Step | Hyp | Ref
| Expression |
1 | | ssel 3910 |
. . . . . . . 8
⊢ (𝐴 ⊆ ℝ*
→ (𝑧 ∈ 𝐴 → 𝑧 ∈
ℝ*)) |
2 | | pnfnlt 12793 |
. . . . . . . 8
⊢ (𝑧 ∈ ℝ*
→ ¬ +∞ < 𝑧) |
3 | 1, 2 | syl6 35 |
. . . . . . 7
⊢ (𝐴 ⊆ ℝ*
→ (𝑧 ∈ 𝐴 → ¬ +∞ <
𝑧)) |
4 | 3 | ralrimiv 3106 |
. . . . . 6
⊢ (𝐴 ⊆ ℝ*
→ ∀𝑧 ∈
𝐴 ¬ +∞ < 𝑧) |
5 | 4 | adantr 480 |
. . . . 5
⊢ ((𝐴 ⊆ ℝ*
∧ ∀𝑥 ∈
ℝ ∃𝑦 ∈
𝐴 𝑥 ≤ 𝑦) → ∀𝑧 ∈ 𝐴 ¬ +∞ < 𝑧) |
6 | | peano2re 11078 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ ℝ → (𝑧 + 1) ∈
ℝ) |
7 | | breq1 5073 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = (𝑧 + 1) → (𝑥 ≤ 𝑦 ↔ (𝑧 + 1) ≤ 𝑦)) |
8 | 7 | rexbidv 3225 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = (𝑧 + 1) → (∃𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ↔ ∃𝑦 ∈ 𝐴 (𝑧 + 1) ≤ 𝑦)) |
9 | 8 | rspcva 3550 |
. . . . . . . . . . . . . . 15
⊢ (((𝑧 + 1) ∈ ℝ ∧
∀𝑥 ∈ ℝ
∃𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) → ∃𝑦 ∈ 𝐴 (𝑧 + 1) ≤ 𝑦) |
10 | 9 | adantrr 713 |
. . . . . . . . . . . . . 14
⊢ (((𝑧 + 1) ∈ ℝ ∧
(∀𝑥 ∈ ℝ
∃𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ∧ 𝐴 ⊆ ℝ*)) →
∃𝑦 ∈ 𝐴 (𝑧 + 1) ≤ 𝑦) |
11 | 10 | ancoms 458 |
. . . . . . . . . . . . 13
⊢
(((∀𝑥 ∈
ℝ ∃𝑦 ∈
𝐴 𝑥 ≤ 𝑦 ∧ 𝐴 ⊆ ℝ*) ∧ (𝑧 + 1) ∈ ℝ) →
∃𝑦 ∈ 𝐴 (𝑧 + 1) ≤ 𝑦) |
12 | 6, 11 | sylan2 592 |
. . . . . . . . . . . 12
⊢
(((∀𝑥 ∈
ℝ ∃𝑦 ∈
𝐴 𝑥 ≤ 𝑦 ∧ 𝐴 ⊆ ℝ*) ∧ 𝑧 ∈ ℝ) →
∃𝑦 ∈ 𝐴 (𝑧 + 1) ≤ 𝑦) |
13 | | ssel2 3912 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ⊆ ℝ*
∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ ℝ*) |
14 | | ltp1 11745 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ ℝ → 𝑧 < (𝑧 + 1)) |
15 | 14 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ*)
→ 𝑧 < (𝑧 + 1)) |
16 | 6 | ancli 548 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ ℝ → (𝑧 ∈ ℝ ∧ (𝑧 + 1) ∈
ℝ)) |
17 | | rexr 10952 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 ∈ ℝ → 𝑧 ∈
ℝ*) |
18 | | rexr 10952 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑧 + 1) ∈ ℝ →
(𝑧 + 1) ∈
ℝ*) |
19 | | xrltletr 12820 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑧 ∈ ℝ*
∧ (𝑧 + 1) ∈
ℝ* ∧ 𝑦
∈ ℝ*) → ((𝑧 < (𝑧 + 1) ∧ (𝑧 + 1) ≤ 𝑦) → 𝑧 < 𝑦)) |
20 | 18, 19 | syl3an2 1162 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑧 ∈ ℝ*
∧ (𝑧 + 1) ∈
ℝ ∧ 𝑦 ∈
ℝ*) → ((𝑧 < (𝑧 + 1) ∧ (𝑧 + 1) ≤ 𝑦) → 𝑧 < 𝑦)) |
21 | 17, 20 | syl3an1 1161 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑧 ∈ ℝ ∧ (𝑧 + 1) ∈ ℝ ∧ 𝑦 ∈ ℝ*)
→ ((𝑧 < (𝑧 + 1) ∧ (𝑧 + 1) ≤ 𝑦) → 𝑧 < 𝑦)) |
22 | 21 | 3expa 1116 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑧 ∈ ℝ ∧ (𝑧 + 1) ∈ ℝ) ∧
𝑦 ∈
ℝ*) → ((𝑧 < (𝑧 + 1) ∧ (𝑧 + 1) ≤ 𝑦) → 𝑧 < 𝑦)) |
23 | 16, 22 | sylan 579 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ*)
→ ((𝑧 < (𝑧 + 1) ∧ (𝑧 + 1) ≤ 𝑦) → 𝑧 < 𝑦)) |
24 | 15, 23 | mpand 691 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ*)
→ ((𝑧 + 1) ≤ 𝑦 → 𝑧 < 𝑦)) |
25 | 24 | ancoms 458 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ ℝ*
∧ 𝑧 ∈ ℝ)
→ ((𝑧 + 1) ≤ 𝑦 → 𝑧 < 𝑦)) |
26 | 13, 25 | sylan 579 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ⊆ ℝ*
∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ ℝ) → ((𝑧 + 1) ≤ 𝑦 → 𝑧 < 𝑦)) |
27 | 26 | an32s 648 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ⊆ ℝ*
∧ 𝑧 ∈ ℝ)
∧ 𝑦 ∈ 𝐴) → ((𝑧 + 1) ≤ 𝑦 → 𝑧 < 𝑦)) |
28 | 27 | reximdva 3202 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ⊆ ℝ*
∧ 𝑧 ∈ ℝ)
→ (∃𝑦 ∈
𝐴 (𝑧 + 1) ≤ 𝑦 → ∃𝑦 ∈ 𝐴 𝑧 < 𝑦)) |
29 | 28 | adantll 710 |
. . . . . . . . . . . 12
⊢
(((∀𝑥 ∈
ℝ ∃𝑦 ∈
𝐴 𝑥 ≤ 𝑦 ∧ 𝐴 ⊆ ℝ*) ∧ 𝑧 ∈ ℝ) →
(∃𝑦 ∈ 𝐴 (𝑧 + 1) ≤ 𝑦 → ∃𝑦 ∈ 𝐴 𝑧 < 𝑦)) |
30 | 12, 29 | mpd 15 |
. . . . . . . . . . 11
⊢
(((∀𝑥 ∈
ℝ ∃𝑦 ∈
𝐴 𝑥 ≤ 𝑦 ∧ 𝐴 ⊆ ℝ*) ∧ 𝑧 ∈ ℝ) →
∃𝑦 ∈ 𝐴 𝑧 < 𝑦) |
31 | 30 | exp31 419 |
. . . . . . . . . 10
⊢
(∀𝑥 ∈
ℝ ∃𝑦 ∈
𝐴 𝑥 ≤ 𝑦 → (𝐴 ⊆ ℝ* → (𝑧 ∈ ℝ →
∃𝑦 ∈ 𝐴 𝑧 < 𝑦))) |
32 | 31 | a1dd 50 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
ℝ ∃𝑦 ∈
𝐴 𝑥 ≤ 𝑦 → (𝐴 ⊆ ℝ* → (𝑧 < +∞ → (𝑧 ∈ ℝ →
∃𝑦 ∈ 𝐴 𝑧 < 𝑦)))) |
33 | 32 | com4r 94 |
. . . . . . . 8
⊢ (𝑧 ∈ ℝ →
(∀𝑥 ∈ ℝ
∃𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 → (𝐴 ⊆ ℝ* → (𝑧 < +∞ →
∃𝑦 ∈ 𝐴 𝑧 < 𝑦)))) |
34 | 33 | com13 88 |
. . . . . . 7
⊢ (𝐴 ⊆ ℝ*
→ (∀𝑥 ∈
ℝ ∃𝑦 ∈
𝐴 𝑥 ≤ 𝑦 → (𝑧 ∈ ℝ → (𝑧 < +∞ → ∃𝑦 ∈ 𝐴 𝑧 < 𝑦)))) |
35 | 34 | imp 406 |
. . . . . 6
⊢ ((𝐴 ⊆ ℝ*
∧ ∀𝑥 ∈
ℝ ∃𝑦 ∈
𝐴 𝑥 ≤ 𝑦) → (𝑧 ∈ ℝ → (𝑧 < +∞ → ∃𝑦 ∈ 𝐴 𝑧 < 𝑦))) |
36 | 35 | ralrimiv 3106 |
. . . . 5
⊢ ((𝐴 ⊆ ℝ*
∧ ∀𝑥 ∈
ℝ ∃𝑦 ∈
𝐴 𝑥 ≤ 𝑦) → ∀𝑧 ∈ ℝ (𝑧 < +∞ → ∃𝑦 ∈ 𝐴 𝑧 < 𝑦)) |
37 | 5, 36 | jca 511 |
. . . 4
⊢ ((𝐴 ⊆ ℝ*
∧ ∀𝑥 ∈
ℝ ∃𝑦 ∈
𝐴 𝑥 ≤ 𝑦) → (∀𝑧 ∈ 𝐴 ¬ +∞ < 𝑧 ∧ ∀𝑧 ∈ ℝ (𝑧 < +∞ → ∃𝑦 ∈ 𝐴 𝑧 < 𝑦))) |
38 | | pnfxr 10960 |
. . . . 5
⊢ +∞
∈ ℝ* |
39 | | supxr 12976 |
. . . . 5
⊢ (((𝐴 ⊆ ℝ*
∧ +∞ ∈ ℝ*) ∧ (∀𝑧 ∈ 𝐴 ¬ +∞ < 𝑧 ∧ ∀𝑧 ∈ ℝ (𝑧 < +∞ → ∃𝑦 ∈ 𝐴 𝑧 < 𝑦))) → sup(𝐴, ℝ*, < ) =
+∞) |
40 | 38, 39 | mpanl2 697 |
. . . 4
⊢ ((𝐴 ⊆ ℝ*
∧ (∀𝑧 ∈
𝐴 ¬ +∞ < 𝑧 ∧ ∀𝑧 ∈ ℝ (𝑧 < +∞ →
∃𝑦 ∈ 𝐴 𝑧 < 𝑦))) → sup(𝐴, ℝ*, < ) =
+∞) |
41 | 37, 40 | syldan 590 |
. . 3
⊢ ((𝐴 ⊆ ℝ*
∧ ∀𝑥 ∈
ℝ ∃𝑦 ∈
𝐴 𝑥 ≤ 𝑦) → sup(𝐴, ℝ*, < ) =
+∞) |
42 | 41 | ex 412 |
. 2
⊢ (𝐴 ⊆ ℝ*
→ (∀𝑥 ∈
ℝ ∃𝑦 ∈
𝐴 𝑥 ≤ 𝑦 → sup(𝐴, ℝ*, < ) =
+∞)) |
43 | | rexr 10952 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ → 𝑥 ∈
ℝ*) |
44 | 43 | ad2antlr 723 |
. . . . . 6
⊢ (((𝐴 ⊆ ℝ*
∧ 𝑥 ∈ ℝ)
∧ sup(𝐴,
ℝ*, < ) = +∞) → 𝑥 ∈ ℝ*) |
45 | | ltpnf 12785 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ → 𝑥 < +∞) |
46 | | breq2 5074 |
. . . . . . . . 9
⊢
(sup(𝐴,
ℝ*, < ) = +∞ → (𝑥 < sup(𝐴, ℝ*, < ) ↔ 𝑥 <
+∞)) |
47 | 45, 46 | syl5ibr 245 |
. . . . . . . 8
⊢
(sup(𝐴,
ℝ*, < ) = +∞ → (𝑥 ∈ ℝ → 𝑥 < sup(𝐴, ℝ*, <
))) |
48 | 47 | impcom 407 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ ∧ sup(𝐴, ℝ*, < ) =
+∞) → 𝑥 <
sup(𝐴, ℝ*,
< )) |
49 | 48 | adantll 710 |
. . . . . 6
⊢ (((𝐴 ⊆ ℝ*
∧ 𝑥 ∈ ℝ)
∧ sup(𝐴,
ℝ*, < ) = +∞) → 𝑥 < sup(𝐴, ℝ*, <
)) |
50 | | xrltso 12804 |
. . . . . . . 8
⊢ < Or
ℝ* |
51 | 50 | a1i 11 |
. . . . . . 7
⊢ (((𝐴 ⊆ ℝ*
∧ 𝑥 ∈ ℝ)
∧ sup(𝐴,
ℝ*, < ) = +∞) → < Or
ℝ*) |
52 | | xrsupss 12972 |
. . . . . . . 8
⊢ (𝐴 ⊆ ℝ*
→ ∃𝑧 ∈
ℝ* (∀𝑤 ∈ 𝐴 ¬ 𝑧 < 𝑤 ∧ ∀𝑤 ∈ ℝ* (𝑤 < 𝑧 → ∃𝑦 ∈ 𝐴 𝑤 < 𝑦))) |
53 | 52 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝐴 ⊆ ℝ*
∧ 𝑥 ∈ ℝ)
∧ sup(𝐴,
ℝ*, < ) = +∞) → ∃𝑧 ∈ ℝ* (∀𝑤 ∈ 𝐴 ¬ 𝑧 < 𝑤 ∧ ∀𝑤 ∈ ℝ* (𝑤 < 𝑧 → ∃𝑦 ∈ 𝐴 𝑤 < 𝑦))) |
54 | 51, 53 | suplub 9149 |
. . . . . 6
⊢ (((𝐴 ⊆ ℝ*
∧ 𝑥 ∈ ℝ)
∧ sup(𝐴,
ℝ*, < ) = +∞) → ((𝑥 ∈ ℝ* ∧ 𝑥 < sup(𝐴, ℝ*, < )) →
∃𝑦 ∈ 𝐴 𝑥 < 𝑦)) |
55 | 44, 49, 54 | mp2and 695 |
. . . . 5
⊢ (((𝐴 ⊆ ℝ*
∧ 𝑥 ∈ ℝ)
∧ sup(𝐴,
ℝ*, < ) = +∞) → ∃𝑦 ∈ 𝐴 𝑥 < 𝑦) |
56 | 55 | ex 412 |
. . . 4
⊢ ((𝐴 ⊆ ℝ*
∧ 𝑥 ∈ ℝ)
→ (sup(𝐴,
ℝ*, < ) = +∞ → ∃𝑦 ∈ 𝐴 𝑥 < 𝑦)) |
57 | 43 | ad2antlr 723 |
. . . . . 6
⊢ (((𝐴 ⊆ ℝ*
∧ 𝑥 ∈ ℝ)
∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ ℝ*) |
58 | 13 | adantlr 711 |
. . . . . 6
⊢ (((𝐴 ⊆ ℝ*
∧ 𝑥 ∈ ℝ)
∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ ℝ*) |
59 | | xrltle 12812 |
. . . . . 6
⊢ ((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) → (𝑥 < 𝑦 → 𝑥 ≤ 𝑦)) |
60 | 57, 58, 59 | syl2anc 583 |
. . . . 5
⊢ (((𝐴 ⊆ ℝ*
∧ 𝑥 ∈ ℝ)
∧ 𝑦 ∈ 𝐴) → (𝑥 < 𝑦 → 𝑥 ≤ 𝑦)) |
61 | 60 | reximdva 3202 |
. . . 4
⊢ ((𝐴 ⊆ ℝ*
∧ 𝑥 ∈ ℝ)
→ (∃𝑦 ∈
𝐴 𝑥 < 𝑦 → ∃𝑦 ∈ 𝐴 𝑥 ≤ 𝑦)) |
62 | 56, 61 | syld 47 |
. . 3
⊢ ((𝐴 ⊆ ℝ*
∧ 𝑥 ∈ ℝ)
→ (sup(𝐴,
ℝ*, < ) = +∞ → ∃𝑦 ∈ 𝐴 𝑥 ≤ 𝑦)) |
63 | 62 | ralrimdva 3112 |
. 2
⊢ (𝐴 ⊆ ℝ*
→ (sup(𝐴,
ℝ*, < ) = +∞ → ∀𝑥 ∈ ℝ ∃𝑦 ∈ 𝐴 𝑥 ≤ 𝑦)) |
64 | 42, 63 | impbid 211 |
1
⊢ (𝐴 ⊆ ℝ*
→ (∀𝑥 ∈
ℝ ∃𝑦 ∈
𝐴 𝑥 ≤ 𝑦 ↔ sup(𝐴, ℝ*, < ) =
+∞)) |