MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supxrunb1 Structured version   Visualization version   GIF version

Theorem supxrunb1 12351
Description: The supremum of an unbounded-above set of extended reals is plus infinity. (Contributed by NM, 19-Jan-2006.)
Assertion
Ref Expression
supxrunb1 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦 ↔ sup(𝐴, ℝ*, < ) = +∞))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem supxrunb1
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3755 . . . . . . . 8 (𝐴 ⊆ ℝ* → (𝑧𝐴𝑧 ∈ ℝ*))
2 pnfnlt 12162 . . . . . . . 8 (𝑧 ∈ ℝ* → ¬ +∞ < 𝑧)
31, 2syl6 35 . . . . . . 7 (𝐴 ⊆ ℝ* → (𝑧𝐴 → ¬ +∞ < 𝑧))
43ralrimiv 3112 . . . . . 6 (𝐴 ⊆ ℝ* → ∀𝑧𝐴 ¬ +∞ < 𝑧)
54adantr 472 . . . . 5 ((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦) → ∀𝑧𝐴 ¬ +∞ < 𝑧)
6 peano2re 10463 . . . . . . . . . . . . 13 (𝑧 ∈ ℝ → (𝑧 + 1) ∈ ℝ)
7 breq1 4812 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝑧 + 1) → (𝑥𝑦 ↔ (𝑧 + 1) ≤ 𝑦))
87rexbidv 3199 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑧 + 1) → (∃𝑦𝐴 𝑥𝑦 ↔ ∃𝑦𝐴 (𝑧 + 1) ≤ 𝑦))
98rspcva 3459 . . . . . . . . . . . . . . 15 (((𝑧 + 1) ∈ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦) → ∃𝑦𝐴 (𝑧 + 1) ≤ 𝑦)
109adantrr 708 . . . . . . . . . . . . . 14 (((𝑧 + 1) ∈ ℝ ∧ (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦𝐴 ⊆ ℝ*)) → ∃𝑦𝐴 (𝑧 + 1) ≤ 𝑦)
1110ancoms 450 . . . . . . . . . . . . 13 (((∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦𝐴 ⊆ ℝ*) ∧ (𝑧 + 1) ∈ ℝ) → ∃𝑦𝐴 (𝑧 + 1) ≤ 𝑦)
126, 11sylan2 586 . . . . . . . . . . . 12 (((∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦𝐴 ⊆ ℝ*) ∧ 𝑧 ∈ ℝ) → ∃𝑦𝐴 (𝑧 + 1) ≤ 𝑦)
13 ssel2 3756 . . . . . . . . . . . . . . . 16 ((𝐴 ⊆ ℝ*𝑦𝐴) → 𝑦 ∈ ℝ*)
14 ltp1 11115 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℝ → 𝑧 < (𝑧 + 1))
1514adantr 472 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ*) → 𝑧 < (𝑧 + 1))
166ancli 544 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℝ → (𝑧 ∈ ℝ ∧ (𝑧 + 1) ∈ ℝ))
17 rexr 10339 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ ℝ → 𝑧 ∈ ℝ*)
18 rexr 10339 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 + 1) ∈ ℝ → (𝑧 + 1) ∈ ℝ*)
19 xrltletr 12190 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ∈ ℝ* ∧ (𝑧 + 1) ∈ ℝ*𝑦 ∈ ℝ*) → ((𝑧 < (𝑧 + 1) ∧ (𝑧 + 1) ≤ 𝑦) → 𝑧 < 𝑦))
2018, 19syl3an2 1203 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧 ∈ ℝ* ∧ (𝑧 + 1) ∈ ℝ ∧ 𝑦 ∈ ℝ*) → ((𝑧 < (𝑧 + 1) ∧ (𝑧 + 1) ≤ 𝑦) → 𝑧 < 𝑦))
2117, 20syl3an1 1202 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 ∈ ℝ ∧ (𝑧 + 1) ∈ ℝ ∧ 𝑦 ∈ ℝ*) → ((𝑧 < (𝑧 + 1) ∧ (𝑧 + 1) ≤ 𝑦) → 𝑧 < 𝑦))
22213expa 1147 . . . . . . . . . . . . . . . . . . 19 (((𝑧 ∈ ℝ ∧ (𝑧 + 1) ∈ ℝ) ∧ 𝑦 ∈ ℝ*) → ((𝑧 < (𝑧 + 1) ∧ (𝑧 + 1) ≤ 𝑦) → 𝑧 < 𝑦))
2316, 22sylan 575 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ*) → ((𝑧 < (𝑧 + 1) ∧ (𝑧 + 1) ≤ 𝑦) → 𝑧 < 𝑦))
2415, 23mpand 686 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ*) → ((𝑧 + 1) ≤ 𝑦𝑧 < 𝑦))
2524ancoms 450 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℝ*𝑧 ∈ ℝ) → ((𝑧 + 1) ≤ 𝑦𝑧 < 𝑦))
2613, 25sylan 575 . . . . . . . . . . . . . . 15 (((𝐴 ⊆ ℝ*𝑦𝐴) ∧ 𝑧 ∈ ℝ) → ((𝑧 + 1) ≤ 𝑦𝑧 < 𝑦))
2726an32s 642 . . . . . . . . . . . . . 14 (((𝐴 ⊆ ℝ*𝑧 ∈ ℝ) ∧ 𝑦𝐴) → ((𝑧 + 1) ≤ 𝑦𝑧 < 𝑦))
2827reximdva 3163 . . . . . . . . . . . . 13 ((𝐴 ⊆ ℝ*𝑧 ∈ ℝ) → (∃𝑦𝐴 (𝑧 + 1) ≤ 𝑦 → ∃𝑦𝐴 𝑧 < 𝑦))
2928adantll 705 . . . . . . . . . . . 12 (((∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦𝐴 ⊆ ℝ*) ∧ 𝑧 ∈ ℝ) → (∃𝑦𝐴 (𝑧 + 1) ≤ 𝑦 → ∃𝑦𝐴 𝑧 < 𝑦))
3012, 29mpd 15 . . . . . . . . . . 11 (((∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦𝐴 ⊆ ℝ*) ∧ 𝑧 ∈ ℝ) → ∃𝑦𝐴 𝑧 < 𝑦)
3130exp31 410 . . . . . . . . . 10 (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦 → (𝐴 ⊆ ℝ* → (𝑧 ∈ ℝ → ∃𝑦𝐴 𝑧 < 𝑦)))
3231a1dd 50 . . . . . . . . 9 (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦 → (𝐴 ⊆ ℝ* → (𝑧 < +∞ → (𝑧 ∈ ℝ → ∃𝑦𝐴 𝑧 < 𝑦))))
3332com4r 94 . . . . . . . 8 (𝑧 ∈ ℝ → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦 → (𝐴 ⊆ ℝ* → (𝑧 < +∞ → ∃𝑦𝐴 𝑧 < 𝑦))))
3433com13 88 . . . . . . 7 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦 → (𝑧 ∈ ℝ → (𝑧 < +∞ → ∃𝑦𝐴 𝑧 < 𝑦))))
3534imp 395 . . . . . 6 ((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦) → (𝑧 ∈ ℝ → (𝑧 < +∞ → ∃𝑦𝐴 𝑧 < 𝑦)))
3635ralrimiv 3112 . . . . 5 ((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦) → ∀𝑧 ∈ ℝ (𝑧 < +∞ → ∃𝑦𝐴 𝑧 < 𝑦))
375, 36jca 507 . . . 4 ((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦) → (∀𝑧𝐴 ¬ +∞ < 𝑧 ∧ ∀𝑧 ∈ ℝ (𝑧 < +∞ → ∃𝑦𝐴 𝑧 < 𝑦)))
38 pnfxr 10346 . . . . 5 +∞ ∈ ℝ*
39 supxr 12345 . . . . 5 (((𝐴 ⊆ ℝ* ∧ +∞ ∈ ℝ*) ∧ (∀𝑧𝐴 ¬ +∞ < 𝑧 ∧ ∀𝑧 ∈ ℝ (𝑧 < +∞ → ∃𝑦𝐴 𝑧 < 𝑦))) → sup(𝐴, ℝ*, < ) = +∞)
4038, 39mpanl2 692 . . . 4 ((𝐴 ⊆ ℝ* ∧ (∀𝑧𝐴 ¬ +∞ < 𝑧 ∧ ∀𝑧 ∈ ℝ (𝑧 < +∞ → ∃𝑦𝐴 𝑧 < 𝑦))) → sup(𝐴, ℝ*, < ) = +∞)
4137, 40syldan 585 . . 3 ((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦) → sup(𝐴, ℝ*, < ) = +∞)
4241ex 401 . 2 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦 → sup(𝐴, ℝ*, < ) = +∞))
43 rexr 10339 . . . . . . 7 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
4443ad2antlr 718 . . . . . 6 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) = +∞) → 𝑥 ∈ ℝ*)
45 ltpnf 12154 . . . . . . . . 9 (𝑥 ∈ ℝ → 𝑥 < +∞)
46 breq2 4813 . . . . . . . . 9 (sup(𝐴, ℝ*, < ) = +∞ → (𝑥 < sup(𝐴, ℝ*, < ) ↔ 𝑥 < +∞))
4745, 46syl5ibr 237 . . . . . . . 8 (sup(𝐴, ℝ*, < ) = +∞ → (𝑥 ∈ ℝ → 𝑥 < sup(𝐴, ℝ*, < )))
4847impcom 396 . . . . . . 7 ((𝑥 ∈ ℝ ∧ sup(𝐴, ℝ*, < ) = +∞) → 𝑥 < sup(𝐴, ℝ*, < ))
4948adantll 705 . . . . . 6 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) = +∞) → 𝑥 < sup(𝐴, ℝ*, < ))
50 xrltso 12174 . . . . . . . 8 < Or ℝ*
5150a1i 11 . . . . . . 7 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) = +∞) → < Or ℝ*)
52 xrsupss 12341 . . . . . . . 8 (𝐴 ⊆ ℝ* → ∃𝑧 ∈ ℝ* (∀𝑤𝐴 ¬ 𝑧 < 𝑤 ∧ ∀𝑤 ∈ ℝ* (𝑤 < 𝑧 → ∃𝑦𝐴 𝑤 < 𝑦)))
5352ad2antrr 717 . . . . . . 7 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) = +∞) → ∃𝑧 ∈ ℝ* (∀𝑤𝐴 ¬ 𝑧 < 𝑤 ∧ ∀𝑤 ∈ ℝ* (𝑤 < 𝑧 → ∃𝑦𝐴 𝑤 < 𝑦)))
5451, 53suplub 8573 . . . . . 6 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) = +∞) → ((𝑥 ∈ ℝ*𝑥 < sup(𝐴, ℝ*, < )) → ∃𝑦𝐴 𝑥 < 𝑦))
5544, 49, 54mp2and 690 . . . . 5 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) = +∞) → ∃𝑦𝐴 𝑥 < 𝑦)
5655ex 401 . . . 4 ((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) → (sup(𝐴, ℝ*, < ) = +∞ → ∃𝑦𝐴 𝑥 < 𝑦))
5743ad2antlr 718 . . . . . 6 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ 𝑦𝐴) → 𝑥 ∈ ℝ*)
5813adantlr 706 . . . . . 6 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ 𝑦𝐴) → 𝑦 ∈ ℝ*)
59 xrltle 12182 . . . . . 6 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 < 𝑦𝑥𝑦))
6057, 58, 59syl2anc 579 . . . . 5 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ 𝑦𝐴) → (𝑥 < 𝑦𝑥𝑦))
6160reximdva 3163 . . . 4 ((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) → (∃𝑦𝐴 𝑥 < 𝑦 → ∃𝑦𝐴 𝑥𝑦))
6256, 61syld 47 . . 3 ((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) → (sup(𝐴, ℝ*, < ) = +∞ → ∃𝑦𝐴 𝑥𝑦))
6362ralrimdva 3116 . 2 (𝐴 ⊆ ℝ* → (sup(𝐴, ℝ*, < ) = +∞ → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦))
6442, 63impbid 203 1 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦 ↔ sup(𝐴, ℝ*, < ) = +∞))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  wral 3055  wrex 3056  wss 3732   class class class wbr 4809   Or wor 5197  (class class class)co 6842  supcsup 8553  cr 10188  1c1 10190   + caddc 10192  +∞cpnf 10325  *cxr 10327   < clt 10328  cle 10329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-br 4810  df-opab 4872  df-mpt 4889  df-id 5185  df-po 5198  df-so 5199  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-sup 8555  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523
This theorem is referenced by:  supxrbnd1  12353  uzsup  12870  limsupval2  14496  limsupbnd2  14499  rlimuni  14566  rlimcld2  14594  rlimno1  14669  esumcvg  30595  suplesup  40193  liminfval2  40638
  Copyright terms: Public domain W3C validator