Step | Hyp | Ref
| Expression |
1 | | eqid 2739 |
. . . . . . . 8
⊢ (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) = (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) |
2 | | fvex 6796 |
. . . . . . . 8
⊢ (𝐹‘(𝑝 · 𝑞)) ∈ V |
3 | 1, 2 | fnmpoi 7919 |
. . . . . . 7
⊢ (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) Fn (𝐾 × {(𝐹‘𝑞)}) |
4 | | fnrel 6544 |
. . . . . . 7
⊢ ((𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) Fn (𝐾 × {(𝐹‘𝑞)}) → Rel (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))) |
5 | 3, 4 | ax-mp 5 |
. . . . . 6
⊢ Rel
(𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) |
6 | 5 | rgenw 3077 |
. . . . 5
⊢
∀𝑞 ∈
𝑉 Rel (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) |
7 | | reliun 5728 |
. . . . 5
⊢ (Rel
∪ 𝑞 ∈ 𝑉 (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ↔ ∀𝑞 ∈ 𝑉 Rel (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))) |
8 | 6, 7 | mpbir 230 |
. . . 4
⊢ Rel
∪ 𝑞 ∈ 𝑉 (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) |
9 | | imasvscaf.u |
. . . . . 6
⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
10 | | imasvscaf.v |
. . . . . 6
⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
11 | | imasvscaf.f |
. . . . . 6
⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) |
12 | | imasvscaf.r |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ 𝑍) |
13 | | imasvscaf.g |
. . . . . 6
⊢ 𝐺 = (Scalar‘𝑅) |
14 | | imasvscaf.k |
. . . . . 6
⊢ 𝐾 = (Base‘𝐺) |
15 | | imasvscaf.q |
. . . . . 6
⊢ · = (
·𝑠 ‘𝑅) |
16 | | imasvscaf.s |
. . . . . 6
⊢ ∙ = (
·𝑠 ‘𝑈) |
17 | 9, 10, 11, 12, 13, 14, 15, 16 | imasvsca 17240 |
. . . . 5
⊢ (𝜑 → ∙ = ∪ 𝑞 ∈ 𝑉 (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))) |
18 | 17 | releqd 5690 |
. . . 4
⊢ (𝜑 → (Rel ∙ ↔ Rel ∪ 𝑞 ∈ 𝑉 (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))))) |
19 | 8, 18 | mpbiri 257 |
. . 3
⊢ (𝜑 → Rel ∙ ) |
20 | | dffn2 6611 |
. . . . . . . . . . . . 13
⊢ ((𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) Fn (𝐾 × {(𝐹‘𝑞)}) ↔ (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))):(𝐾 × {(𝐹‘𝑞)})⟶V) |
21 | 3, 20 | mpbi 229 |
. . . . . . . . . . . 12
⊢ (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))):(𝐾 × {(𝐹‘𝑞)})⟶V |
22 | | fssxp 6637 |
. . . . . . . . . . . 12
⊢ ((𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))):(𝐾 × {(𝐹‘𝑞)})⟶V → (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × {(𝐹‘𝑞)}) × V)) |
23 | 21, 22 | ax-mp 5 |
. . . . . . . . . . 11
⊢ (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × {(𝐹‘𝑞)}) × V) |
24 | | fof 6697 |
. . . . . . . . . . . . . . 15
⊢ (𝐹:𝑉–onto→𝐵 → 𝐹:𝑉⟶𝐵) |
25 | 11, 24 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐹:𝑉⟶𝐵) |
26 | 25 | ffvelrnda 6970 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑞 ∈ 𝑉) → (𝐹‘𝑞) ∈ 𝐵) |
27 | 26 | snssd 4743 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑞 ∈ 𝑉) → {(𝐹‘𝑞)} ⊆ 𝐵) |
28 | | xpss2 5610 |
. . . . . . . . . . . 12
⊢ ({(𝐹‘𝑞)} ⊆ 𝐵 → (𝐾 × {(𝐹‘𝑞)}) ⊆ (𝐾 × 𝐵)) |
29 | | xpss1 5609 |
. . . . . . . . . . . 12
⊢ ((𝐾 × {(𝐹‘𝑞)}) ⊆ (𝐾 × 𝐵) → ((𝐾 × {(𝐹‘𝑞)}) × V) ⊆ ((𝐾 × 𝐵) × V)) |
30 | 27, 28, 29 | 3syl 18 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑞 ∈ 𝑉) → ((𝐾 × {(𝐹‘𝑞)}) × V) ⊆ ((𝐾 × 𝐵) × V)) |
31 | 23, 30 | sstrid 3933 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑞 ∈ 𝑉) → (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × V)) |
32 | 31 | ralrimiva 3104 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑞 ∈ 𝑉 (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × V)) |
33 | | iunss 4976 |
. . . . . . . . 9
⊢ (∪ 𝑞 ∈ 𝑉 (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × V) ↔ ∀𝑞 ∈ 𝑉 (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × V)) |
34 | 32, 33 | sylibr 233 |
. . . . . . . 8
⊢ (𝜑 → ∪ 𝑞 ∈ 𝑉 (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × V)) |
35 | 17, 34 | eqsstrd 3960 |
. . . . . . 7
⊢ (𝜑 → ∙ ⊆ ((𝐾 × 𝐵) × V)) |
36 | | dmss 5814 |
. . . . . . 7
⊢ ( ∙
⊆ ((𝐾 × 𝐵) × V) → dom ∙
⊆ dom ((𝐾 ×
𝐵) ×
V)) |
37 | 35, 36 | syl 17 |
. . . . . 6
⊢ (𝜑 → dom ∙ ⊆ dom ((𝐾 × 𝐵) × V)) |
38 | | vn0 4273 |
. . . . . . 7
⊢ V ≠
∅ |
39 | | dmxp 5841 |
. . . . . . 7
⊢ (V ≠
∅ → dom ((𝐾
× 𝐵) × V) =
(𝐾 × 𝐵)) |
40 | 38, 39 | ax-mp 5 |
. . . . . 6
⊢ dom
((𝐾 × 𝐵) × V) = (𝐾 × 𝐵) |
41 | 37, 40 | sseqtrdi 3972 |
. . . . 5
⊢ (𝜑 → dom ∙ ⊆ (𝐾 × 𝐵)) |
42 | | forn 6700 |
. . . . . . 7
⊢ (𝐹:𝑉–onto→𝐵 → ran 𝐹 = 𝐵) |
43 | 11, 42 | syl 17 |
. . . . . 6
⊢ (𝜑 → ran 𝐹 = 𝐵) |
44 | 43 | xpeq2d 5620 |
. . . . 5
⊢ (𝜑 → (𝐾 × ran 𝐹) = (𝐾 × 𝐵)) |
45 | 41, 44 | sseqtrrd 3963 |
. . . 4
⊢ (𝜑 → dom ∙ ⊆ (𝐾 × ran 𝐹)) |
46 | | df-br 5076 |
. . . . . . . . . 10
⊢
(〈𝑝, (𝐹‘𝑎)〉 ∙ 𝑤 ↔ 〈〈𝑝, (𝐹‘𝑎)〉, 𝑤〉 ∈ ∙ ) |
47 | 17 | eleq2d 2825 |
. . . . . . . . . . . 12
⊢ (𝜑 → (〈〈𝑝, (𝐹‘𝑎)〉, 𝑤〉 ∈ ∙ ↔
〈〈𝑝, (𝐹‘𝑎)〉, 𝑤〉 ∈ ∪ 𝑞 ∈ 𝑉 (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))))) |
48 | 47 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉)) → (〈〈𝑝, (𝐹‘𝑎)〉, 𝑤〉 ∈ ∙ ↔
〈〈𝑝, (𝐹‘𝑎)〉, 𝑤〉 ∈ ∪ 𝑞 ∈ 𝑉 (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))))) |
49 | | eliun 4929 |
. . . . . . . . . . . 12
⊢
(〈〈𝑝,
(𝐹‘𝑎)〉, 𝑤〉 ∈ ∪ 𝑞 ∈ 𝑉 (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ↔ ∃𝑞 ∈ 𝑉 〈〈𝑝, (𝐹‘𝑎)〉, 𝑤〉 ∈ (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))) |
50 | | df-3an 1088 |
. . . . . . . . . . . . . . 15
⊢ ((𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉) ↔ ((𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉) ∧ 𝑞 ∈ 𝑉)) |
51 | 1 | mpofun 7407 |
. . . . . . . . . . . . . . . . . . . 20
⊢ Fun
(𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) |
52 | | funopfv 6830 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (Fun
(𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → (〈〈𝑝, (𝐹‘𝑎)〉, 𝑤〉 ∈ (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → ((𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))‘〈𝑝, (𝐹‘𝑎)〉) = 𝑤)) |
53 | 51, 52 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢
(〈〈𝑝,
(𝐹‘𝑎)〉, 𝑤〉 ∈ (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → ((𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))‘〈𝑝, (𝐹‘𝑎)〉) = 𝑤) |
54 | | df-ov 7287 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑝(𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))(𝐹‘𝑎)) = ((𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))‘〈𝑝, (𝐹‘𝑎)〉) |
55 | | opex 5380 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
〈𝑝, (𝐹‘𝑎)〉 ∈ V |
56 | | vex 3437 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 𝑤 ∈ V |
57 | 55, 56 | opeldm 5819 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(〈〈𝑝,
(𝐹‘𝑎)〉, 𝑤〉 ∈ (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → 〈𝑝, (𝐹‘𝑎)〉 ∈ dom (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))) |
58 | 1, 2 | dmmpo 7920 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ dom
(𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) = (𝐾 × {(𝐹‘𝑞)}) |
59 | 57, 58 | eleqtrdi 2850 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(〈〈𝑝,
(𝐹‘𝑎)〉, 𝑤〉 ∈ (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → 〈𝑝, (𝐹‘𝑎)〉 ∈ (𝐾 × {(𝐹‘𝑞)})) |
60 | | opelxp 5626 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(〈𝑝, (𝐹‘𝑎)〉 ∈ (𝐾 × {(𝐹‘𝑞)}) ↔ (𝑝 ∈ 𝐾 ∧ (𝐹‘𝑎) ∈ {(𝐹‘𝑞)})) |
61 | 59, 60 | sylib 217 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(〈〈𝑝,
(𝐹‘𝑎)〉, 𝑤〉 ∈ (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → (𝑝 ∈ 𝐾 ∧ (𝐹‘𝑎) ∈ {(𝐹‘𝑞)})) |
62 | | fvoveq1 7307 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑧 = 𝑝 → (𝐹‘(𝑧 · 𝑞)) = (𝐹‘(𝑝 · 𝑞))) |
63 | | eqidd 2740 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 = (𝐹‘𝑎) → (𝐹‘(𝑝 · 𝑞)) = (𝐹‘(𝑝 · 𝑞))) |
64 | | fvoveq1 7307 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑝 = 𝑧 → (𝐹‘(𝑝 · 𝑞)) = (𝐹‘(𝑧 · 𝑞))) |
65 | | eqidd 2740 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 = 𝑦 → (𝐹‘(𝑧 · 𝑞)) = (𝐹‘(𝑧 · 𝑞))) |
66 | 64, 65 | cbvmpov 7379 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) = (𝑧 ∈ 𝐾, 𝑦 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑧 · 𝑞))) |
67 | 62, 63, 66, 2 | ovmpo 7442 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑝 ∈ 𝐾 ∧ (𝐹‘𝑎) ∈ {(𝐹‘𝑞)}) → (𝑝(𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))(𝐹‘𝑎)) = (𝐹‘(𝑝 · 𝑞))) |
68 | 61, 67 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(〈〈𝑝,
(𝐹‘𝑎)〉, 𝑤〉 ∈ (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → (𝑝(𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))(𝐹‘𝑎)) = (𝐹‘(𝑝 · 𝑞))) |
69 | 54, 68 | eqtr3id 2793 |
. . . . . . . . . . . . . . . . . . 19
⊢
(〈〈𝑝,
(𝐹‘𝑎)〉, 𝑤〉 ∈ (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → ((𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))‘〈𝑝, (𝐹‘𝑎)〉) = (𝐹‘(𝑝 · 𝑞))) |
70 | 53, 69 | eqtr3d 2781 |
. . . . . . . . . . . . . . . . . 18
⊢
(〈〈𝑝,
(𝐹‘𝑎)〉, 𝑤〉 ∈ (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → 𝑤 = (𝐹‘(𝑝 · 𝑞))) |
71 | 70 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) ∧ 〈〈𝑝, (𝐹‘𝑎)〉, 𝑤〉 ∈ (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))) → 𝑤 = (𝐹‘(𝑝 · 𝑞))) |
72 | | imasvscaf.e |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → ((𝐹‘𝑎) = (𝐹‘𝑞) → (𝐹‘(𝑝 · 𝑎)) = (𝐹‘(𝑝 · 𝑞)))) |
73 | | elsni 4579 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹‘𝑎) ∈ {(𝐹‘𝑞)} → (𝐹‘𝑎) = (𝐹‘𝑞)) |
74 | 61, 73 | simpl2im 504 |
. . . . . . . . . . . . . . . . . 18
⊢
(〈〈𝑝,
(𝐹‘𝑎)〉, 𝑤〉 ∈ (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → (𝐹‘𝑎) = (𝐹‘𝑞)) |
75 | 72, 74 | impel 506 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) ∧ 〈〈𝑝, (𝐹‘𝑎)〉, 𝑤〉 ∈ (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))) → (𝐹‘(𝑝 · 𝑎)) = (𝐹‘(𝑝 · 𝑞))) |
76 | 71, 75 | eqtr4d 2782 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) ∧ 〈〈𝑝, (𝐹‘𝑎)〉, 𝑤〉 ∈ (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))) → 𝑤 = (𝐹‘(𝑝 · 𝑎))) |
77 | 76 | ex 413 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (〈〈𝑝, (𝐹‘𝑎)〉, 𝑤〉 ∈ (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → 𝑤 = (𝐹‘(𝑝 · 𝑎)))) |
78 | 50, 77 | sylan2br 595 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉) ∧ 𝑞 ∈ 𝑉)) → (〈〈𝑝, (𝐹‘𝑎)〉, 𝑤〉 ∈ (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → 𝑤 = (𝐹‘(𝑝 · 𝑎)))) |
79 | 78 | anassrs 468 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉)) ∧ 𝑞 ∈ 𝑉) → (〈〈𝑝, (𝐹‘𝑎)〉, 𝑤〉 ∈ (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → 𝑤 = (𝐹‘(𝑝 · 𝑎)))) |
80 | 79 | rexlimdva 3214 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉)) → (∃𝑞 ∈ 𝑉 〈〈𝑝, (𝐹‘𝑎)〉, 𝑤〉 ∈ (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → 𝑤 = (𝐹‘(𝑝 · 𝑎)))) |
81 | 49, 80 | syl5bi 241 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉)) → (〈〈𝑝, (𝐹‘𝑎)〉, 𝑤〉 ∈ ∪ 𝑞 ∈ 𝑉 (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → 𝑤 = (𝐹‘(𝑝 · 𝑎)))) |
82 | 48, 81 | sylbid 239 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉)) → (〈〈𝑝, (𝐹‘𝑎)〉, 𝑤〉 ∈ ∙ → 𝑤 = (𝐹‘(𝑝 · 𝑎)))) |
83 | 46, 82 | syl5bi 241 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉)) → (〈𝑝, (𝐹‘𝑎)〉 ∙ 𝑤 → 𝑤 = (𝐹‘(𝑝 · 𝑎)))) |
84 | 83 | alrimiv 1931 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉)) → ∀𝑤(〈𝑝, (𝐹‘𝑎)〉 ∙ 𝑤 → 𝑤 = (𝐹‘(𝑝 · 𝑎)))) |
85 | | mo2icl 3650 |
. . . . . . . 8
⊢
(∀𝑤(〈𝑝, (𝐹‘𝑎)〉 ∙ 𝑤 → 𝑤 = (𝐹‘(𝑝 · 𝑎))) → ∃*𝑤〈𝑝, (𝐹‘𝑎)〉 ∙ 𝑤) |
86 | 84, 85 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉)) → ∃*𝑤〈𝑝, (𝐹‘𝑎)〉 ∙ 𝑤) |
87 | 86 | ralrimivva 3124 |
. . . . . 6
⊢ (𝜑 → ∀𝑝 ∈ 𝐾 ∀𝑎 ∈ 𝑉 ∃*𝑤〈𝑝, (𝐹‘𝑎)〉 ∙ 𝑤) |
88 | | fofn 6699 |
. . . . . . . 8
⊢ (𝐹:𝑉–onto→𝐵 → 𝐹 Fn 𝑉) |
89 | | opeq2 4806 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝐹‘𝑎) → 〈𝑝, 𝑦〉 = 〈𝑝, (𝐹‘𝑎)〉) |
90 | 89 | breq1d 5085 |
. . . . . . . . . 10
⊢ (𝑦 = (𝐹‘𝑎) → (〈𝑝, 𝑦〉 ∙ 𝑤 ↔ 〈𝑝, (𝐹‘𝑎)〉 ∙ 𝑤)) |
91 | 90 | mobidv 2550 |
. . . . . . . . 9
⊢ (𝑦 = (𝐹‘𝑎) → (∃*𝑤〈𝑝, 𝑦〉 ∙ 𝑤 ↔ ∃*𝑤〈𝑝, (𝐹‘𝑎)〉 ∙ 𝑤)) |
92 | 91 | ralrn 6973 |
. . . . . . . 8
⊢ (𝐹 Fn 𝑉 → (∀𝑦 ∈ ran 𝐹∃*𝑤〈𝑝, 𝑦〉 ∙ 𝑤 ↔ ∀𝑎 ∈ 𝑉 ∃*𝑤〈𝑝, (𝐹‘𝑎)〉 ∙ 𝑤)) |
93 | 11, 88, 92 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → (∀𝑦 ∈ ran 𝐹∃*𝑤〈𝑝, 𝑦〉 ∙ 𝑤 ↔ ∀𝑎 ∈ 𝑉 ∃*𝑤〈𝑝, (𝐹‘𝑎)〉 ∙ 𝑤)) |
94 | 93 | ralbidv 3113 |
. . . . . 6
⊢ (𝜑 → (∀𝑝 ∈ 𝐾 ∀𝑦 ∈ ran 𝐹∃*𝑤〈𝑝, 𝑦〉 ∙ 𝑤 ↔ ∀𝑝 ∈ 𝐾 ∀𝑎 ∈ 𝑉 ∃*𝑤〈𝑝, (𝐹‘𝑎)〉 ∙ 𝑤)) |
95 | 87, 94 | mpbird 256 |
. . . . 5
⊢ (𝜑 → ∀𝑝 ∈ 𝐾 ∀𝑦 ∈ ran 𝐹∃*𝑤〈𝑝, 𝑦〉 ∙ 𝑤) |
96 | | breq1 5078 |
. . . . . . 7
⊢ (𝑥 = 〈𝑝, 𝑦〉 → (𝑥 ∙ 𝑤 ↔ 〈𝑝, 𝑦〉 ∙ 𝑤)) |
97 | 96 | mobidv 2550 |
. . . . . 6
⊢ (𝑥 = 〈𝑝, 𝑦〉 → (∃*𝑤 𝑥 ∙ 𝑤 ↔ ∃*𝑤〈𝑝, 𝑦〉 ∙ 𝑤)) |
98 | 97 | ralxp 5753 |
. . . . 5
⊢
(∀𝑥 ∈
(𝐾 × ran 𝐹)∃*𝑤 𝑥 ∙ 𝑤 ↔ ∀𝑝 ∈ 𝐾 ∀𝑦 ∈ ran 𝐹∃*𝑤〈𝑝, 𝑦〉 ∙ 𝑤) |
99 | 95, 98 | sylibr 233 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ (𝐾 × ran 𝐹)∃*𝑤 𝑥 ∙ 𝑤) |
100 | | ssralv 3988 |
. . . 4
⊢ (dom
∙
⊆ (𝐾 × ran
𝐹) → (∀𝑥 ∈ (𝐾 × ran 𝐹)∃*𝑤 𝑥 ∙ 𝑤 → ∀𝑥 ∈ dom ∙ ∃*𝑤 𝑥 ∙ 𝑤)) |
101 | 45, 99, 100 | sylc 65 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ dom ∙ ∃*𝑤 𝑥 ∙ 𝑤) |
102 | | dffun7 6468 |
. . 3
⊢ (Fun
∙
↔ (Rel ∙ ∧ ∀𝑥 ∈ dom ∙ ∃*𝑤 𝑥 ∙ 𝑤)) |
103 | 19, 101, 102 | sylanbrc 583 |
. 2
⊢ (𝜑 → Fun ∙ ) |
104 | | eqimss2 3979 |
. . . . . . . . . . . . . . 15
⊢ ( ∙ =
∪ 𝑞 ∈ 𝑉 (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → ∪ 𝑞 ∈ 𝑉 (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ∙ ) |
105 | 17, 104 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∪ 𝑞 ∈ 𝑉 (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ∙ ) |
106 | | iunss 4976 |
. . . . . . . . . . . . . 14
⊢ (∪ 𝑞 ∈ 𝑉 (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ∙ ↔
∀𝑞 ∈ 𝑉 (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ∙ ) |
107 | 105, 106 | sylib 217 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑞 ∈ 𝑉 (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ∙ ) |
108 | 107 | r19.21bi 3135 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑞 ∈ 𝑉) → (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ∙ ) |
109 | 108 | adantrl 713 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑞 ∈ 𝑉)) → (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ∙ ) |
110 | | dmss 5814 |
. . . . . . . . . . 11
⊢ ((𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ∙ → dom (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ dom ∙ ) |
111 | 109, 110 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑞 ∈ 𝑉)) → dom (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ dom ∙ ) |
112 | 58, 111 | eqsstrrid 3971 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑞 ∈ 𝑉)) → (𝐾 × {(𝐹‘𝑞)}) ⊆ dom ∙ ) |
113 | | simprl 768 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑞 ∈ 𝑉)) → 𝑝 ∈ 𝐾) |
114 | | fvex 6796 |
. . . . . . . . . . 11
⊢ (𝐹‘𝑞) ∈ V |
115 | 114 | snid 4598 |
. . . . . . . . . 10
⊢ (𝐹‘𝑞) ∈ {(𝐹‘𝑞)} |
116 | | opelxpi 5627 |
. . . . . . . . . 10
⊢ ((𝑝 ∈ 𝐾 ∧ (𝐹‘𝑞) ∈ {(𝐹‘𝑞)}) → 〈𝑝, (𝐹‘𝑞)〉 ∈ (𝐾 × {(𝐹‘𝑞)})) |
117 | 113, 115,
116 | sylancl 586 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑞 ∈ 𝑉)) → 〈𝑝, (𝐹‘𝑞)〉 ∈ (𝐾 × {(𝐹‘𝑞)})) |
118 | 112, 117 | sseldd 3923 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑞 ∈ 𝑉)) → 〈𝑝, (𝐹‘𝑞)〉 ∈ dom ∙ ) |
119 | 118 | ralrimivva 3124 |
. . . . . . 7
⊢ (𝜑 → ∀𝑝 ∈ 𝐾 ∀𝑞 ∈ 𝑉 〈𝑝, (𝐹‘𝑞)〉 ∈ dom ∙ ) |
120 | | opeq2 4806 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝐹‘𝑞) → 〈𝑝, 𝑦〉 = 〈𝑝, (𝐹‘𝑞)〉) |
121 | 120 | eleq1d 2824 |
. . . . . . . . . 10
⊢ (𝑦 = (𝐹‘𝑞) → (〈𝑝, 𝑦〉 ∈ dom ∙ ↔ 〈𝑝, (𝐹‘𝑞)〉 ∈ dom ∙ )) |
122 | 121 | ralrn 6973 |
. . . . . . . . 9
⊢ (𝐹 Fn 𝑉 → (∀𝑦 ∈ ran 𝐹〈𝑝, 𝑦〉 ∈ dom ∙ ↔
∀𝑞 ∈ 𝑉 〈𝑝, (𝐹‘𝑞)〉 ∈ dom ∙ )) |
123 | 11, 88, 122 | 3syl 18 |
. . . . . . . 8
⊢ (𝜑 → (∀𝑦 ∈ ran 𝐹〈𝑝, 𝑦〉 ∈ dom ∙ ↔
∀𝑞 ∈ 𝑉 〈𝑝, (𝐹‘𝑞)〉 ∈ dom ∙ )) |
124 | 123 | ralbidv 3113 |
. . . . . . 7
⊢ (𝜑 → (∀𝑝 ∈ 𝐾 ∀𝑦 ∈ ran 𝐹〈𝑝, 𝑦〉 ∈ dom ∙ ↔
∀𝑝 ∈ 𝐾 ∀𝑞 ∈ 𝑉 〈𝑝, (𝐹‘𝑞)〉 ∈ dom ∙ )) |
125 | 119, 124 | mpbird 256 |
. . . . . 6
⊢ (𝜑 → ∀𝑝 ∈ 𝐾 ∀𝑦 ∈ ran 𝐹〈𝑝, 𝑦〉 ∈ dom ∙ ) |
126 | | eleq1 2827 |
. . . . . . 7
⊢ (𝑥 = 〈𝑝, 𝑦〉 → (𝑥 ∈ dom ∙ ↔ 〈𝑝, 𝑦〉 ∈ dom ∙ )) |
127 | 126 | ralxp 5753 |
. . . . . 6
⊢
(∀𝑥 ∈
(𝐾 × ran 𝐹)𝑥 ∈ dom ∙ ↔
∀𝑝 ∈ 𝐾 ∀𝑦 ∈ ran 𝐹〈𝑝, 𝑦〉 ∈ dom ∙ ) |
128 | 125, 127 | sylibr 233 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ (𝐾 × ran 𝐹)𝑥 ∈ dom ∙ ) |
129 | | dfss3 3910 |
. . . . 5
⊢ ((𝐾 × ran 𝐹) ⊆ dom ∙ ↔
∀𝑥 ∈ (𝐾 × ran 𝐹)𝑥 ∈ dom ∙ ) |
130 | 128, 129 | sylibr 233 |
. . . 4
⊢ (𝜑 → (𝐾 × ran 𝐹) ⊆ dom ∙ ) |
131 | 44, 130 | eqsstrrd 3961 |
. . 3
⊢ (𝜑 → (𝐾 × 𝐵) ⊆ dom ∙ ) |
132 | 41, 131 | eqssd 3939 |
. 2
⊢ (𝜑 → dom ∙ = (𝐾 × 𝐵)) |
133 | | df-fn 6440 |
. 2
⊢ ( ∙ Fn
(𝐾 × 𝐵) ↔ (Fun ∙ ∧ dom ∙ =
(𝐾 × 𝐵))) |
134 | 103, 132,
133 | sylanbrc 583 |
1
⊢ (𝜑 → ∙ Fn (𝐾 × 𝐵)) |