MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supxrunb1 Structured version   Visualization version   GIF version

Theorem supxrunb1 12702
Description: The supremum of an unbounded-above set of extended reals is plus infinity. (Contributed by NM, 19-Jan-2006.)
Assertion
Ref Expression
supxrunb1 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦 ↔ sup(𝐴, ℝ*, < ) = +∞))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem supxrunb1
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3965 . . . . . . . 8 (𝐴 ⊆ ℝ* → (𝑧𝐴𝑧 ∈ ℝ*))
2 pnfnlt 12513 . . . . . . . 8 (𝑧 ∈ ℝ* → ¬ +∞ < 𝑧)
31, 2syl6 35 . . . . . . 7 (𝐴 ⊆ ℝ* → (𝑧𝐴 → ¬ +∞ < 𝑧))
43ralrimiv 3186 . . . . . 6 (𝐴 ⊆ ℝ* → ∀𝑧𝐴 ¬ +∞ < 𝑧)
54adantr 481 . . . . 5 ((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦) → ∀𝑧𝐴 ¬ +∞ < 𝑧)
6 peano2re 10802 . . . . . . . . . . . . 13 (𝑧 ∈ ℝ → (𝑧 + 1) ∈ ℝ)
7 breq1 5066 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝑧 + 1) → (𝑥𝑦 ↔ (𝑧 + 1) ≤ 𝑦))
87rexbidv 3302 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑧 + 1) → (∃𝑦𝐴 𝑥𝑦 ↔ ∃𝑦𝐴 (𝑧 + 1) ≤ 𝑦))
98rspcva 3625 . . . . . . . . . . . . . . 15 (((𝑧 + 1) ∈ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦) → ∃𝑦𝐴 (𝑧 + 1) ≤ 𝑦)
109adantrr 713 . . . . . . . . . . . . . 14 (((𝑧 + 1) ∈ ℝ ∧ (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦𝐴 ⊆ ℝ*)) → ∃𝑦𝐴 (𝑧 + 1) ≤ 𝑦)
1110ancoms 459 . . . . . . . . . . . . 13 (((∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦𝐴 ⊆ ℝ*) ∧ (𝑧 + 1) ∈ ℝ) → ∃𝑦𝐴 (𝑧 + 1) ≤ 𝑦)
126, 11sylan2 592 . . . . . . . . . . . 12 (((∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦𝐴 ⊆ ℝ*) ∧ 𝑧 ∈ ℝ) → ∃𝑦𝐴 (𝑧 + 1) ≤ 𝑦)
13 ssel2 3966 . . . . . . . . . . . . . . . 16 ((𝐴 ⊆ ℝ*𝑦𝐴) → 𝑦 ∈ ℝ*)
14 ltp1 11469 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℝ → 𝑧 < (𝑧 + 1))
1514adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ*) → 𝑧 < (𝑧 + 1))
166ancli 549 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℝ → (𝑧 ∈ ℝ ∧ (𝑧 + 1) ∈ ℝ))
17 rexr 10676 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ ℝ → 𝑧 ∈ ℝ*)
18 rexr 10676 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 + 1) ∈ ℝ → (𝑧 + 1) ∈ ℝ*)
19 xrltletr 12540 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ∈ ℝ* ∧ (𝑧 + 1) ∈ ℝ*𝑦 ∈ ℝ*) → ((𝑧 < (𝑧 + 1) ∧ (𝑧 + 1) ≤ 𝑦) → 𝑧 < 𝑦))
2018, 19syl3an2 1158 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧 ∈ ℝ* ∧ (𝑧 + 1) ∈ ℝ ∧ 𝑦 ∈ ℝ*) → ((𝑧 < (𝑧 + 1) ∧ (𝑧 + 1) ≤ 𝑦) → 𝑧 < 𝑦))
2117, 20syl3an1 1157 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 ∈ ℝ ∧ (𝑧 + 1) ∈ ℝ ∧ 𝑦 ∈ ℝ*) → ((𝑧 < (𝑧 + 1) ∧ (𝑧 + 1) ≤ 𝑦) → 𝑧 < 𝑦))
22213expa 1112 . . . . . . . . . . . . . . . . . . 19 (((𝑧 ∈ ℝ ∧ (𝑧 + 1) ∈ ℝ) ∧ 𝑦 ∈ ℝ*) → ((𝑧 < (𝑧 + 1) ∧ (𝑧 + 1) ≤ 𝑦) → 𝑧 < 𝑦))
2316, 22sylan 580 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ*) → ((𝑧 < (𝑧 + 1) ∧ (𝑧 + 1) ≤ 𝑦) → 𝑧 < 𝑦))
2415, 23mpand 691 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ*) → ((𝑧 + 1) ≤ 𝑦𝑧 < 𝑦))
2524ancoms 459 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℝ*𝑧 ∈ ℝ) → ((𝑧 + 1) ≤ 𝑦𝑧 < 𝑦))
2613, 25sylan 580 . . . . . . . . . . . . . . 15 (((𝐴 ⊆ ℝ*𝑦𝐴) ∧ 𝑧 ∈ ℝ) → ((𝑧 + 1) ≤ 𝑦𝑧 < 𝑦))
2726an32s 648 . . . . . . . . . . . . . 14 (((𝐴 ⊆ ℝ*𝑧 ∈ ℝ) ∧ 𝑦𝐴) → ((𝑧 + 1) ≤ 𝑦𝑧 < 𝑦))
2827reximdva 3279 . . . . . . . . . . . . 13 ((𝐴 ⊆ ℝ*𝑧 ∈ ℝ) → (∃𝑦𝐴 (𝑧 + 1) ≤ 𝑦 → ∃𝑦𝐴 𝑧 < 𝑦))
2928adantll 710 . . . . . . . . . . . 12 (((∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦𝐴 ⊆ ℝ*) ∧ 𝑧 ∈ ℝ) → (∃𝑦𝐴 (𝑧 + 1) ≤ 𝑦 → ∃𝑦𝐴 𝑧 < 𝑦))
3012, 29mpd 15 . . . . . . . . . . 11 (((∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦𝐴 ⊆ ℝ*) ∧ 𝑧 ∈ ℝ) → ∃𝑦𝐴 𝑧 < 𝑦)
3130exp31 420 . . . . . . . . . 10 (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦 → (𝐴 ⊆ ℝ* → (𝑧 ∈ ℝ → ∃𝑦𝐴 𝑧 < 𝑦)))
3231a1dd 50 . . . . . . . . 9 (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦 → (𝐴 ⊆ ℝ* → (𝑧 < +∞ → (𝑧 ∈ ℝ → ∃𝑦𝐴 𝑧 < 𝑦))))
3332com4r 94 . . . . . . . 8 (𝑧 ∈ ℝ → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦 → (𝐴 ⊆ ℝ* → (𝑧 < +∞ → ∃𝑦𝐴 𝑧 < 𝑦))))
3433com13 88 . . . . . . 7 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦 → (𝑧 ∈ ℝ → (𝑧 < +∞ → ∃𝑦𝐴 𝑧 < 𝑦))))
3534imp 407 . . . . . 6 ((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦) → (𝑧 ∈ ℝ → (𝑧 < +∞ → ∃𝑦𝐴 𝑧 < 𝑦)))
3635ralrimiv 3186 . . . . 5 ((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦) → ∀𝑧 ∈ ℝ (𝑧 < +∞ → ∃𝑦𝐴 𝑧 < 𝑦))
375, 36jca 512 . . . 4 ((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦) → (∀𝑧𝐴 ¬ +∞ < 𝑧 ∧ ∀𝑧 ∈ ℝ (𝑧 < +∞ → ∃𝑦𝐴 𝑧 < 𝑦)))
38 pnfxr 10684 . . . . 5 +∞ ∈ ℝ*
39 supxr 12696 . . . . 5 (((𝐴 ⊆ ℝ* ∧ +∞ ∈ ℝ*) ∧ (∀𝑧𝐴 ¬ +∞ < 𝑧 ∧ ∀𝑧 ∈ ℝ (𝑧 < +∞ → ∃𝑦𝐴 𝑧 < 𝑦))) → sup(𝐴, ℝ*, < ) = +∞)
4038, 39mpanl2 697 . . . 4 ((𝐴 ⊆ ℝ* ∧ (∀𝑧𝐴 ¬ +∞ < 𝑧 ∧ ∀𝑧 ∈ ℝ (𝑧 < +∞ → ∃𝑦𝐴 𝑧 < 𝑦))) → sup(𝐴, ℝ*, < ) = +∞)
4137, 40syldan 591 . . 3 ((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦) → sup(𝐴, ℝ*, < ) = +∞)
4241ex 413 . 2 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦 → sup(𝐴, ℝ*, < ) = +∞))
43 rexr 10676 . . . . . . 7 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
4443ad2antlr 723 . . . . . 6 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) = +∞) → 𝑥 ∈ ℝ*)
45 ltpnf 12505 . . . . . . . . 9 (𝑥 ∈ ℝ → 𝑥 < +∞)
46 breq2 5067 . . . . . . . . 9 (sup(𝐴, ℝ*, < ) = +∞ → (𝑥 < sup(𝐴, ℝ*, < ) ↔ 𝑥 < +∞))
4745, 46syl5ibr 247 . . . . . . . 8 (sup(𝐴, ℝ*, < ) = +∞ → (𝑥 ∈ ℝ → 𝑥 < sup(𝐴, ℝ*, < )))
4847impcom 408 . . . . . . 7 ((𝑥 ∈ ℝ ∧ sup(𝐴, ℝ*, < ) = +∞) → 𝑥 < sup(𝐴, ℝ*, < ))
4948adantll 710 . . . . . 6 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) = +∞) → 𝑥 < sup(𝐴, ℝ*, < ))
50 xrltso 12524 . . . . . . . 8 < Or ℝ*
5150a1i 11 . . . . . . 7 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) = +∞) → < Or ℝ*)
52 xrsupss 12692 . . . . . . . 8 (𝐴 ⊆ ℝ* → ∃𝑧 ∈ ℝ* (∀𝑤𝐴 ¬ 𝑧 < 𝑤 ∧ ∀𝑤 ∈ ℝ* (𝑤 < 𝑧 → ∃𝑦𝐴 𝑤 < 𝑦)))
5352ad2antrr 722 . . . . . . 7 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) = +∞) → ∃𝑧 ∈ ℝ* (∀𝑤𝐴 ¬ 𝑧 < 𝑤 ∧ ∀𝑤 ∈ ℝ* (𝑤 < 𝑧 → ∃𝑦𝐴 𝑤 < 𝑦)))
5451, 53suplub 8913 . . . . . 6 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) = +∞) → ((𝑥 ∈ ℝ*𝑥 < sup(𝐴, ℝ*, < )) → ∃𝑦𝐴 𝑥 < 𝑦))
5544, 49, 54mp2and 695 . . . . 5 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) = +∞) → ∃𝑦𝐴 𝑥 < 𝑦)
5655ex 413 . . . 4 ((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) → (sup(𝐴, ℝ*, < ) = +∞ → ∃𝑦𝐴 𝑥 < 𝑦))
5743ad2antlr 723 . . . . . 6 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ 𝑦𝐴) → 𝑥 ∈ ℝ*)
5813adantlr 711 . . . . . 6 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ 𝑦𝐴) → 𝑦 ∈ ℝ*)
59 xrltle 12532 . . . . . 6 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 < 𝑦𝑥𝑦))
6057, 58, 59syl2anc 584 . . . . 5 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ 𝑦𝐴) → (𝑥 < 𝑦𝑥𝑦))
6160reximdva 3279 . . . 4 ((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) → (∃𝑦𝐴 𝑥 < 𝑦 → ∃𝑦𝐴 𝑥𝑦))
6256, 61syld 47 . . 3 ((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) → (sup(𝐴, ℝ*, < ) = +∞ → ∃𝑦𝐴 𝑥𝑦))
6362ralrimdva 3194 . 2 (𝐴 ⊆ ℝ* → (sup(𝐴, ℝ*, < ) = +∞ → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦))
6442, 63impbid 213 1 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦 ↔ sup(𝐴, ℝ*, < ) = +∞))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396   = wceq 1530  wcel 2107  wral 3143  wrex 3144  wss 3940   class class class wbr 5063   Or wor 5472  (class class class)co 7148  supcsup 8893  cr 10525  1c1 10527   + caddc 10529  +∞cpnf 10661  *cxr 10663   < clt 10664  cle 10665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4838  df-br 5064  df-opab 5126  df-mpt 5144  df-id 5459  df-po 5473  df-so 5474  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-er 8279  df-en 8499  df-dom 8500  df-sdom 8501  df-sup 8895  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862
This theorem is referenced by:  supxrbnd1  12704  uzsup  13221  limsupval2  14827  limsupbnd2  14830  rlimuni  14897  rlimcld2  14925  rlimno1  15000  esumcvg  31231  suplesup  41472  liminfval2  41914
  Copyright terms: Public domain W3C validator