid 241 . . . . . . . . . . 11 ((𝜑 ∧ (𝑝𝐾𝑎𝑉)) → (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → 𝑤 = (𝐹‘(𝑝 · 𝑎))))
8248, 81sylbid 239 . . . . . . . . . 10 ((𝜑 ∧ (𝑝𝐾𝑎𝑉)) → (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ 𝑤 = (𝐹‘(𝑝 · 𝑎))))
8346, 82biimtrid 241 . . . . . . . . 9 ((𝜑 ∧ (𝑝𝐾𝑎𝑉)) → (⟨𝑝, (𝐹𝑎)⟩ 𝑤𝑤 = (𝐹‘(𝑝 · 𝑎))))
8483alrimiv 1930 . . . . . . . 8 ((𝜑 ∧ (𝑝𝐾𝑎𝑉)) → ∀𝑤(⟨𝑝, (𝐹𝑎)⟩ 𝑤𝑤 = (𝐹‘(𝑝 · 𝑎))))
85 mo2icl 3672 . . . . . . . 8 (∀𝑤(⟨𝑝, (𝐹𝑎)⟩ 𝑤𝑤 = (𝐹‘(𝑝 · 𝑎))) → ∃*𝑤𝑝, (𝐹𝑎)⟩ 𝑤)
8684, 85syl 17 . . . . . . 7 ((𝜑 ∧ (𝑝𝐾𝑎𝑉)) → ∃*𝑤𝑝, (𝐹𝑎)⟩ 𝑤)
8786ralrimivva 3197 . . . . . 6 (𝜑 → ∀𝑝𝐾𝑎𝑉 ∃*𝑤𝑝, (𝐹𝑎)⟩ 𝑤)
88 fofn 6758 . . . . . . . 8 (𝐹:𝑉onto𝐵𝐹 Fn 𝑉)
89 opeq2 4831 . . . . . . . . . . 11 (𝑦 = (𝐹𝑎) → ⟨𝑝, 𝑦⟩ = ⟨𝑝, (𝐹𝑎)⟩)
9089breq1d 5115 . . . . . . . . . 10 (𝑦 = (𝐹𝑎) → (⟨𝑝, 𝑦 𝑤 ↔ ⟨𝑝, (𝐹𝑎)⟩ 𝑤))
9190mobidv 2547 . . . . . . . . 9 (𝑦 = (𝐹𝑎) → (∃*𝑤𝑝, 𝑦 𝑤 ↔ ∃*𝑤𝑝, (𝐹𝑎)⟩ 𝑤))
9291ralrn 7038 . . . . . . . 8 (𝐹 Fn 𝑉 → (∀𝑦 ∈ ran 𝐹∃*𝑤𝑝, 𝑦 𝑤 ↔ ∀𝑎𝑉 ∃*𝑤𝑝, (𝐹𝑎)⟩ 𝑤))
9311, 88, 923syl 18 . . . . . . 7 (𝜑 → (∀𝑦 ∈ ran 𝐹∃*𝑤𝑝, 𝑦 𝑤 ↔ ∀𝑎𝑉 ∃*𝑤𝑝, (𝐹𝑎)⟩ 𝑤))
9493ralbidv 3174 . . . . . 6 (𝜑 → (∀𝑝𝐾𝑦 ∈ ran 𝐹∃*𝑤𝑝, 𝑦 𝑤 ↔ ∀𝑝𝐾𝑎𝑉 ∃*𝑤𝑝, (𝐹𝑎)⟩ 𝑤))
9587, 94mpbird 256 . . . . 5 (𝜑 → ∀𝑝𝐾𝑦 ∈ ran 𝐹∃*𝑤𝑝, 𝑦 𝑤)
96 breq1 5108 . . . . . . 7 (𝑥 = ⟨𝑝, 𝑦⟩ → (𝑥 𝑤 ↔ ⟨𝑝, 𝑦 𝑤))
9796mobidv 2547 . . . . . 6 (𝑥 = ⟨𝑝, 𝑦⟩ → (∃*𝑤 𝑥 𝑤 ↔ ∃*𝑤𝑝, 𝑦 𝑤))
9897ralxp 5797 . . . . 5 (∀𝑥 ∈ (𝐾 × ran 𝐹)∃*𝑤 𝑥 𝑤 ↔ ∀𝑝𝐾𝑦 ∈ ran 𝐹∃*𝑤𝑝, 𝑦 𝑤)
9995, 98sylibr 233 . . . 4 (𝜑 → ∀𝑥 ∈ (𝐾 × ran 𝐹)∃*𝑤 𝑥 𝑤)
100 ssralv 4010 . . . 4 (dom ⊆ (𝐾 × ran 𝐹) → (∀𝑥 ∈ (𝐾 × ran 𝐹)∃*𝑤 𝑥 𝑤 → ∀𝑥 ∈ dom ∃*𝑤 𝑥 𝑤))
10145, 99, 100sylc 65 . . 3 (𝜑 → ∀𝑥 ∈ dom ∃*𝑤 𝑥 𝑤)
102 dffun7 6528 . . 3 (Fun ↔ (Rel ∧ ∀𝑥 ∈ dom ∃*𝑤 𝑥 𝑤))
10319, 101, 102sylanbrc 583 . 2 (𝜑 → Fun )
104 eqimss2 4001 . . . . . . . . . . . . . . 15 ( = 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ )
10517, 104syl 17 . . . . . . . . . . . . . 14 (𝜑 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ )
106 iunss 5005 . . . . . . . . . . . . . 14 ( 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ↔ ∀𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ )
107105, 106sylib 217 . . . . . . . . . . . . 13 (𝜑 → ∀𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ )
108107r19.21bi 3234 . . . . . . . . . . . 12 ((𝜑𝑞𝑉) → (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ )
109108adantrl 714 . . . . . . . . . . 11 ((𝜑 ∧ (𝑝𝐾𝑞𝑉)) → (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ )
110 dmss 5858 . . . . . . . . . . 11 ((𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ → dom (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ dom )
111109, 110syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑝𝐾𝑞𝑉)) → dom (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ dom )
11258, 111eqsstrrid 3993 . . . . . . . . 9 ((𝜑 ∧ (𝑝𝐾𝑞𝑉)) → (𝐾 × {(𝐹𝑞)}) ⊆ dom )
113 simprl 769 . . . . . . . . . 10 ((𝜑 ∧ (𝑝𝐾𝑞𝑉)) → 𝑝𝐾)
114 fvex 6855 . . . . . . . . . . 11 (𝐹𝑞) ∈ V
115114snid 4622 . . . . . . . . . 10 (𝐹𝑞) ∈ {(𝐹𝑞)}
116 opelxpi 5670 . . . . . . . . . 10 ((𝑝𝐾 ∧ (𝐹𝑞) ∈ {(𝐹𝑞)}) → ⟨𝑝, (𝐹𝑞)⟩ ∈ (𝐾 × {(𝐹𝑞)}))
117113, 115, 116sylancl 586 . . . . . . . . 9 ((𝜑 ∧ (𝑝𝐾𝑞𝑉)) → ⟨𝑝, (𝐹𝑞)⟩ ∈ (𝐾 × {(𝐹𝑞)}))
118112, 117sseldd 3945 . . . . . . . 8 ((𝜑 ∧ (𝑝𝐾𝑞𝑉)) → ⟨𝑝, (𝐹𝑞)⟩ ∈ dom )
119118ralrimivva 3197 . . . . . . 7 (𝜑 → ∀𝑝𝐾𝑞𝑉𝑝, (𝐹𝑞)⟩ ∈ dom )
120 opeq2 4831 . . . . . . . . . . 11 (𝑦 = (𝐹𝑞) → ⟨𝑝, 𝑦⟩ = ⟨𝑝, (𝐹𝑞)⟩)
121120eleq1d 2822 . . . . . . . . . 10 (𝑦 = (𝐹𝑞) → (⟨𝑝, 𝑦⟩ ∈ dom ↔ ⟨𝑝, (𝐹𝑞)⟩ ∈ dom ))
122121ralrn 7038 . . . . . . . . 9 (𝐹 Fn 𝑉 → (∀𝑦 ∈ ran 𝐹𝑝, 𝑦⟩ ∈ dom ↔ ∀𝑞𝑉𝑝, (𝐹𝑞)⟩ ∈ dom ))
12311, 88, 1223syl 18 . . . . . . . 8 (𝜑 → (∀𝑦 ∈ ran 𝐹𝑝, 𝑦⟩ ∈ dom ↔ ∀𝑞𝑉𝑝, (𝐹𝑞)⟩ ∈ dom ))
124123ralbidv 3174 . . . . . . 7 (𝜑 → (∀𝑝𝐾𝑦 ∈ ran 𝐹𝑝, 𝑦⟩ ∈ dom ↔ ∀𝑝𝐾𝑞𝑉𝑝, (𝐹𝑞)⟩ ∈ dom ))
125119, 124mpbird 256 . . . . . 6 (𝜑 → ∀𝑝𝐾𝑦 ∈ ran 𝐹𝑝, 𝑦⟩ ∈ dom )
126 eleq1 2825 . . . . . . 7 (𝑥 = ⟨𝑝, 𝑦⟩ → (𝑥 ∈ dom ↔ ⟨𝑝, 𝑦⟩ ∈ dom ))
127126ralxp 5797 . . . . . 6 (∀𝑥 ∈ (𝐾 × ran 𝐹)𝑥 ∈ dom ↔ ∀𝑝𝐾𝑦 ∈ ran 𝐹𝑝, 𝑦⟩ ∈ dom )
128125, 127sylibr 233 . . . . 5 (𝜑 → ∀𝑥 ∈ (𝐾 × ran 𝐹)𝑥 ∈ dom )
129 dfss3 3932 . . . . 5 ((𝐾 × ran 𝐹) ⊆ dom ↔ ∀𝑥 ∈ (𝐾 × ran 𝐹)𝑥 ∈ dom )
130128, 129sylibr 233 . . . 4 (𝜑 → (𝐾 × ran 𝐹) ⊆ dom )
13144, 130eqsstrrd 3983 . . 3 (𝜑 → (𝐾 × 𝐵) ⊆ dom )
13241, 131eqssd 3961 . 2 (𝜑 → dom = (𝐾 × 𝐵))
133 df-fn 6499 . 2 ( Fn (𝐾 × 𝐵) ↔ (Fun ∧ dom = (𝐾 × 𝐵)))
134103, 132, 133sylanbrc 583 1 (𝜑 Fn (𝐾 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087  wal 1539   = wceq 1541  wcel 2106  ∃*wmo 2536  wne 2943  wral 3064  wrex 3073  Vcvv 3445  wss 3910  c0 4282  {csn 4586  cop 4592   ciun 4954   class class class wbr 5105   × cxp 5631  dom cdm 5633  ran crn 5634  Rel wrel 5638  Fun wfun 6490   Fn wfn 6491  wf 6492  ontowfo 6494  cfv 6496  (class class class)co 7357  cmpo 7359  Basecbs 17083  Scalarcsca 17136   ·𝑠 cvsca 17137  s cimas 17386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-fz 13425  df-struct 17019  df-slot 17054  df-ndx 17066  df-base 17084  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-imas 17390
This theorem is referenced by:  imasvscaval  17420  imasvscaf  17421
  Copyright terms: Public domain W3C validator