MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasvscafn Structured version   Visualization version   GIF version

Theorem imasvscafn 17441
Description: The image structure's scalar multiplication is a function. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
imasvscaf.u (𝜑𝑈 = (𝐹s 𝑅))
imasvscaf.v (𝜑𝑉 = (Base‘𝑅))
imasvscaf.f (𝜑𝐹:𝑉onto𝐵)
imasvscaf.r (𝜑𝑅𝑍)
imasvscaf.g 𝐺 = (Scalar‘𝑅)
imasvscaf.k 𝐾 = (Base‘𝐺)
imasvscaf.q · = ( ·𝑠𝑅)
imasvscaf.s = ( ·𝑠𝑈)
imasvscaf.e ((𝜑 ∧ (𝑝𝐾𝑎𝑉𝑞𝑉)) → ((𝐹𝑎) = (𝐹𝑞) → (𝐹‘(𝑝 · 𝑎)) = (𝐹‘(𝑝 · 𝑞))))
Assertion
Ref Expression
imasvscafn (𝜑 Fn (𝐾 × 𝐵))
Distinct variable groups:   𝑝,𝑎,𝑞,𝐹   𝐾,𝑎,𝑝,𝑞   𝜑,𝑎,𝑝,𝑞   𝐵,𝑝,𝑞   𝑅,𝑝,𝑞   · ,𝑝,𝑞   ,𝑎,𝑝,𝑞   𝑉,𝑎,𝑝,𝑞
Allowed substitution hints:   𝐵(𝑎)   𝑅(𝑎)   · (𝑎)   𝑈(𝑞,𝑝,𝑎)   𝐺(𝑞,𝑝,𝑎)   𝑍(𝑞,𝑝,𝑎)

Proof of Theorem imasvscafn
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . . . . . 8 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) = (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))
2 fvex 6835 . . . . . . . 8 (𝐹‘(𝑝 · 𝑞)) ∈ V
31, 2fnmpoi 8002 . . . . . . 7 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) Fn (𝐾 × {(𝐹𝑞)})
4 fnrel 6583 . . . . . . 7 ((𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) Fn (𝐾 × {(𝐹𝑞)}) → Rel (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))))
53, 4ax-mp 5 . . . . . 6 Rel (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))
65rgenw 3051 . . . . 5 𝑞𝑉 Rel (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))
7 reliun 5756 . . . . 5 (Rel 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ↔ ∀𝑞𝑉 Rel (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))))
86, 7mpbir 231 . . . 4 Rel 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))
9 imasvscaf.u . . . . . 6 (𝜑𝑈 = (𝐹s 𝑅))
10 imasvscaf.v . . . . . 6 (𝜑𝑉 = (Base‘𝑅))
11 imasvscaf.f . . . . . 6 (𝜑𝐹:𝑉onto𝐵)
12 imasvscaf.r . . . . . 6 (𝜑𝑅𝑍)
13 imasvscaf.g . . . . . 6 𝐺 = (Scalar‘𝑅)
14 imasvscaf.k . . . . . 6 𝐾 = (Base‘𝐺)
15 imasvscaf.q . . . . . 6 · = ( ·𝑠𝑅)
16 imasvscaf.s . . . . . 6 = ( ·𝑠𝑈)
179, 10, 11, 12, 13, 14, 15, 16imasvsca 17424 . . . . 5 (𝜑 = 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))))
1817releqd 5719 . . . 4 (𝜑 → (Rel ↔ Rel 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))))
198, 18mpbiri 258 . . 3 (𝜑 → Rel )
20 dffn2 6653 . . . . . . . . . . . . 13 ((𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) Fn (𝐾 × {(𝐹𝑞)}) ↔ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))):(𝐾 × {(𝐹𝑞)})⟶V)
213, 20mpbi 230 . . . . . . . . . . . 12 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))):(𝐾 × {(𝐹𝑞)})⟶V
22 fssxp 6678 . . . . . . . . . . . 12 ((𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))):(𝐾 × {(𝐹𝑞)})⟶V → (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × {(𝐹𝑞)}) × V))
2321, 22ax-mp 5 . . . . . . . . . . 11 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × {(𝐹𝑞)}) × V)
24 fof 6735 . . . . . . . . . . . . . . 15 (𝐹:𝑉onto𝐵𝐹:𝑉𝐵)
2511, 24syl 17 . . . . . . . . . . . . . 14 (𝜑𝐹:𝑉𝐵)
2625ffvelcdmda 7017 . . . . . . . . . . . . 13 ((𝜑𝑞𝑉) → (𝐹𝑞) ∈ 𝐵)
2726snssd 4761 . . . . . . . . . . . 12 ((𝜑𝑞𝑉) → {(𝐹𝑞)} ⊆ 𝐵)
28 xpss2 5636 . . . . . . . . . . . 12 ({(𝐹𝑞)} ⊆ 𝐵 → (𝐾 × {(𝐹𝑞)}) ⊆ (𝐾 × 𝐵))
29 xpss1 5635 . . . . . . . . . . . 12 ((𝐾 × {(𝐹𝑞)}) ⊆ (𝐾 × 𝐵) → ((𝐾 × {(𝐹𝑞)}) × V) ⊆ ((𝐾 × 𝐵) × V))
3027, 28, 293syl 18 . . . . . . . . . . 11 ((𝜑𝑞𝑉) → ((𝐾 × {(𝐹𝑞)}) × V) ⊆ ((𝐾 × 𝐵) × V))
3123, 30sstrid 3946 . . . . . . . . . 10 ((𝜑𝑞𝑉) → (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × V))
3231ralrimiva 3124 . . . . . . . . 9 (𝜑 → ∀𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × V))
33 iunss 4994 . . . . . . . . 9 ( 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × V) ↔ ∀𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × V))
3432, 33sylibr 234 . . . . . . . 8 (𝜑 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × V))
3517, 34eqsstrd 3969 . . . . . . 7 (𝜑 ⊆ ((𝐾 × 𝐵) × V))
36 dmss 5842 . . . . . . 7 ( ⊆ ((𝐾 × 𝐵) × V) → dom ⊆ dom ((𝐾 × 𝐵) × V))
3735, 36syl 17 . . . . . 6 (𝜑 → dom ⊆ dom ((𝐾 × 𝐵) × V))
38 vn0 4295 . . . . . . 7 V ≠ ∅
39 dmxp 5869 . . . . . . 7 (V ≠ ∅ → dom ((𝐾 × 𝐵) × V) = (𝐾 × 𝐵))
4038, 39ax-mp 5 . . . . . 6 dom ((𝐾 × 𝐵) × V) = (𝐾 × 𝐵)
4137, 40sseqtrdi 3975 . . . . 5 (𝜑 → dom ⊆ (𝐾 × 𝐵))
42 forn 6738 . . . . . . 7 (𝐹:𝑉onto𝐵 → ran 𝐹 = 𝐵)
4311, 42syl 17 . . . . . 6 (𝜑 → ran 𝐹 = 𝐵)
4443xpeq2d 5646 . . . . 5 (𝜑 → (𝐾 × ran 𝐹) = (𝐾 × 𝐵))
4541, 44sseqtrrd 3972 . . . 4 (𝜑 → dom ⊆ (𝐾 × ran 𝐹))
46 df-br 5092 . . . . . . . . . 10 (⟨𝑝, (𝐹𝑎)⟩ 𝑤 ↔ ⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ )
4717eleq2d 2817 . . . . . . . . . . . 12 (𝜑 → (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ ↔ ⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))))
4847adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑝𝐾𝑎𝑉)) → (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ ↔ ⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))))
49 eliun 4945 . . . . . . . . . . . 12 (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ↔ ∃𝑞𝑉 ⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))))
50 df-3an 1088 . . . . . . . . . . . . . . 15 ((𝑝𝐾𝑎𝑉𝑞𝑉) ↔ ((𝑝𝐾𝑎𝑉) ∧ 𝑞𝑉))
511mpofun 7470 . . . . . . . . . . . . . . . . . . . 20 Fun (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))
52 funopfv 6871 . . . . . . . . . . . . . . . . . . . 20 (Fun (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → ((𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))‘⟨𝑝, (𝐹𝑎)⟩) = 𝑤))
5351, 52ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → ((𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))‘⟨𝑝, (𝐹𝑎)⟩) = 𝑤)
54 df-ov 7349 . . . . . . . . . . . . . . . . . . . 20 (𝑝(𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))(𝐹𝑎)) = ((𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))‘⟨𝑝, (𝐹𝑎)⟩)
55 opex 5404 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑝, (𝐹𝑎)⟩ ∈ V
56 vex 3440 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑤 ∈ V
5755, 56opeldm 5847 . . . . . . . . . . . . . . . . . . . . . . 23 (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → ⟨𝑝, (𝐹𝑎)⟩ ∈ dom (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))))
581, 2dmmpo 8003 . . . . . . . . . . . . . . . . . . . . . . 23 dom (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) = (𝐾 × {(𝐹𝑞)})
5957, 58eleqtrdi 2841 . . . . . . . . . . . . . . . . . . . . . 22 (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → ⟨𝑝, (𝐹𝑎)⟩ ∈ (𝐾 × {(𝐹𝑞)}))
60 opelxp 5652 . . . . . . . . . . . . . . . . . . . . . 22 (⟨𝑝, (𝐹𝑎)⟩ ∈ (𝐾 × {(𝐹𝑞)}) ↔ (𝑝𝐾 ∧ (𝐹𝑎) ∈ {(𝐹𝑞)}))
6159, 60sylib 218 . . . . . . . . . . . . . . . . . . . . 21 (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → (𝑝𝐾 ∧ (𝐹𝑎) ∈ {(𝐹𝑞)}))
62 fvoveq1 7369 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = 𝑝 → (𝐹‘(𝑧 · 𝑞)) = (𝐹‘(𝑝 · 𝑞)))
63 eqidd 2732 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = (𝐹𝑎) → (𝐹‘(𝑝 · 𝑞)) = (𝐹‘(𝑝 · 𝑞)))
64 fvoveq1 7369 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑝 = 𝑧 → (𝐹‘(𝑝 · 𝑞)) = (𝐹‘(𝑧 · 𝑞)))
65 eqidd 2732 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑦 → (𝐹‘(𝑧 · 𝑞)) = (𝐹‘(𝑧 · 𝑞)))
6664, 65cbvmpov 7441 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) = (𝑧𝐾, 𝑦 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑧 · 𝑞)))
6762, 63, 66, 2ovmpo 7506 . . . . . . . . . . . . . . . . . . . . 21 ((𝑝𝐾 ∧ (𝐹𝑎) ∈ {(𝐹𝑞)}) → (𝑝(𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))(𝐹𝑎)) = (𝐹‘(𝑝 · 𝑞)))
6861, 67syl 17 . . . . . . . . . . . . . . . . . . . 20 (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → (𝑝(𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))(𝐹𝑎)) = (𝐹‘(𝑝 · 𝑞)))
6954, 68eqtr3id 2780 . . . . . . . . . . . . . . . . . . 19 (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → ((𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))‘⟨𝑝, (𝐹𝑎)⟩) = (𝐹‘(𝑝 · 𝑞)))
7053, 69eqtr3d 2768 . . . . . . . . . . . . . . . . . 18 (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → 𝑤 = (𝐹‘(𝑝 · 𝑞)))
7170adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑝𝐾𝑎𝑉𝑞𝑉)) ∧ ⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))) → 𝑤 = (𝐹‘(𝑝 · 𝑞)))
72 imasvscaf.e . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑝𝐾𝑎𝑉𝑞𝑉)) → ((𝐹𝑎) = (𝐹𝑞) → (𝐹‘(𝑝 · 𝑎)) = (𝐹‘(𝑝 · 𝑞))))
73 elsni 4593 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑎) ∈ {(𝐹𝑞)} → (𝐹𝑎) = (𝐹𝑞))
7461, 73simpl2im 503 . . . . . . . . . . . . . . . . . 18 (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → (𝐹𝑎) = (𝐹𝑞))
7572, 74impel 505 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑝𝐾𝑎𝑉𝑞𝑉)) ∧ ⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))) → (𝐹‘(𝑝 · 𝑎)) = (𝐹‘(𝑝 · 𝑞)))
7671, 75eqtr4d 2769 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑝𝐾𝑎𝑉𝑞𝑉)) ∧ ⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))) → 𝑤 = (𝐹‘(𝑝 · 𝑎)))
7776ex 412 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑝𝐾𝑎𝑉𝑞𝑉)) → (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → 𝑤 = (𝐹‘(𝑝 · 𝑎))))
7850, 77sylan2br 595 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑝𝐾𝑎𝑉) ∧ 𝑞𝑉)) → (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → 𝑤 = (𝐹‘(𝑝 · 𝑎))))
7978anassrs 467 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑝𝐾𝑎𝑉)) ∧ 𝑞𝑉) → (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → 𝑤 = (𝐹‘(𝑝 · 𝑎))))
8079rexlimdva 3133 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑝𝐾𝑎𝑉)) → (∃𝑞𝑉 ⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → 𝑤 = (𝐹‘(𝑝 · 𝑎))))
8149, 80biimtrid 242 . . . . . . . . . . 11 ((𝜑 ∧ (𝑝𝐾𝑎𝑉)) → (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → 𝑤 = (𝐹‘(𝑝 · 𝑎))))
8248, 81sylbid 240 . . . . . . . . . 10 ((𝜑 ∧ (𝑝𝐾𝑎𝑉)) → (⟨⟨𝑝, (𝐹𝑎)⟩, 𝑤⟩ ∈ 𝑤 = (𝐹‘(𝑝 · 𝑎))))
8346, 82biimtrid 242 . . . . . . . . 9 ((𝜑 ∧ (𝑝𝐾𝑎𝑉)) → (⟨𝑝, (𝐹𝑎)⟩ 𝑤𝑤 = (𝐹‘(𝑝 · 𝑎))))
8483alrimiv 1928 . . . . . . . 8 ((𝜑 ∧ (𝑝𝐾𝑎𝑉)) → ∀𝑤(⟨𝑝, (𝐹𝑎)⟩ 𝑤𝑤 = (𝐹‘(𝑝 · 𝑎))))
85 mo2icl 3673 . . . . . . . 8 (∀𝑤(⟨𝑝, (𝐹𝑎)⟩ 𝑤𝑤 = (𝐹‘(𝑝 · 𝑎))) → ∃*𝑤𝑝, (𝐹𝑎)⟩ 𝑤)
8684, 85syl 17 . . . . . . 7 ((𝜑 ∧ (𝑝𝐾𝑎𝑉)) → ∃*𝑤𝑝, (𝐹𝑎)⟩ 𝑤)
8786ralrimivva 3175 . . . . . 6 (𝜑 → ∀𝑝𝐾𝑎𝑉 ∃*𝑤𝑝, (𝐹𝑎)⟩ 𝑤)
88 fofn 6737 . . . . . . . 8 (𝐹:𝑉onto𝐵𝐹 Fn 𝑉)
89 opeq2 4826 . . . . . . . . . . 11 (𝑦 = (𝐹𝑎) → ⟨𝑝, 𝑦⟩ = ⟨𝑝, (𝐹𝑎)⟩)
9089breq1d 5101 . . . . . . . . . 10 (𝑦 = (𝐹𝑎) → (⟨𝑝, 𝑦 𝑤 ↔ ⟨𝑝, (𝐹𝑎)⟩ 𝑤))
9190mobidv 2544 . . . . . . . . 9 (𝑦 = (𝐹𝑎) → (∃*𝑤𝑝, 𝑦 𝑤 ↔ ∃*𝑤𝑝, (𝐹𝑎)⟩ 𝑤))
9291ralrn 7021 . . . . . . . 8 (𝐹 Fn 𝑉 → (∀𝑦 ∈ ran 𝐹∃*𝑤𝑝, 𝑦 𝑤 ↔ ∀𝑎𝑉 ∃*𝑤𝑝, (𝐹𝑎)⟩ 𝑤))
9311, 88, 923syl 18 . . . . . . 7 (𝜑 → (∀𝑦 ∈ ran 𝐹∃*𝑤𝑝, 𝑦 𝑤 ↔ ∀𝑎𝑉 ∃*𝑤𝑝, (𝐹𝑎)⟩ 𝑤))
9493ralbidv 3155 . . . . . 6 (𝜑 → (∀𝑝𝐾𝑦 ∈ ran 𝐹∃*𝑤𝑝, 𝑦 𝑤 ↔ ∀𝑝𝐾𝑎𝑉 ∃*𝑤𝑝, (𝐹𝑎)⟩ 𝑤))
9587, 94mpbird 257 . . . . 5 (𝜑 → ∀𝑝𝐾𝑦 ∈ ran 𝐹∃*𝑤𝑝, 𝑦 𝑤)
96 breq1 5094 . . . . . . 7 (𝑥 = ⟨𝑝, 𝑦⟩ → (𝑥 𝑤 ↔ ⟨𝑝, 𝑦 𝑤))
9796mobidv 2544 . . . . . 6 (𝑥 = ⟨𝑝, 𝑦⟩ → (∃*𝑤 𝑥 𝑤 ↔ ∃*𝑤𝑝, 𝑦 𝑤))
9897ralxp 5781 . . . . 5 (∀𝑥 ∈ (𝐾 × ran 𝐹)∃*𝑤 𝑥 𝑤 ↔ ∀𝑝𝐾𝑦 ∈ ran 𝐹∃*𝑤𝑝, 𝑦 𝑤)
9995, 98sylibr 234 . . . 4 (𝜑 → ∀𝑥 ∈ (𝐾 × ran 𝐹)∃*𝑤 𝑥 𝑤)
100 ssralv 4003 . . . 4 (dom ⊆ (𝐾 × ran 𝐹) → (∀𝑥 ∈ (𝐾 × ran 𝐹)∃*𝑤 𝑥 𝑤 → ∀𝑥 ∈ dom ∃*𝑤 𝑥 𝑤))
10145, 99, 100sylc 65 . . 3 (𝜑 → ∀𝑥 ∈ dom ∃*𝑤 𝑥 𝑤)
102 dffun7 6508 . . 3 (Fun ↔ (Rel ∧ ∀𝑥 ∈ dom ∃*𝑤 𝑥 𝑤))
10319, 101, 102sylanbrc 583 . 2 (𝜑 → Fun )
104 eqimss2 3994 . . . . . . . . . . . . . . 15 ( = 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) → 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ )
10517, 104syl 17 . . . . . . . . . . . . . 14 (𝜑 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ )
106 iunss 4994 . . . . . . . . . . . . . 14 ( 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ↔ ∀𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ )
107105, 106sylib 218 . . . . . . . . . . . . 13 (𝜑 → ∀𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ )
108107r19.21bi 3224 . . . . . . . . . . . 12 ((𝜑𝑞𝑉) → (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ )
109108adantrl 716 . . . . . . . . . . 11 ((𝜑 ∧ (𝑝𝐾𝑞𝑉)) → (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ )
110 dmss 5842 . . . . . . . . . . 11 ((𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ → dom (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ dom )
111109, 110syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑝𝐾𝑞𝑉)) → dom (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ dom )
11258, 111eqsstrrid 3974 . . . . . . . . 9 ((𝜑 ∧ (𝑝𝐾𝑞𝑉)) → (𝐾 × {(𝐹𝑞)}) ⊆ dom )
113 simprl 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑝𝐾𝑞𝑉)) → 𝑝𝐾)
114 fvex 6835 . . . . . . . . . . 11 (𝐹𝑞) ∈ V
115114snid 4615 . . . . . . . . . 10 (𝐹𝑞) ∈ {(𝐹𝑞)}
116 opelxpi 5653 . . . . . . . . . 10 ((𝑝𝐾 ∧ (𝐹𝑞) ∈ {(𝐹𝑞)}) → ⟨𝑝, (𝐹𝑞)⟩ ∈ (𝐾 × {(𝐹𝑞)}))
117113, 115, 116sylancl 586 . . . . . . . . 9 ((𝜑 ∧ (𝑝𝐾𝑞𝑉)) → ⟨𝑝, (𝐹𝑞)⟩ ∈ (𝐾 × {(𝐹𝑞)}))
118112, 117sseldd 3935 . . . . . . . 8 ((𝜑 ∧ (𝑝𝐾𝑞𝑉)) → ⟨𝑝, (𝐹𝑞)⟩ ∈ dom )
119118ralrimivva 3175 . . . . . . 7 (𝜑 → ∀𝑝𝐾𝑞𝑉𝑝, (𝐹𝑞)⟩ ∈ dom )
120 opeq2 4826 . . . . . . . . . . 11 (𝑦 = (𝐹𝑞) → ⟨𝑝, 𝑦⟩ = ⟨𝑝, (𝐹𝑞)⟩)
121120eleq1d 2816 . . . . . . . . . 10 (𝑦 = (𝐹𝑞) → (⟨𝑝, 𝑦⟩ ∈ dom ↔ ⟨𝑝, (𝐹𝑞)⟩ ∈ dom ))
122121ralrn 7021 . . . . . . . . 9 (𝐹 Fn 𝑉 → (∀𝑦 ∈ ran 𝐹𝑝, 𝑦⟩ ∈ dom ↔ ∀𝑞𝑉𝑝, (𝐹𝑞)⟩ ∈ dom ))
12311, 88, 1223syl 18 . . . . . . . 8 (𝜑 → (∀𝑦 ∈ ran 𝐹𝑝, 𝑦⟩ ∈ dom ↔ ∀𝑞𝑉𝑝, (𝐹𝑞)⟩ ∈ dom ))
124123ralbidv 3155 . . . . . . 7 (𝜑 → (∀𝑝𝐾𝑦 ∈ ran 𝐹𝑝, 𝑦⟩ ∈ dom ↔ ∀𝑝𝐾𝑞𝑉𝑝, (𝐹𝑞)⟩ ∈ dom ))
125119, 124mpbird 257 . . . . . 6 (𝜑 → ∀𝑝𝐾𝑦 ∈ ran 𝐹𝑝, 𝑦⟩ ∈ dom )
126 eleq1 2819 . . . . . . 7 (𝑥 = ⟨𝑝, 𝑦⟩ → (𝑥 ∈ dom ↔ ⟨𝑝, 𝑦⟩ ∈ dom ))
127126ralxp 5781 . . . . . 6 (∀𝑥 ∈ (𝐾 × ran 𝐹)𝑥 ∈ dom ↔ ∀𝑝𝐾𝑦 ∈ ran 𝐹𝑝, 𝑦⟩ ∈ dom )
128125, 127sylibr 234 . . . . 5 (𝜑 → ∀𝑥 ∈ (𝐾 × ran 𝐹)𝑥 ∈ dom )
129 dfss3 3923 . . . . 5 ((𝐾 × ran 𝐹) ⊆ dom ↔ ∀𝑥 ∈ (𝐾 × ran 𝐹)𝑥 ∈ dom )
130128, 129sylibr 234 . . . 4 (𝜑 → (𝐾 × ran 𝐹) ⊆ dom )
13144, 130eqsstrrd 3970 . . 3 (𝜑 → (𝐾 × 𝐵) ⊆ dom )
13241, 131eqssd 3952 . 2 (𝜑 → dom = (𝐾 × 𝐵))
133 df-fn 6484 . 2 ( Fn (𝐾 × 𝐵) ↔ (Fun ∧ dom = (𝐾 × 𝐵)))
134103, 132, 133sylanbrc 583 1 (𝜑 Fn (𝐾 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1539   = wceq 1541  wcel 2111  ∃*wmo 2533  wne 2928  wral 3047  wrex 3056  Vcvv 3436  wss 3902  c0 4283  {csn 4576  cop 4582   ciun 4941   class class class wbr 5091   × cxp 5614  dom cdm 5616  ran crn 5617  Rel wrel 5621  Fun wfun 6475   Fn wfn 6476  wf 6477  ontowfo 6479  cfv 6481  (class class class)co 7346  cmpo 7348  Basecbs 17120  Scalarcsca 17164   ·𝑠 cvsca 17165  s cimas 17408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-imas 17412
This theorem is referenced by:  imasvscaval  17442  imasvscaf  17443
  Copyright terms: Public domain W3C validator