MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supxrunb1 Structured version   Visualization version   GIF version

Theorem supxrunb1 13103
Description: The supremum of an unbounded-above set of extended reals is plus infinity. (Contributed by NM, 19-Jan-2006.)
Assertion
Ref Expression
supxrunb1 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦 ↔ sup(𝐴, ℝ*, < ) = +∞))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem supxrunb1
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3919 . . . . . . . 8 (𝐴 ⊆ ℝ* → (𝑧𝐴𝑧 ∈ ℝ*))
2 pnfnlt 12914 . . . . . . . 8 (𝑧 ∈ ℝ* → ¬ +∞ < 𝑧)
31, 2syl6 35 . . . . . . 7 (𝐴 ⊆ ℝ* → (𝑧𝐴 → ¬ +∞ < 𝑧))
43ralrimiv 3139 . . . . . 6 (𝐴 ⊆ ℝ* → ∀𝑧𝐴 ¬ +∞ < 𝑧)
54adantr 482 . . . . 5 ((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦) → ∀𝑧𝐴 ¬ +∞ < 𝑧)
6 peano2re 11198 . . . . . . . . . . . . 13 (𝑧 ∈ ℝ → (𝑧 + 1) ∈ ℝ)
7 breq1 5084 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝑧 + 1) → (𝑥𝑦 ↔ (𝑧 + 1) ≤ 𝑦))
87rexbidv 3172 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑧 + 1) → (∃𝑦𝐴 𝑥𝑦 ↔ ∃𝑦𝐴 (𝑧 + 1) ≤ 𝑦))
98rspcva 3564 . . . . . . . . . . . . . . 15 (((𝑧 + 1) ∈ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦) → ∃𝑦𝐴 (𝑧 + 1) ≤ 𝑦)
109adantrr 715 . . . . . . . . . . . . . 14 (((𝑧 + 1) ∈ ℝ ∧ (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦𝐴 ⊆ ℝ*)) → ∃𝑦𝐴 (𝑧 + 1) ≤ 𝑦)
1110ancoms 460 . . . . . . . . . . . . 13 (((∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦𝐴 ⊆ ℝ*) ∧ (𝑧 + 1) ∈ ℝ) → ∃𝑦𝐴 (𝑧 + 1) ≤ 𝑦)
126, 11sylan2 594 . . . . . . . . . . . 12 (((∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦𝐴 ⊆ ℝ*) ∧ 𝑧 ∈ ℝ) → ∃𝑦𝐴 (𝑧 + 1) ≤ 𝑦)
13 ssel2 3921 . . . . . . . . . . . . . . . 16 ((𝐴 ⊆ ℝ*𝑦𝐴) → 𝑦 ∈ ℝ*)
14 ltp1 11865 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℝ → 𝑧 < (𝑧 + 1))
1514adantr 482 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ*) → 𝑧 < (𝑧 + 1))
166ancli 550 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℝ → (𝑧 ∈ ℝ ∧ (𝑧 + 1) ∈ ℝ))
17 rexr 11071 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ ℝ → 𝑧 ∈ ℝ*)
18 rexr 11071 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 + 1) ∈ ℝ → (𝑧 + 1) ∈ ℝ*)
19 xrltletr 12941 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ∈ ℝ* ∧ (𝑧 + 1) ∈ ℝ*𝑦 ∈ ℝ*) → ((𝑧 < (𝑧 + 1) ∧ (𝑧 + 1) ≤ 𝑦) → 𝑧 < 𝑦))
2018, 19syl3an2 1164 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧 ∈ ℝ* ∧ (𝑧 + 1) ∈ ℝ ∧ 𝑦 ∈ ℝ*) → ((𝑧 < (𝑧 + 1) ∧ (𝑧 + 1) ≤ 𝑦) → 𝑧 < 𝑦))
2117, 20syl3an1 1163 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 ∈ ℝ ∧ (𝑧 + 1) ∈ ℝ ∧ 𝑦 ∈ ℝ*) → ((𝑧 < (𝑧 + 1) ∧ (𝑧 + 1) ≤ 𝑦) → 𝑧 < 𝑦))
22213expa 1118 . . . . . . . . . . . . . . . . . . 19 (((𝑧 ∈ ℝ ∧ (𝑧 + 1) ∈ ℝ) ∧ 𝑦 ∈ ℝ*) → ((𝑧 < (𝑧 + 1) ∧ (𝑧 + 1) ≤ 𝑦) → 𝑧 < 𝑦))
2316, 22sylan 581 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ*) → ((𝑧 < (𝑧 + 1) ∧ (𝑧 + 1) ≤ 𝑦) → 𝑧 < 𝑦))
2415, 23mpand 693 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ*) → ((𝑧 + 1) ≤ 𝑦𝑧 < 𝑦))
2524ancoms 460 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℝ*𝑧 ∈ ℝ) → ((𝑧 + 1) ≤ 𝑦𝑧 < 𝑦))
2613, 25sylan 581 . . . . . . . . . . . . . . 15 (((𝐴 ⊆ ℝ*𝑦𝐴) ∧ 𝑧 ∈ ℝ) → ((𝑧 + 1) ≤ 𝑦𝑧 < 𝑦))
2726an32s 650 . . . . . . . . . . . . . 14 (((𝐴 ⊆ ℝ*𝑧 ∈ ℝ) ∧ 𝑦𝐴) → ((𝑧 + 1) ≤ 𝑦𝑧 < 𝑦))
2827reximdva 3162 . . . . . . . . . . . . 13 ((𝐴 ⊆ ℝ*𝑧 ∈ ℝ) → (∃𝑦𝐴 (𝑧 + 1) ≤ 𝑦 → ∃𝑦𝐴 𝑧 < 𝑦))
2928adantll 712 . . . . . . . . . . . 12 (((∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦𝐴 ⊆ ℝ*) ∧ 𝑧 ∈ ℝ) → (∃𝑦𝐴 (𝑧 + 1) ≤ 𝑦 → ∃𝑦𝐴 𝑧 < 𝑦))
3012, 29mpd 15 . . . . . . . . . . 11 (((∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦𝐴 ⊆ ℝ*) ∧ 𝑧 ∈ ℝ) → ∃𝑦𝐴 𝑧 < 𝑦)
3130exp31 421 . . . . . . . . . 10 (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦 → (𝐴 ⊆ ℝ* → (𝑧 ∈ ℝ → ∃𝑦𝐴 𝑧 < 𝑦)))
3231a1dd 50 . . . . . . . . 9 (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦 → (𝐴 ⊆ ℝ* → (𝑧 < +∞ → (𝑧 ∈ ℝ → ∃𝑦𝐴 𝑧 < 𝑦))))
3332com4r 94 . . . . . . . 8 (𝑧 ∈ ℝ → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦 → (𝐴 ⊆ ℝ* → (𝑧 < +∞ → ∃𝑦𝐴 𝑧 < 𝑦))))
3433com13 88 . . . . . . 7 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦 → (𝑧 ∈ ℝ → (𝑧 < +∞ → ∃𝑦𝐴 𝑧 < 𝑦))))
3534imp 408 . . . . . 6 ((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦) → (𝑧 ∈ ℝ → (𝑧 < +∞ → ∃𝑦𝐴 𝑧 < 𝑦)))
3635ralrimiv 3139 . . . . 5 ((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦) → ∀𝑧 ∈ ℝ (𝑧 < +∞ → ∃𝑦𝐴 𝑧 < 𝑦))
375, 36jca 513 . . . 4 ((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦) → (∀𝑧𝐴 ¬ +∞ < 𝑧 ∧ ∀𝑧 ∈ ℝ (𝑧 < +∞ → ∃𝑦𝐴 𝑧 < 𝑦)))
38 pnfxr 11079 . . . . 5 +∞ ∈ ℝ*
39 supxr 13097 . . . . 5 (((𝐴 ⊆ ℝ* ∧ +∞ ∈ ℝ*) ∧ (∀𝑧𝐴 ¬ +∞ < 𝑧 ∧ ∀𝑧 ∈ ℝ (𝑧 < +∞ → ∃𝑦𝐴 𝑧 < 𝑦))) → sup(𝐴, ℝ*, < ) = +∞)
4038, 39mpanl2 699 . . . 4 ((𝐴 ⊆ ℝ* ∧ (∀𝑧𝐴 ¬ +∞ < 𝑧 ∧ ∀𝑧 ∈ ℝ (𝑧 < +∞ → ∃𝑦𝐴 𝑧 < 𝑦))) → sup(𝐴, ℝ*, < ) = +∞)
4137, 40syldan 592 . . 3 ((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦) → sup(𝐴, ℝ*, < ) = +∞)
4241ex 414 . 2 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦 → sup(𝐴, ℝ*, < ) = +∞))
43 rexr 11071 . . . . . . 7 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
4443ad2antlr 725 . . . . . 6 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) = +∞) → 𝑥 ∈ ℝ*)
45 ltpnf 12906 . . . . . . . . 9 (𝑥 ∈ ℝ → 𝑥 < +∞)
46 breq2 5085 . . . . . . . . 9 (sup(𝐴, ℝ*, < ) = +∞ → (𝑥 < sup(𝐴, ℝ*, < ) ↔ 𝑥 < +∞))
4745, 46syl5ibr 246 . . . . . . . 8 (sup(𝐴, ℝ*, < ) = +∞ → (𝑥 ∈ ℝ → 𝑥 < sup(𝐴, ℝ*, < )))
4847impcom 409 . . . . . . 7 ((𝑥 ∈ ℝ ∧ sup(𝐴, ℝ*, < ) = +∞) → 𝑥 < sup(𝐴, ℝ*, < ))
4948adantll 712 . . . . . 6 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) = +∞) → 𝑥 < sup(𝐴, ℝ*, < ))
50 xrltso 12925 . . . . . . . 8 < Or ℝ*
5150a1i 11 . . . . . . 7 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) = +∞) → < Or ℝ*)
52 xrsupss 13093 . . . . . . . 8 (𝐴 ⊆ ℝ* → ∃𝑧 ∈ ℝ* (∀𝑤𝐴 ¬ 𝑧 < 𝑤 ∧ ∀𝑤 ∈ ℝ* (𝑤 < 𝑧 → ∃𝑦𝐴 𝑤 < 𝑦)))
5352ad2antrr 724 . . . . . . 7 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) = +∞) → ∃𝑧 ∈ ℝ* (∀𝑤𝐴 ¬ 𝑧 < 𝑤 ∧ ∀𝑤 ∈ ℝ* (𝑤 < 𝑧 → ∃𝑦𝐴 𝑤 < 𝑦)))
5451, 53suplub 9267 . . . . . 6 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) = +∞) → ((𝑥 ∈ ℝ*𝑥 < sup(𝐴, ℝ*, < )) → ∃𝑦𝐴 𝑥 < 𝑦))
5544, 49, 54mp2and 697 . . . . 5 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) = +∞) → ∃𝑦𝐴 𝑥 < 𝑦)
5655ex 414 . . . 4 ((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) → (sup(𝐴, ℝ*, < ) = +∞ → ∃𝑦𝐴 𝑥 < 𝑦))
5743ad2antlr 725 . . . . . 6 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ 𝑦𝐴) → 𝑥 ∈ ℝ*)
5813adantlr 713 . . . . . 6 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ 𝑦𝐴) → 𝑦 ∈ ℝ*)
59 xrltle 12933 . . . . . 6 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 < 𝑦𝑥𝑦))
6057, 58, 59syl2anc 585 . . . . 5 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ 𝑦𝐴) → (𝑥 < 𝑦𝑥𝑦))
6160reximdva 3162 . . . 4 ((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) → (∃𝑦𝐴 𝑥 < 𝑦 → ∃𝑦𝐴 𝑥𝑦))
6256, 61syld 47 . . 3 ((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) → (sup(𝐴, ℝ*, < ) = +∞ → ∃𝑦𝐴 𝑥𝑦))
6362ralrimdva 3148 . 2 (𝐴 ⊆ ℝ* → (sup(𝐴, ℝ*, < ) = +∞ → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦))
6442, 63impbid 211 1 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦 ↔ sup(𝐴, ℝ*, < ) = +∞))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397   = wceq 1539  wcel 2104  wral 3062  wrex 3071  wss 3892   class class class wbr 5081   Or wor 5513  (class class class)co 7307  supcsup 9247  cr 10920  1c1 10922   + caddc 10924  +∞cpnf 11056  *cxr 11058   < clt 11059  cle 11060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10977  ax-resscn 10978  ax-1cn 10979  ax-icn 10980  ax-addcl 10981  ax-addrcl 10982  ax-mulcl 10983  ax-mulrcl 10984  ax-mulcom 10985  ax-addass 10986  ax-mulass 10987  ax-distr 10988  ax-i2m1 10989  ax-1ne0 10990  ax-1rid 10991  ax-rnegex 10992  ax-rrecex 10993  ax-cnre 10994  ax-pre-lttri 10995  ax-pre-lttrn 10996  ax-pre-ltadd 10997  ax-pre-mulgt0 10998  ax-pre-sup 10999
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3304  df-reu 3305  df-rab 3306  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-po 5514  df-so 5515  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-er 8529  df-en 8765  df-dom 8766  df-sdom 8767  df-sup 9249  df-pnf 11061  df-mnf 11062  df-xr 11063  df-ltxr 11064  df-le 11065  df-sub 11257  df-neg 11258
This theorem is referenced by:  supxrbnd1  13105  uzsup  13633  limsupval2  15238  limsupbnd2  15241  rlimuni  15308  rlimcld2  15336  rlimno1  15414  esumcvg  32103  suplesup  43106  liminfval2  43538
  Copyright terms: Public domain W3C validator