MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasvscafn Structured version   Visualization version   GIF version

Theorem imasvscafn 17584
Description: The image structure's scalar multiplication is a function. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
imasvscaf.u (𝜑𝑈 = (𝐹s 𝑅))
imasvscaf.v (𝜑𝑉 = (Base‘𝑅))
imasvscaf.f (𝜑𝐹:𝑉onto𝐵)
imasvscaf.r (𝜑𝑅𝑍)
imasvscaf.g 𝐺 = (Scalar‘𝑅)
imasvscaf.k 𝐾 = (Base‘𝐺)
imasvscaf.q · = ( ·𝑠𝑅)
imasvscaf.s = ( ·𝑠𝑈)
imasvscaf.e ((𝜑 ∧ (𝑝𝐾𝑎𝑉𝑞𝑉)) → ((𝐹𝑎) = (𝐹𝑞) → (𝐹‘(𝑝 · 𝑎)) = (𝐹‘(𝑝 · 𝑞))))
Assertion
Ref Expression
imasvscafn (𝜑 Fn (𝐾 × 𝐵))
Distinct variable groups:   𝑝,𝑎,𝑞,𝐹   𝐾,𝑎,𝑝,𝑞   𝜑,𝑎,𝑝,𝑞   𝐵,𝑝,𝑞   𝑅,𝑝,𝑞   · ,𝑝,𝑞   ,𝑎,𝑝,𝑞   𝑉,𝑎,𝑝,𝑞
Allowed substitution hints:   𝐵(𝑎)   𝑅(𝑎)   · (𝑎)   𝑈(𝑞,𝑝,𝑎)   𝐺(𝑞,𝑝,𝑎)   𝑍(𝑞,𝑝,𝑎)

Proof of Theorem imasvscafn
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . . . . . . 8 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) = (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))
2 fvex 6920 . . . . . . . 8 (𝐹‘(𝑝 · 𝑞)) ∈ V
31, 2fnmpoi 8094 . . . . . . 7 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) Fn (𝐾 × {(𝐹𝑞)})
4 fnrel 6671 . . . . . . 7 ((𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) Fn (𝐾 × {(𝐹𝑞)}) → Rel (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))))
53, 4ax-mp 5 . . . . . 6 Rel (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))
65rgenw 3063 . . . . 5 𝑞𝑉 Rel (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))
7 reliun 5829 . . . . 5 (Rel 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ↔ ∀𝑞𝑉 Rel (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))))
86, 7mpbir 231 . . . 4 Rel 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))
9 imasvscaf.u . . . . . 6 (𝜑𝑈 = (𝐹s 𝑅))
10 imasvscaf.v . . . . . 6 (𝜑𝑉 = (Base‘𝑅))
11 imasvscaf.f . . . . . 6 (𝜑𝐹:𝑉onto𝐵)
12 imasvscaf.r . . . . . 6 (𝜑𝑅𝑍)
13 imasvscaf.g . . . . . 6 𝐺 = (Scalar‘𝑅)
14 imasvscaf.k . . . . . 6 𝐾 = (Base‘𝐺)
15 imasvscaf.q . . . . . 6 · = ( ·𝑠𝑅)
16 imasvscaf.s . . . . . 6 = ( ·𝑠𝑈)
179, 10, 11, 12, 13, 14, 15, 16imasvsca 17567 . . . . 5 (𝜑 = 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))))
1817releqd 5791 . . . 4 (𝜑 → (Rel ↔ Rel 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))))
198, 18mpbiri 258 . . 3 (𝜑 → Rel )
20 dffn2 6739 . . . . . . . . . . . . 13 ((𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) Fn (𝐾 × {(𝐹𝑞)}) ↔ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))):(𝐾 × {(𝐹𝑞)})⟶V)
213, 20mpbi 230 . . . . . . . . . . . 12 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))):(𝐾 × {(𝐹𝑞)})⟶V
22 fssxp 6764 . . . . . . . . . . . 12 ((𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))):(𝐾 × {(𝐹𝑞)})⟶V → (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × {(𝐹𝑞)}) × V))
2321, 22ax-mp 5 . . . . . . . . . . 11 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × {(𝐹𝑞)}) × V)
24 fof 6821 . . . . . . . . . . . . . . 15 (𝐹:𝑉onto𝐵𝐹:𝑉𝐵)
2511, 24syl 17 . . . . . . . . . . . . . 14 (𝜑𝐹:𝑉𝐵)
2625ffvelcdmda 7104 . . . . . . . . . . . . 13 ((𝜑𝑞𝑉) → (𝐹𝑞) ∈ 𝐵)
2726snssd 4814 . . . . . . . . . . . 12 ((𝜑𝑞𝑉) → {(𝐹𝑞)} ⊆ 𝐵)
28 xpss2 5709 . . . . . . . . . . . 12 ({(𝐹𝑞)} ⊆ 𝐵 → (𝐾 × {(𝐹𝑞)}) ⊆ (𝐾 × 𝐵))
29 xpss1 5708 . . . . . . . . . . . 12 ((𝐾 × {(𝐹𝑞)}) ⊆ (𝐾 × 𝐵) → ((𝐾 × {(𝐹𝑞)}) × V) ⊆ ((𝐾 × 𝐵) × V))
3027, 28, 293syl 18 . . . . . . . . . . 11 ((𝜑𝑞𝑉) → ((𝐾 × {(𝐹𝑞)}) × V) ⊆ ((𝐾 × 𝐵) × V))
3123, 30sstrid 4007 . . . . . . . . . 10 ((𝜑𝑞𝑉) → (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × V))
3231ralrimiva 3144 . . . . . . . . 9 (𝜑 → ∀𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × V))
33 iunss 5050 . . . . . . . . 9 ( 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × V) ↔ ∀𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × V))
3432, 33sylibr 234 . . . . . . . 8 (𝜑 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × V))
3517, 34eqsstrd 4034 . . . . . . 7 (𝜑 ⊆ ((𝐾 × 𝐵) × V))
36 dmss 5916 . . . . . . 7 ( ⊆ ((𝐾 × 𝐵) × V) → dom ⊆ dom ((𝐾 × 𝐵) × V))
3735, 36syl 17 . . . . . 6 (𝜑 → dom ⊆ dom ((𝐾 × 𝐵) × V))
38 vn0 4351 . . . . . . 7 V ≠ ∅
39 dmxp 5942 . . . . . . 7 (V ≠ ∅ → dom ((𝐾 × 𝐵) × V) = (𝐾 × 𝐵))
4038, 39ax-mp 5 . . . . . 6 dom ((𝐾 × 𝐵) × V) = (𝐾 × 𝐵)
4137, 40sseqtrdi 4046 . . . . 5 (𝜑 → dom ⊆ (𝐾 × 𝐵))
42 forn 6824 . . . . . . 7 (𝐹:𝑉onto𝐵 → ran 𝐹 = 𝐵)
4311, 42syl 17 . . . . . 6 (𝜑 → ran 𝐹 = 𝐵)
4443xpeq2d 5719 . . . . 5 (𝜑 → (𝐾 × ran 𝐹) = (𝐾 × 𝐵))
4541, 44sseqtrrd 4037 . . . 4 (𝜑 → dom ⊆ (𝐾 × ran 𝐹))
46 df-br 5149 . . . . . . . . . 10 (⟨𝑝, (𝐹𝑎)⟩ 𝑤 ↔ ⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ )
4717eleq2d 2825 . . . . . . . . . . . 12 (𝜑 → (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ ↔ ⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))))
4847adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑝𝐾𝑎𝑉)) → (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ ↔ ⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))))
49 eliun 5000 . . . . . . . . . . . 12 (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ↔ ∃𝑞𝑉 ⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))))
50 df-3an 1088 . . . . . . . . . . . . . . 15 ((𝑝𝐾𝑎𝑉𝑞𝑉) ↔ ((𝑝𝐾𝑎𝑉) ∧ 𝑞𝑉))
511mpofun 7557 . . . . . . . . . . . . . . . . . . . 20 Fun (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))
52 funopfv 6959 . . . . . . . . . . . . . . . . . . . 20 (Fun (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → ((𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))‘⟨𝑝, (𝐹𝑎)⟩) = 𝑤))
5351, 52ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → ((𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))‘⟨𝑝, (𝐹𝑎)⟩) = 𝑤)
54 df-ov 7434 . . . . . . . . . . . . . . . . . . . 20 (𝑝(𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))(𝐹𝑎)) = ((𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))‘⟨𝑝, (𝐹𝑎)⟩)
55 opex 5475 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑝, (𝐹𝑎)⟩ ∈ V
56 vex 3482 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑤 ∈ V
5755, 56opeldm 5921 . . . . . . . . . . . . . . . . . . . . . . 23 (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → ⟨𝑝, (𝐹𝑎)⟩ ∈ dom (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))))
581, 2dmmpo 8095 . . . . . . . . . . . . . . . . . . . . . . 23 dom (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) = (𝐾 × {(𝐹𝑞)})
5957, 58eleqtrdi 2849 . . . . . . . . . . . . . . . . . . . . . 22 (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → ⟨𝑝, (𝐹𝑎)⟩ ∈ (𝐾 × {(𝐹𝑞)}))
60 opelxp 5725 . . . . . . . . . . . . . . . . . . . . . 22 (⟨𝑝, (𝐹𝑎)⟩ ∈ (𝐾 × {(𝐹𝑞)}) ↔ (𝑝𝐾 ∧ (𝐹𝑎) ∈ {(𝐹𝑞)}))
6159, 60sylib 218 . . . . . . . . . . . . . . . . . . . . 21 (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → (𝑝𝐾 ∧ (𝐹𝑎) ∈ {(𝐹𝑞)}))
62 fvoveq1 7454 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = 𝑝 → (𝐹‘(𝑧 · 𝑞)) = (𝐹‘(𝑝 · 𝑞)))
63 eqidd 2736 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = (𝐹𝑎) → (𝐹‘(𝑝 · 𝑞)) = (𝐹‘(𝑝 · 𝑞)))
64 fvoveq1 7454 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑝 = 𝑧 → (𝐹‘(𝑝 · 𝑞)) = (𝐹‘(𝑧 · 𝑞)))
65 eqidd 2736 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑦 → (𝐹‘(𝑧 · 𝑞)) = (𝐹‘(𝑧 · 𝑞)))
6664, 65cbvmpov 7528 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) = (𝑧𝐾, 𝑦 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑧 · 𝑞)))
6762, 63, 66, 2ovmpo 7593 . . . . . . . . . . . . . . . . . . . . 21 ((𝑝𝐾 ∧ (𝐹𝑎) ∈ {(𝐹𝑞)}) → (𝑝(𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))(𝐹𝑎)) = (𝐹‘(𝑝 · 𝑞)))
6861, 67syl 17 . . . . . . . . . . . . . . . . . . . 20 (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → (𝑝(𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))(𝐹𝑎)) = (𝐹‘(𝑝 · 𝑞)))
6954, 68eqtr3id 2789 . . . . . . . . . . . . . . . . . . 19 (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → ((𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))‘⟨𝑝, (𝐹𝑎)⟩) = (𝐹‘(𝑝 · 𝑞)))
7053, 69eqtr3d 2777 . . . . . . . . . . . . . . . . . 18 (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → 𝑤 = (𝐹‘(𝑝 · 𝑞)))
7170adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑝𝐾𝑎𝑉𝑞𝑉)) ∧ ⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))) → 𝑤 = (𝐹‘(𝑝 · 𝑞)))
72 imasvscaf.e . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑝𝐾𝑎𝑉𝑞𝑉)) → ((𝐹𝑎) = (𝐹𝑞) → (𝐹‘(𝑝 · 𝑎)) = (𝐹‘(𝑝 · 𝑞))))
73 elsni 4648 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑎) ∈ {(𝐹𝑞)} → (𝐹𝑎) = (𝐹𝑞))
7461, 73simpl2im 503 . . . . . . . . . . . . . . . . . 18 (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → (𝐹𝑎) = (𝐹𝑞))
7572, 74impel 505 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑝𝐾𝑎𝑉𝑞𝑉)) ∧ ⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))) → (𝐹‘(𝑝 · 𝑎)) = (𝐹‘(𝑝 · 𝑞)))
7671, 75eqtr4d 2778 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑝𝐾𝑎𝑉𝑞𝑉)) ∧ ⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))) → 𝑤 = (𝐹‘(𝑝 · 𝑎)))
7776ex 412 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑝𝐾𝑎𝑉𝑞𝑉)) → (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → 𝑤 = (𝐹‘(𝑝 · 𝑎))))
7850, 77sylan2br 595 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑝𝐾𝑎𝑉) ∧ 𝑞𝑉)) → (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → 𝑤 = (𝐹‘(𝑝 · 𝑎))))
7978anassrs 467 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑝𝐾𝑎𝑉)) ∧ 𝑞𝑉) → (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → 𝑤 = (𝐹‘(𝑝 · 𝑎))))
8079rexlimdva 3153 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑝𝐾𝑎𝑉)) → (∃𝑞𝑉 ⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → 𝑤 = (𝐹‘(𝑝 · 𝑎))))
8149, 80biimtrid 242 . . . . . . . . . . 11 ((𝜑 ∧ (𝑝𝐾𝑎𝑉)) → (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → 𝑤 = (𝐹‘(𝑝 · 𝑎))))
8248, 81sylbid 240 . . . . . . . . . 10 ((𝜑 ∧ (𝑝𝐾𝑎𝑉)) → (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ 𝑤 = (𝐹‘(𝑝 · 𝑎))))
8346, 82biimtrid 242 . . . . . . . . 9 ((𝜑 ∧ (𝑝𝐾𝑎𝑉)) → (⟨𝑝, (𝐹𝑎)⟩ 𝑤𝑤 = (𝐹‘(𝑝 · 𝑎))))
8483alrimiv 1925 . . . . . . . 8 ((𝜑 ∧ (𝑝𝐾𝑎𝑉)) → ∀𝑤(⟨𝑝, (𝐹𝑎)⟩ 𝑤𝑤 = (𝐹‘(𝑝 · 𝑎))))
85 mo2icl 3723 . . . . . . . 8 (∀𝑤(⟨𝑝, (𝐹𝑎)⟩ 𝑤𝑤 = (𝐹‘(𝑝 · 𝑎))) → ∃*𝑤𝑝, (𝐹𝑎)⟩ 𝑤)
8684, 85syl 17 . . . . . . 7 ((𝜑 ∧ (𝑝𝐾𝑎𝑉)) → ∃*𝑤𝑝, (𝐹𝑎)⟩ 𝑤)
8786ralrimivva 3200 . . . . . 6 (𝜑 → ∀𝑝𝐾𝑎𝑉 ∃*𝑤𝑝, (𝐹𝑎)⟩ 𝑤)
88 fofn 6823 . . . . . . . 8 (𝐹:𝑉onto𝐵𝐹 Fn 𝑉)
89 opeq2 4879 . . . . . . . . . . 11 (𝑦 = (𝐹𝑎) → ⟨𝑝, 𝑦⟩ = ⟨𝑝, (𝐹𝑎)⟩)
9089breq1d 5158 . . . . . . . . . 10 (𝑦 = (𝐹𝑎) → (⟨𝑝, 𝑦 𝑤 ↔ ⟨𝑝, (𝐹𝑎)⟩ 𝑤))
9190mobidv 2547 . . . . . . . . 9 (𝑦 = (𝐹𝑎) → (∃*𝑤𝑝, 𝑦 𝑤 ↔ ∃*𝑤𝑝, (𝐹𝑎)⟩ 𝑤))
9291ralrn 7108 . . . . . . . 8 (𝐹 Fn 𝑉 → (∀𝑦 ∈ ran 𝐹∃*𝑤𝑝, 𝑦 𝑤 ↔ ∀𝑎𝑉 ∃*𝑤𝑝, (𝐹𝑎)⟩ 𝑤))
9311, 88, 923syl 18 . . . . . . 7 (𝜑 → (∀𝑦 ∈ ran 𝐹∃*𝑤𝑝, 𝑦 𝑤 ↔ ∀𝑎𝑉 ∃*𝑤𝑝, (𝐹𝑎)⟩ 𝑤))
9493ralbidv 3176 . . . . . 6 (𝜑 → (∀𝑝𝐾𝑦 ∈ ran 𝐹∃*𝑤𝑝, 𝑦 𝑤 ↔ ∀𝑝𝐾𝑎𝑉 ∃*𝑤𝑝, (𝐹𝑎)⟩ 𝑤))
9587, 94mpbird 257 . . . . 5 (𝜑 → ∀𝑝𝐾𝑦 ∈ ran 𝐹∃*𝑤𝑝, 𝑦 𝑤)
96 breq1 5151 . . . . . . 7 (𝑥 = ⟨𝑝, 𝑦⟩ → (𝑥 𝑤 ↔ ⟨𝑝, 𝑦 𝑤))
9796mobidv 2547 . . . . . 6 (𝑥 = ⟨𝑝, 𝑦⟩ → (∃*𝑤 𝑥 𝑤 ↔ ∃*𝑤𝑝, 𝑦 𝑤))
9897ralxp 5855 . . . . 5 (∀𝑥 ∈ (𝐾 × ran 𝐹)∃*𝑤 𝑥 𝑤 ↔ ∀𝑝𝐾𝑦 ∈ ran 𝐹∃*𝑤𝑝, 𝑦 𝑤)
9995, 98sylibr 234 . . . 4 (𝜑 → ∀𝑥 ∈ (𝐾 × ran 𝐹)∃*𝑤 𝑥 𝑤)
100 ssralv 4064 . . . 4 (dom ⊆ (𝐾 × ran 𝐹) → (∀𝑥 ∈ (𝐾 × ran 𝐹)∃*𝑤 𝑥 𝑤 → ∀𝑥 ∈ dom ∃*𝑤 𝑥 𝑤))
10145, 99, 100sylc 65 . . 3 (𝜑 → ∀𝑥 ∈ dom ∃*𝑤 𝑥 𝑤)
102 dffun7 6595 . . 3 (Fun ↔ (Rel ∧ ∀𝑥 ∈ dom ∃*𝑤 𝑥 𝑤))
10319, 101, 102sylanbrc 583 . 2 (𝜑 → Fun )
104 eqimss2 4055 . . . . . . . . . . . . . . 15 ( = 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ )
10517, 104syl 17 . . . . . . . . . . . . . 14 (𝜑 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ )
106 iunss 5050 . . . . . . . . . . . . . 14 ( 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ↔ ∀𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ )
107105, 106sylib 218 . . . . . . . . . . . . 13 (𝜑 → ∀𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ )
108107r19.21bi 3249 . . . . . . . . . . . 12 ((𝜑𝑞𝑉) → (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ )
109108adantrl 716 . . . . . . . . . . 11 ((𝜑 ∧ (𝑝𝐾𝑞𝑉)) → (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ )
110 dmss 5916 . . . . . . . . . . 11 ((𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ → dom (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ dom )
111109, 110syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑝𝐾𝑞𝑉)) → dom (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ dom )
11258, 111eqsstrrid 4045 . . . . . . . . 9 ((𝜑 ∧ (𝑝𝐾𝑞𝑉)) → (𝐾 × {(𝐹𝑞)}) ⊆ dom )
113 simprl 771 . . . . . . . . . 10 ((𝜑 ∧ (𝑝𝐾𝑞𝑉)) → 𝑝𝐾)
114 fvex 6920 . . . . . . . . . . 11 (𝐹𝑞) ∈ V
115114snid 4667 . . . . . . . . . 10 (𝐹𝑞) ∈ {(𝐹𝑞)}
116 opelxpi 5726 . . . . . . . . . 10 ((𝑝𝐾 ∧ (𝐹𝑞) ∈ {(𝐹𝑞)}) → ⟨𝑝, (𝐹𝑞)⟩ ∈ (𝐾 × {(𝐹𝑞)}))
117113, 115, 116sylancl 586 . . . . . . . . 9 ((𝜑 ∧ (𝑝𝐾𝑞𝑉)) → ⟨𝑝, (𝐹𝑞)⟩ ∈ (𝐾 × {(𝐹𝑞)}))
118112, 117sseldd 3996 . . . . . . . 8 ((𝜑 ∧ (𝑝𝐾𝑞𝑉)) → ⟨𝑝, (𝐹𝑞)⟩ ∈ dom )
119118ralrimivva 3200 . . . . . . 7 (𝜑 → ∀𝑝𝐾𝑞𝑉𝑝, (𝐹𝑞)⟩ ∈ dom )
120 opeq2 4879 . . . . . . . . . . 11 (𝑦 = (𝐹𝑞) → ⟨𝑝, 𝑦⟩ = ⟨𝑝, (𝐹𝑞)⟩)
121120eleq1d 2824 . . . . . . . . . 10 (𝑦 = (𝐹𝑞) → (⟨𝑝, 𝑦⟩ ∈ dom ↔ ⟨𝑝, (𝐹𝑞)⟩ ∈ dom ))
122121ralrn 7108 . . . . . . . . 9 (𝐹 Fn 𝑉 → (∀𝑦 ∈ ran 𝐹𝑝, 𝑦⟩ ∈ dom ↔ ∀𝑞𝑉𝑝, (𝐹𝑞)⟩ ∈ dom ))
12311, 88, 1223syl 18 . . . . . . . 8 (𝜑 → (∀𝑦 ∈ ran 𝐹𝑝, 𝑦⟩ ∈ dom ↔ ∀𝑞𝑉𝑝, (𝐹𝑞)⟩ ∈ dom ))
124123ralbidv 3176 . . . . . . 7 (𝜑 → (∀𝑝𝐾𝑦 ∈ ran 𝐹𝑝, 𝑦⟩ ∈ dom ↔ ∀𝑝𝐾𝑞𝑉𝑝, (𝐹𝑞)⟩ ∈ dom ))
125119, 124mpbird 257 . . . . . 6 (𝜑 → ∀𝑝𝐾𝑦 ∈ ran 𝐹𝑝, 𝑦⟩ ∈ dom )
126 eleq1 2827 . . . . . . 7 (𝑥 = ⟨𝑝, 𝑦⟩ → (𝑥 ∈ dom ↔ ⟨𝑝, 𝑦⟩ ∈ dom ))
127126ralxp 5855 . . . . . 6 (∀𝑥 ∈ (𝐾 × ran 𝐹)𝑥 ∈ dom ↔ ∀𝑝𝐾𝑦 ∈ ran 𝐹𝑝, 𝑦⟩ ∈ dom )
128125, 127sylibr 234 . . . . 5 (𝜑 → ∀𝑥 ∈ (𝐾 × ran 𝐹)𝑥 ∈ dom )
129 dfss3 3984 . . . . 5 ((𝐾 × ran 𝐹) ⊆ dom ↔ ∀𝑥 ∈ (𝐾 × ran 𝐹)𝑥 ∈ dom )
130128, 129sylibr 234 . . . 4 (𝜑 → (𝐾 × ran 𝐹) ⊆ dom )
13144, 130eqsstrrd 4035 . . 3 (𝜑 → (𝐾 × 𝐵) ⊆ dom )
13241, 131eqssd 4013 . 2 (𝜑 → dom = (𝐾 × 𝐵))
133 df-fn 6566 . 2 ( Fn (𝐾 × 𝐵) ↔ (Fun ∧ dom = (𝐾 × 𝐵)))
134103, 132, 133sylanbrc 583 1 (𝜑 Fn (𝐾 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1535   = wceq 1537  wcel 2106  ∃*wmo 2536  wne 2938  wral 3059  wrex 3068  Vcvv 3478  wss 3963  c0 4339  {csn 4631  cop 4637   ciun 4996   class class class wbr 5148   × cxp 5687  dom cdm 5689  ran crn 5690  Rel wrel 5694  Fun wfun 6557   Fn wfn 6558  wf 6559  ontowfo 6561  cfv 6563  (class class class)co 7431  cmpo 7433  Basecbs 17245  Scalarcsca 17301   ·𝑠 cvsca 17302  s cimas 17551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-struct 17181  df-slot 17216  df-ndx 17228  df-base 17246  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-imas 17555
This theorem is referenced by:  imasvscaval  17585  imasvscaf  17586
  Copyright terms: Public domain W3C validator