MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supxrunb1 Structured version   Visualization version   GIF version

Theorem supxrunb1 12807
Description: The supremum of an unbounded-above set of extended reals is plus infinity. (Contributed by NM, 19-Jan-2006.)
Assertion
Ref Expression
supxrunb1 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦 ↔ sup(𝐴, ℝ*, < ) = +∞))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem supxrunb1
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3880 . . . . . . . 8 (𝐴 ⊆ ℝ* → (𝑧𝐴𝑧 ∈ ℝ*))
2 pnfnlt 12618 . . . . . . . 8 (𝑧 ∈ ℝ* → ¬ +∞ < 𝑧)
31, 2syl6 35 . . . . . . 7 (𝐴 ⊆ ℝ* → (𝑧𝐴 → ¬ +∞ < 𝑧))
43ralrimiv 3096 . . . . . 6 (𝐴 ⊆ ℝ* → ∀𝑧𝐴 ¬ +∞ < 𝑧)
54adantr 484 . . . . 5 ((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦) → ∀𝑧𝐴 ¬ +∞ < 𝑧)
6 peano2re 10903 . . . . . . . . . . . . 13 (𝑧 ∈ ℝ → (𝑧 + 1) ∈ ℝ)
7 breq1 5043 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝑧 + 1) → (𝑥𝑦 ↔ (𝑧 + 1) ≤ 𝑦))
87rexbidv 3208 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑧 + 1) → (∃𝑦𝐴 𝑥𝑦 ↔ ∃𝑦𝐴 (𝑧 + 1) ≤ 𝑦))
98rspcva 3527 . . . . . . . . . . . . . . 15 (((𝑧 + 1) ∈ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦) → ∃𝑦𝐴 (𝑧 + 1) ≤ 𝑦)
109adantrr 717 . . . . . . . . . . . . . 14 (((𝑧 + 1) ∈ ℝ ∧ (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦𝐴 ⊆ ℝ*)) → ∃𝑦𝐴 (𝑧 + 1) ≤ 𝑦)
1110ancoms 462 . . . . . . . . . . . . 13 (((∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦𝐴 ⊆ ℝ*) ∧ (𝑧 + 1) ∈ ℝ) → ∃𝑦𝐴 (𝑧 + 1) ≤ 𝑦)
126, 11sylan2 596 . . . . . . . . . . . 12 (((∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦𝐴 ⊆ ℝ*) ∧ 𝑧 ∈ ℝ) → ∃𝑦𝐴 (𝑧 + 1) ≤ 𝑦)
13 ssel2 3882 . . . . . . . . . . . . . . . 16 ((𝐴 ⊆ ℝ*𝑦𝐴) → 𝑦 ∈ ℝ*)
14 ltp1 11570 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℝ → 𝑧 < (𝑧 + 1))
1514adantr 484 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ*) → 𝑧 < (𝑧 + 1))
166ancli 552 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℝ → (𝑧 ∈ ℝ ∧ (𝑧 + 1) ∈ ℝ))
17 rexr 10777 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ ℝ → 𝑧 ∈ ℝ*)
18 rexr 10777 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 + 1) ∈ ℝ → (𝑧 + 1) ∈ ℝ*)
19 xrltletr 12645 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ∈ ℝ* ∧ (𝑧 + 1) ∈ ℝ*𝑦 ∈ ℝ*) → ((𝑧 < (𝑧 + 1) ∧ (𝑧 + 1) ≤ 𝑦) → 𝑧 < 𝑦))
2018, 19syl3an2 1165 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧 ∈ ℝ* ∧ (𝑧 + 1) ∈ ℝ ∧ 𝑦 ∈ ℝ*) → ((𝑧 < (𝑧 + 1) ∧ (𝑧 + 1) ≤ 𝑦) → 𝑧 < 𝑦))
2117, 20syl3an1 1164 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 ∈ ℝ ∧ (𝑧 + 1) ∈ ℝ ∧ 𝑦 ∈ ℝ*) → ((𝑧 < (𝑧 + 1) ∧ (𝑧 + 1) ≤ 𝑦) → 𝑧 < 𝑦))
22213expa 1119 . . . . . . . . . . . . . . . . . . 19 (((𝑧 ∈ ℝ ∧ (𝑧 + 1) ∈ ℝ) ∧ 𝑦 ∈ ℝ*) → ((𝑧 < (𝑧 + 1) ∧ (𝑧 + 1) ≤ 𝑦) → 𝑧 < 𝑦))
2316, 22sylan 583 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ*) → ((𝑧 < (𝑧 + 1) ∧ (𝑧 + 1) ≤ 𝑦) → 𝑧 < 𝑦))
2415, 23mpand 695 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ*) → ((𝑧 + 1) ≤ 𝑦𝑧 < 𝑦))
2524ancoms 462 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℝ*𝑧 ∈ ℝ) → ((𝑧 + 1) ≤ 𝑦𝑧 < 𝑦))
2613, 25sylan 583 . . . . . . . . . . . . . . 15 (((𝐴 ⊆ ℝ*𝑦𝐴) ∧ 𝑧 ∈ ℝ) → ((𝑧 + 1) ≤ 𝑦𝑧 < 𝑦))
2726an32s 652 . . . . . . . . . . . . . 14 (((𝐴 ⊆ ℝ*𝑧 ∈ ℝ) ∧ 𝑦𝐴) → ((𝑧 + 1) ≤ 𝑦𝑧 < 𝑦))
2827reximdva 3185 . . . . . . . . . . . . 13 ((𝐴 ⊆ ℝ*𝑧 ∈ ℝ) → (∃𝑦𝐴 (𝑧 + 1) ≤ 𝑦 → ∃𝑦𝐴 𝑧 < 𝑦))
2928adantll 714 . . . . . . . . . . . 12 (((∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦𝐴 ⊆ ℝ*) ∧ 𝑧 ∈ ℝ) → (∃𝑦𝐴 (𝑧 + 1) ≤ 𝑦 → ∃𝑦𝐴 𝑧 < 𝑦))
3012, 29mpd 15 . . . . . . . . . . 11 (((∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦𝐴 ⊆ ℝ*) ∧ 𝑧 ∈ ℝ) → ∃𝑦𝐴 𝑧 < 𝑦)
3130exp31 423 . . . . . . . . . 10 (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦 → (𝐴 ⊆ ℝ* → (𝑧 ∈ ℝ → ∃𝑦𝐴 𝑧 < 𝑦)))
3231a1dd 50 . . . . . . . . 9 (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦 → (𝐴 ⊆ ℝ* → (𝑧 < +∞ → (𝑧 ∈ ℝ → ∃𝑦𝐴 𝑧 < 𝑦))))
3332com4r 94 . . . . . . . 8 (𝑧 ∈ ℝ → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦 → (𝐴 ⊆ ℝ* → (𝑧 < +∞ → ∃𝑦𝐴 𝑧 < 𝑦))))
3433com13 88 . . . . . . 7 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦 → (𝑧 ∈ ℝ → (𝑧 < +∞ → ∃𝑦𝐴 𝑧 < 𝑦))))
3534imp 410 . . . . . 6 ((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦) → (𝑧 ∈ ℝ → (𝑧 < +∞ → ∃𝑦𝐴 𝑧 < 𝑦)))
3635ralrimiv 3096 . . . . 5 ((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦) → ∀𝑧 ∈ ℝ (𝑧 < +∞ → ∃𝑦𝐴 𝑧 < 𝑦))
375, 36jca 515 . . . 4 ((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦) → (∀𝑧𝐴 ¬ +∞ < 𝑧 ∧ ∀𝑧 ∈ ℝ (𝑧 < +∞ → ∃𝑦𝐴 𝑧 < 𝑦)))
38 pnfxr 10785 . . . . 5 +∞ ∈ ℝ*
39 supxr 12801 . . . . 5 (((𝐴 ⊆ ℝ* ∧ +∞ ∈ ℝ*) ∧ (∀𝑧𝐴 ¬ +∞ < 𝑧 ∧ ∀𝑧 ∈ ℝ (𝑧 < +∞ → ∃𝑦𝐴 𝑧 < 𝑦))) → sup(𝐴, ℝ*, < ) = +∞)
4038, 39mpanl2 701 . . . 4 ((𝐴 ⊆ ℝ* ∧ (∀𝑧𝐴 ¬ +∞ < 𝑧 ∧ ∀𝑧 ∈ ℝ (𝑧 < +∞ → ∃𝑦𝐴 𝑧 < 𝑦))) → sup(𝐴, ℝ*, < ) = +∞)
4137, 40syldan 594 . . 3 ((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦) → sup(𝐴, ℝ*, < ) = +∞)
4241ex 416 . 2 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦 → sup(𝐴, ℝ*, < ) = +∞))
43 rexr 10777 . . . . . . 7 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
4443ad2antlr 727 . . . . . 6 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) = +∞) → 𝑥 ∈ ℝ*)
45 ltpnf 12610 . . . . . . . . 9 (𝑥 ∈ ℝ → 𝑥 < +∞)
46 breq2 5044 . . . . . . . . 9 (sup(𝐴, ℝ*, < ) = +∞ → (𝑥 < sup(𝐴, ℝ*, < ) ↔ 𝑥 < +∞))
4745, 46syl5ibr 249 . . . . . . . 8 (sup(𝐴, ℝ*, < ) = +∞ → (𝑥 ∈ ℝ → 𝑥 < sup(𝐴, ℝ*, < )))
4847impcom 411 . . . . . . 7 ((𝑥 ∈ ℝ ∧ sup(𝐴, ℝ*, < ) = +∞) → 𝑥 < sup(𝐴, ℝ*, < ))
4948adantll 714 . . . . . 6 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) = +∞) → 𝑥 < sup(𝐴, ℝ*, < ))
50 xrltso 12629 . . . . . . . 8 < Or ℝ*
5150a1i 11 . . . . . . 7 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) = +∞) → < Or ℝ*)
52 xrsupss 12797 . . . . . . . 8 (𝐴 ⊆ ℝ* → ∃𝑧 ∈ ℝ* (∀𝑤𝐴 ¬ 𝑧 < 𝑤 ∧ ∀𝑤 ∈ ℝ* (𝑤 < 𝑧 → ∃𝑦𝐴 𝑤 < 𝑦)))
5352ad2antrr 726 . . . . . . 7 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) = +∞) → ∃𝑧 ∈ ℝ* (∀𝑤𝐴 ¬ 𝑧 < 𝑤 ∧ ∀𝑤 ∈ ℝ* (𝑤 < 𝑧 → ∃𝑦𝐴 𝑤 < 𝑦)))
5451, 53suplub 9009 . . . . . 6 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) = +∞) → ((𝑥 ∈ ℝ*𝑥 < sup(𝐴, ℝ*, < )) → ∃𝑦𝐴 𝑥 < 𝑦))
5544, 49, 54mp2and 699 . . . . 5 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) = +∞) → ∃𝑦𝐴 𝑥 < 𝑦)
5655ex 416 . . . 4 ((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) → (sup(𝐴, ℝ*, < ) = +∞ → ∃𝑦𝐴 𝑥 < 𝑦))
5743ad2antlr 727 . . . . . 6 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ 𝑦𝐴) → 𝑥 ∈ ℝ*)
5813adantlr 715 . . . . . 6 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ 𝑦𝐴) → 𝑦 ∈ ℝ*)
59 xrltle 12637 . . . . . 6 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 < 𝑦𝑥𝑦))
6057, 58, 59syl2anc 587 . . . . 5 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ 𝑦𝐴) → (𝑥 < 𝑦𝑥𝑦))
6160reximdva 3185 . . . 4 ((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) → (∃𝑦𝐴 𝑥 < 𝑦 → ∃𝑦𝐴 𝑥𝑦))
6256, 61syld 47 . . 3 ((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) → (sup(𝐴, ℝ*, < ) = +∞ → ∃𝑦𝐴 𝑥𝑦))
6362ralrimdva 3102 . 2 (𝐴 ⊆ ℝ* → (sup(𝐴, ℝ*, < ) = +∞ → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦))
6442, 63impbid 215 1 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦 ↔ sup(𝐴, ℝ*, < ) = +∞))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1542  wcel 2114  wral 3054  wrex 3055  wss 3853   class class class wbr 5040   Or wor 5451  (class class class)co 7182  supcsup 8989  cr 10626  1c1 10628   + caddc 10630  +∞cpnf 10762  *cxr 10764   < clt 10765  cle 10766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306  ax-un 7491  ax-cnex 10683  ax-resscn 10684  ax-1cn 10685  ax-icn 10686  ax-addcl 10687  ax-addrcl 10688  ax-mulcl 10689  ax-mulrcl 10690  ax-mulcom 10691  ax-addass 10692  ax-mulass 10693  ax-distr 10694  ax-i2m1 10695  ax-1ne0 10696  ax-1rid 10697  ax-rnegex 10698  ax-rrecex 10699  ax-cnre 10700  ax-pre-lttri 10701  ax-pre-lttrn 10702  ax-pre-ltadd 10703  ax-pre-mulgt0 10704  ax-pre-sup 10705
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-op 4533  df-uni 4807  df-br 5041  df-opab 5103  df-mpt 5121  df-id 5439  df-po 5452  df-so 5453  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-iota 6307  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7139  df-ov 7185  df-oprab 7186  df-mpo 7187  df-er 8332  df-en 8568  df-dom 8569  df-sdom 8570  df-sup 8991  df-pnf 10767  df-mnf 10768  df-xr 10769  df-ltxr 10770  df-le 10771  df-sub 10962  df-neg 10963
This theorem is referenced by:  supxrbnd1  12809  uzsup  13334  limsupval2  14939  limsupbnd2  14942  rlimuni  15009  rlimcld2  15037  rlimno1  15115  esumcvg  31636  suplesup  42456  liminfval2  42891
  Copyright terms: Public domain W3C validator