Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasvscafn Structured version   Visualization version   GIF version

Theorem imasvscafn 16810
 Description: The image structure's scalar multiplication is a function. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
imasvscaf.u (𝜑𝑈 = (𝐹s 𝑅))
imasvscaf.v (𝜑𝑉 = (Base‘𝑅))
imasvscaf.f (𝜑𝐹:𝑉onto𝐵)
imasvscaf.r (𝜑𝑅𝑍)
imasvscaf.g 𝐺 = (Scalar‘𝑅)
imasvscaf.k 𝐾 = (Base‘𝐺)
imasvscaf.q · = ( ·𝑠𝑅)
imasvscaf.s = ( ·𝑠𝑈)
imasvscaf.e ((𝜑 ∧ (𝑝𝐾𝑎𝑉𝑞𝑉)) → ((𝐹𝑎) = (𝐹𝑞) → (𝐹‘(𝑝 · 𝑎)) = (𝐹‘(𝑝 · 𝑞))))
Assertion
Ref Expression
imasvscafn (𝜑 Fn (𝐾 × 𝐵))
Distinct variable groups:   𝑝,𝑎,𝑞,𝐹   𝐾,𝑎,𝑝,𝑞   𝜑,𝑎,𝑝,𝑞   𝐵,𝑝,𝑞   𝑅,𝑝,𝑞   · ,𝑝,𝑞   ,𝑎,𝑝,𝑞   𝑉,𝑎,𝑝,𝑞
Allowed substitution hints:   𝐵(𝑎)   𝑅(𝑎)   · (𝑎)   𝑈(𝑞,𝑝,𝑎)   𝐺(𝑞,𝑝,𝑎)   𝑍(𝑞,𝑝,𝑎)

Proof of Theorem imasvscafn
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2824 . . . . . . . 8 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) = (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))
2 fvex 6674 . . . . . . . 8 (𝐹‘(𝑝 · 𝑞)) ∈ V
31, 2fnmpoi 7763 . . . . . . 7 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) Fn (𝐾 × {(𝐹𝑞)})
4 fnrel 6442 . . . . . . 7 ((𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) Fn (𝐾 × {(𝐹𝑞)}) → Rel (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))))
53, 4ax-mp 5 . . . . . 6 Rel (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))
65rgenw 3145 . . . . 5 𝑞𝑉 Rel (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))
7 reliun 5676 . . . . 5 (Rel 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ↔ ∀𝑞𝑉 Rel (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))))
86, 7mpbir 234 . . . 4 Rel 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))
9 imasvscaf.u . . . . . 6 (𝜑𝑈 = (𝐹s 𝑅))
10 imasvscaf.v . . . . . 6 (𝜑𝑉 = (Base‘𝑅))
11 imasvscaf.f . . . . . 6 (𝜑𝐹:𝑉onto𝐵)
12 imasvscaf.r . . . . . 6 (𝜑𝑅𝑍)
13 imasvscaf.g . . . . . 6 𝐺 = (Scalar‘𝑅)
14 imasvscaf.k . . . . . 6 𝐾 = (Base‘𝐺)
15 imasvscaf.q . . . . . 6 · = ( ·𝑠𝑅)
16 imasvscaf.s . . . . . 6 = ( ·𝑠𝑈)
179, 10, 11, 12, 13, 14, 15, 16imasvsca 16793 . . . . 5 (𝜑 = 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))))
1817releqd 5640 . . . 4 (𝜑 → (Rel ↔ Rel 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))))
198, 18mpbiri 261 . . 3 (𝜑 → Rel )
20 dffn2 6505 . . . . . . . . . . . . 13 ((𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) Fn (𝐾 × {(𝐹𝑞)}) ↔ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))):(𝐾 × {(𝐹𝑞)})⟶V)
213, 20mpbi 233 . . . . . . . . . . . 12 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))):(𝐾 × {(𝐹𝑞)})⟶V
22 fssxp 6524 . . . . . . . . . . . 12 ((𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))):(𝐾 × {(𝐹𝑞)})⟶V → (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × {(𝐹𝑞)}) × V))
2321, 22ax-mp 5 . . . . . . . . . . 11 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × {(𝐹𝑞)}) × V)
24 fof 6581 . . . . . . . . . . . . . . 15 (𝐹:𝑉onto𝐵𝐹:𝑉𝐵)
2511, 24syl 17 . . . . . . . . . . . . . 14 (𝜑𝐹:𝑉𝐵)
2625ffvelrnda 6842 . . . . . . . . . . . . 13 ((𝜑𝑞𝑉) → (𝐹𝑞) ∈ 𝐵)
2726snssd 4726 . . . . . . . . . . . 12 ((𝜑𝑞𝑉) → {(𝐹𝑞)} ⊆ 𝐵)
28 xpss2 5562 . . . . . . . . . . . 12 ({(𝐹𝑞)} ⊆ 𝐵 → (𝐾 × {(𝐹𝑞)}) ⊆ (𝐾 × 𝐵))
29 xpss1 5561 . . . . . . . . . . . 12 ((𝐾 × {(𝐹𝑞)}) ⊆ (𝐾 × 𝐵) → ((𝐾 × {(𝐹𝑞)}) × V) ⊆ ((𝐾 × 𝐵) × V))
3027, 28, 293syl 18 . . . . . . . . . . 11 ((𝜑𝑞𝑉) → ((𝐾 × {(𝐹𝑞)}) × V) ⊆ ((𝐾 × 𝐵) × V))
3123, 30sstrid 3964 . . . . . . . . . 10 ((𝜑𝑞𝑉) → (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × V))
3231ralrimiva 3177 . . . . . . . . 9 (𝜑 → ∀𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × V))
33 iunss 4955 . . . . . . . . 9 ( 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × V) ↔ ∀𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × V))
3432, 33sylibr 237 . . . . . . . 8 (𝜑 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × V))
3517, 34eqsstrd 3991 . . . . . . 7 (𝜑 ⊆ ((𝐾 × 𝐵) × V))
36 dmss 5758 . . . . . . 7 ( ⊆ ((𝐾 × 𝐵) × V) → dom ⊆ dom ((𝐾 × 𝐵) × V))
3735, 36syl 17 . . . . . 6 (𝜑 → dom ⊆ dom ((𝐾 × 𝐵) × V))
38 vn0 4287 . . . . . . 7 V ≠ ∅
39 dmxp 5786 . . . . . . 7 (V ≠ ∅ → dom ((𝐾 × 𝐵) × V) = (𝐾 × 𝐵))
4038, 39ax-mp 5 . . . . . 6 dom ((𝐾 × 𝐵) × V) = (𝐾 × 𝐵)
4137, 40sseqtrdi 4003 . . . . 5 (𝜑 → dom ⊆ (𝐾 × 𝐵))
42 forn 6584 . . . . . . 7 (𝐹:𝑉onto𝐵 → ran 𝐹 = 𝐵)
4311, 42syl 17 . . . . . 6 (𝜑 → ran 𝐹 = 𝐵)
4443xpeq2d 5572 . . . . 5 (𝜑 → (𝐾 × ran 𝐹) = (𝐾 × 𝐵))
4541, 44sseqtrrd 3994 . . . 4 (𝜑 → dom ⊆ (𝐾 × ran 𝐹))
46 df-br 5053 . . . . . . . . . 10 (⟨𝑝, (𝐹𝑎)⟩ 𝑤 ↔ ⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ )
4717eleq2d 2901 . . . . . . . . . . . 12 (𝜑 → (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ ↔ ⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))))
4847adantr 484 . . . . . . . . . . 11 ((𝜑 ∧ (𝑝𝐾𝑎𝑉)) → (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ ↔ ⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))))
49 eliun 4909 . . . . . . . . . . . 12 (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ↔ ∃𝑞𝑉 ⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))))
50 df-3an 1086 . . . . . . . . . . . . . . 15 ((𝑝𝐾𝑎𝑉𝑞𝑉) ↔ ((𝑝𝐾𝑎𝑉) ∧ 𝑞𝑉))
511mpofun 7269 . . . . . . . . . . . . . . . . . . . 20 Fun (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))
52 funopfv 6708 . . . . . . . . . . . . . . . . . . . 20 (Fun (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → ((𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))‘⟨𝑝, (𝐹𝑎)⟩) = 𝑤))
5351, 52ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → ((𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))‘⟨𝑝, (𝐹𝑎)⟩) = 𝑤)
54 df-ov 7152 . . . . . . . . . . . . . . . . . . . 20 (𝑝(𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))(𝐹𝑎)) = ((𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))‘⟨𝑝, (𝐹𝑎)⟩)
55 opex 5343 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑝, (𝐹𝑎)⟩ ∈ V
56 vex 3483 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑤 ∈ V
5755, 56opeldm 5763 . . . . . . . . . . . . . . . . . . . . . . 23 (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → ⟨𝑝, (𝐹𝑎)⟩ ∈ dom (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))))
581, 2dmmpo 7764 . . . . . . . . . . . . . . . . . . . . . . 23 dom (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) = (𝐾 × {(𝐹𝑞)})
5957, 58eleqtrdi 2926 . . . . . . . . . . . . . . . . . . . . . 22 (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → ⟨𝑝, (𝐹𝑎)⟩ ∈ (𝐾 × {(𝐹𝑞)}))
60 opelxp 5578 . . . . . . . . . . . . . . . . . . . . . 22 (⟨𝑝, (𝐹𝑎)⟩ ∈ (𝐾 × {(𝐹𝑞)}) ↔ (𝑝𝐾 ∧ (𝐹𝑎) ∈ {(𝐹𝑞)}))
6159, 60sylib 221 . . . . . . . . . . . . . . . . . . . . 21 (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → (𝑝𝐾 ∧ (𝐹𝑎) ∈ {(𝐹𝑞)}))
62 fvoveq1 7172 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = 𝑝 → (𝐹‘(𝑧 · 𝑞)) = (𝐹‘(𝑝 · 𝑞)))
63 eqidd 2825 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = (𝐹𝑎) → (𝐹‘(𝑝 · 𝑞)) = (𝐹‘(𝑝 · 𝑞)))
64 fvoveq1 7172 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑝 = 𝑧 → (𝐹‘(𝑝 · 𝑞)) = (𝐹‘(𝑧 · 𝑞)))
65 eqidd 2825 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑦 → (𝐹‘(𝑧 · 𝑞)) = (𝐹‘(𝑧 · 𝑞)))
6664, 65cbvmpov 7242 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) = (𝑧𝐾, 𝑦 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑧 · 𝑞)))
6762, 63, 66, 2ovmpo 7303 . . . . . . . . . . . . . . . . . . . . 21 ((𝑝𝐾 ∧ (𝐹𝑎) ∈ {(𝐹𝑞)}) → (𝑝(𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))(𝐹𝑎)) = (𝐹‘(𝑝 · 𝑞)))
6861, 67syl 17 . . . . . . . . . . . . . . . . . . . 20 (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → (𝑝(𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))(𝐹𝑎)) = (𝐹‘(𝑝 · 𝑞)))
6954, 68syl5eqr 2873 . . . . . . . . . . . . . . . . . . 19 (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → ((𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))‘⟨𝑝, (𝐹𝑎)⟩) = (𝐹‘(𝑝 · 𝑞)))
7053, 69eqtr3d 2861 . . . . . . . . . . . . . . . . . 18 (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → 𝑤 = (𝐹‘(𝑝 · 𝑞)))
7170adantl 485 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑝𝐾𝑎𝑉𝑞𝑉)) ∧ ⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))) → 𝑤 = (𝐹‘(𝑝 · 𝑞)))
72 imasvscaf.e . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑝𝐾𝑎𝑉𝑞𝑉)) → ((𝐹𝑎) = (𝐹𝑞) → (𝐹‘(𝑝 · 𝑎)) = (𝐹‘(𝑝 · 𝑞))))
73 elsni 4567 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑎) ∈ {(𝐹𝑞)} → (𝐹𝑎) = (𝐹𝑞))
7461, 73simpl2im 507 . . . . . . . . . . . . . . . . . 18 (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → (𝐹𝑎) = (𝐹𝑞))
7572, 74impel 509 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑝𝐾𝑎𝑉𝑞𝑉)) ∧ ⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))) → (𝐹‘(𝑝 · 𝑎)) = (𝐹‘(𝑝 · 𝑞)))
7671, 75eqtr4d 2862 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑝𝐾𝑎𝑉𝑞𝑉)) ∧ ⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))) → 𝑤 = (𝐹‘(𝑝 · 𝑎)))
7776ex 416 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑝𝐾𝑎𝑉𝑞𝑉)) → (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → 𝑤 = (𝐹‘(𝑝 · 𝑎))))
7850, 77sylan2br 597 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑝𝐾𝑎𝑉) ∧ 𝑞𝑉)) → (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → 𝑤 = (𝐹‘(𝑝 · 𝑎))))
7978anassrs 471 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑝𝐾𝑎𝑉)) ∧ 𝑞𝑉) → (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → 𝑤 = (𝐹‘(𝑝 · 𝑎))))
8079rexlimdva 3276 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑝𝐾𝑎𝑉)) → (∃𝑞𝑉 ⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → 𝑤 = (𝐹‘(𝑝 · 𝑎))))
8149, 80syl5bi 245 . . . . . . . . . . 11 ((𝜑 ∧ (𝑝𝐾𝑎𝑉)) → (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → 𝑤 = (𝐹‘(𝑝 · 𝑎))))
8248, 81sylbid 243 . . . . . . . . . 10 ((𝜑 ∧ (𝑝𝐾𝑎𝑉)) → (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ 𝑤 = (𝐹‘(𝑝 · 𝑎))))
8346, 82syl5bi 245 . . . . . . . . 9 ((𝜑 ∧ (𝑝𝐾𝑎𝑉)) → (⟨𝑝, (𝐹𝑎)⟩ 𝑤𝑤 = (𝐹‘(𝑝 · 𝑎))))
8483alrimiv 1929 . . . . . . . 8 ((𝜑 ∧ (𝑝𝐾𝑎𝑉)) → ∀𝑤(⟨𝑝, (𝐹𝑎)⟩ 𝑤𝑤 = (𝐹‘(𝑝 · 𝑎))))
85 mo2icl 3691 . . . . . . . 8 (∀𝑤(⟨𝑝, (𝐹𝑎)⟩ 𝑤𝑤 = (𝐹‘(𝑝 · 𝑎))) → ∃*𝑤𝑝, (𝐹𝑎)⟩ 𝑤)
8684, 85syl 17 . . . . . . 7 ((𝜑 ∧ (𝑝𝐾𝑎𝑉)) → ∃*𝑤𝑝, (𝐹𝑎)⟩ 𝑤)
8786ralrimivva 3186 . . . . . 6 (𝜑 → ∀𝑝𝐾𝑎𝑉 ∃*𝑤𝑝, (𝐹𝑎)⟩ 𝑤)
88 fofn 6583 . . . . . . . 8 (𝐹:𝑉onto𝐵𝐹 Fn 𝑉)
89 opeq2 4789 . . . . . . . . . . 11 (𝑦 = (𝐹𝑎) → ⟨𝑝, 𝑦⟩ = ⟨𝑝, (𝐹𝑎)⟩)
9089breq1d 5062 . . . . . . . . . 10 (𝑦 = (𝐹𝑎) → (⟨𝑝, 𝑦 𝑤 ↔ ⟨𝑝, (𝐹𝑎)⟩ 𝑤))
9190mobidv 2634 . . . . . . . . 9 (𝑦 = (𝐹𝑎) → (∃*𝑤𝑝, 𝑦 𝑤 ↔ ∃*𝑤𝑝, (𝐹𝑎)⟩ 𝑤))
9291ralrn 6845 . . . . . . . 8 (𝐹 Fn 𝑉 → (∀𝑦 ∈ ran 𝐹∃*𝑤𝑝, 𝑦 𝑤 ↔ ∀𝑎𝑉 ∃*𝑤𝑝, (𝐹𝑎)⟩ 𝑤))
9311, 88, 923syl 18 . . . . . . 7 (𝜑 → (∀𝑦 ∈ ran 𝐹∃*𝑤𝑝, 𝑦 𝑤 ↔ ∀𝑎𝑉 ∃*𝑤𝑝, (𝐹𝑎)⟩ 𝑤))
9493ralbidv 3192 . . . . . 6 (𝜑 → (∀𝑝𝐾𝑦 ∈ ran 𝐹∃*𝑤𝑝, 𝑦 𝑤 ↔ ∀𝑝𝐾𝑎𝑉 ∃*𝑤𝑝, (𝐹𝑎)⟩ 𝑤))
9587, 94mpbird 260 . . . . 5 (𝜑 → ∀𝑝𝐾𝑦 ∈ ran 𝐹∃*𝑤𝑝, 𝑦 𝑤)
96 breq1 5055 . . . . . . 7 (𝑥 = ⟨𝑝, 𝑦⟩ → (𝑥 𝑤 ↔ ⟨𝑝, 𝑦 𝑤))
9796mobidv 2634 . . . . . 6 (𝑥 = ⟨𝑝, 𝑦⟩ → (∃*𝑤 𝑥 𝑤 ↔ ∃*𝑤𝑝, 𝑦 𝑤))
9897ralxp 5699 . . . . 5 (∀𝑥 ∈ (𝐾 × ran 𝐹)∃*𝑤 𝑥 𝑤 ↔ ∀𝑝𝐾𝑦 ∈ ran 𝐹∃*𝑤𝑝, 𝑦 𝑤)
9995, 98sylibr 237 . . . 4 (𝜑 → ∀𝑥 ∈ (𝐾 × ran 𝐹)∃*𝑤 𝑥 𝑤)
100 ssralv 4019 . . . 4 (dom ⊆ (𝐾 × ran 𝐹) → (∀𝑥 ∈ (𝐾 × ran 𝐹)∃*𝑤 𝑥 𝑤 → ∀𝑥 ∈ dom ∃*𝑤 𝑥 𝑤))
10145, 99, 100sylc 65 . . 3 (𝜑 → ∀𝑥 ∈ dom ∃*𝑤 𝑥 𝑤)
102 dffun7 6370 . . 3 (Fun ↔ (Rel ∧ ∀𝑥 ∈ dom ∃*𝑤 𝑥 𝑤))
10319, 101, 102sylanbrc 586 . 2 (𝜑 → Fun )
104 eqimss2 4010 . . . . . . . . . . . . . . 15 ( = 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ )
10517, 104syl 17 . . . . . . . . . . . . . 14 (𝜑 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ )
106 iunss 4955 . . . . . . . . . . . . . 14 ( 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ↔ ∀𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ )
107105, 106sylib 221 . . . . . . . . . . . . 13 (𝜑 → ∀𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ )
108107r19.21bi 3203 . . . . . . . . . . . 12 ((𝜑𝑞𝑉) → (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ )
109108adantrl 715 . . . . . . . . . . 11 ((𝜑 ∧ (𝑝𝐾𝑞𝑉)) → (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ )
110 dmss 5758 . . . . . . . . . . 11 ((𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ → dom (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ dom )
111109, 110syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑝𝐾𝑞𝑉)) → dom (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ dom )
11258, 111eqsstrrid 4002 . . . . . . . . 9 ((𝜑 ∧ (𝑝𝐾𝑞𝑉)) → (𝐾 × {(𝐹𝑞)}) ⊆ dom )
113 simprl 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑝𝐾𝑞𝑉)) → 𝑝𝐾)
114 fvex 6674 . . . . . . . . . . 11 (𝐹𝑞) ∈ V
115114snid 4586 . . . . . . . . . 10 (𝐹𝑞) ∈ {(𝐹𝑞)}
116 opelxpi 5579 . . . . . . . . . 10 ((𝑝𝐾 ∧ (𝐹𝑞) ∈ {(𝐹𝑞)}) → ⟨𝑝, (𝐹𝑞)⟩ ∈ (𝐾 × {(𝐹𝑞)}))
117113, 115, 116sylancl 589 . . . . . . . . 9 ((𝜑 ∧ (𝑝𝐾𝑞𝑉)) → ⟨𝑝, (𝐹𝑞)⟩ ∈ (𝐾 × {(𝐹𝑞)}))
118112, 117sseldd 3954 . . . . . . . 8 ((𝜑 ∧ (𝑝𝐾𝑞𝑉)) → ⟨𝑝, (𝐹𝑞)⟩ ∈ dom )
119118ralrimivva 3186 . . . . . . 7 (𝜑 → ∀𝑝𝐾𝑞𝑉𝑝, (𝐹𝑞)⟩ ∈ dom )
120 opeq2 4789 . . . . . . . . . . 11 (𝑦 = (𝐹𝑞) → ⟨𝑝, 𝑦⟩ = ⟨𝑝, (𝐹𝑞)⟩)
121120eleq1d 2900 . . . . . . . . . 10 (𝑦 = (𝐹𝑞) → (⟨𝑝, 𝑦⟩ ∈ dom ↔ ⟨𝑝, (𝐹𝑞)⟩ ∈ dom ))
122121ralrn 6845 . . . . . . . . 9 (𝐹 Fn 𝑉 → (∀𝑦 ∈ ran 𝐹𝑝, 𝑦⟩ ∈ dom ↔ ∀𝑞𝑉𝑝, (𝐹𝑞)⟩ ∈ dom ))
12311, 88, 1223syl 18 . . . . . . . 8 (𝜑 → (∀𝑦 ∈ ran 𝐹𝑝, 𝑦⟩ ∈ dom ↔ ∀𝑞𝑉𝑝, (𝐹𝑞)⟩ ∈ dom ))
124123ralbidv 3192 . . . . . . 7 (𝜑 → (∀𝑝𝐾𝑦 ∈ ran 𝐹𝑝, 𝑦⟩ ∈ dom ↔ ∀𝑝𝐾𝑞𝑉𝑝, (𝐹𝑞)⟩ ∈ dom ))
125119, 124mpbird 260 . . . . . 6 (𝜑 → ∀𝑝𝐾𝑦 ∈ ran 𝐹𝑝, 𝑦⟩ ∈ dom )
126 eleq1 2903 . . . . . . 7 (𝑥 = ⟨𝑝, 𝑦⟩ → (𝑥 ∈ dom ↔ ⟨𝑝, 𝑦⟩ ∈ dom ))
127126ralxp 5699 . . . . . 6 (∀𝑥 ∈ (𝐾 × ran 𝐹)𝑥 ∈ dom ↔ ∀𝑝𝐾𝑦 ∈ ran 𝐹𝑝, 𝑦⟩ ∈ dom )
128125, 127sylibr 237 . . . . 5 (𝜑 → ∀𝑥 ∈ (𝐾 × ran 𝐹)𝑥 ∈ dom )
129 dfss3 3941 . . . . 5 ((𝐾 × ran 𝐹) ⊆ dom ↔ ∀𝑥 ∈ (𝐾 × ran 𝐹)𝑥 ∈ dom )
130128, 129sylibr 237 . . . 4 (𝜑 → (𝐾 × ran 𝐹) ⊆ dom )
13144, 130eqsstrrd 3992 . . 3 (𝜑 → (𝐾 × 𝐵) ⊆ dom )
13241, 131eqssd 3970 . 2 (𝜑 → dom = (𝐾 × 𝐵))
133 df-fn 6346 . 2 ( Fn (𝐾 × 𝐵) ↔ (Fun ∧ dom = (𝐾 × 𝐵)))
134103, 132, 133sylanbrc 586 1 (𝜑 Fn (𝐾 × 𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084  ∀wal 1536   = wceq 1538   ∈ wcel 2115  ∃*wmo 2622   ≠ wne 3014  ∀wral 3133  ∃wrex 3134  Vcvv 3480   ⊆ wss 3919  ∅c0 4276  {csn 4550  ⟨cop 4556  ∪ ciun 4905   class class class wbr 5052   × cxp 5540  dom cdm 5542  ran crn 5543  Rel wrel 5547  Fun wfun 6337   Fn wfn 6338  ⟶wf 6339  –onto→wfo 6341  ‘cfv 6343  (class class class)co 7149   ∈ cmpo 7151  Basecbs 16483  Scalarcsca 16568   ·𝑠 cvsca 16569   “s cimas 16777 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-oadd 8102  df-er 8285  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-sup 8903  df-inf 8904  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-nn 11635  df-2 11697  df-3 11698  df-4 11699  df-5 11700  df-6 11701  df-7 11702  df-8 11703  df-9 11704  df-n0 11895  df-z 11979  df-dec 12096  df-uz 12241  df-fz 12895  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-plusg 16578  df-mulr 16579  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-imas 16781 This theorem is referenced by:  imasvscaval  16811  imasvscaf  16812
 Copyright terms: Public domain W3C validator