Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oe0 | Structured version Visualization version GIF version |
Description: Ordinal exponentiation with zero exponent. Definition 8.30 of [TakeutiZaring] p. 67. (Contributed by NM, 31-Dec-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
oe0 | ⊢ (𝐴 ∈ On → (𝐴 ↑o ∅) = 1o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7353 | . . . . 5 ⊢ (𝐴 = ∅ → (𝐴 ↑o ∅) = (∅ ↑o ∅)) | |
2 | oe0m0 8430 | . . . . 5 ⊢ (∅ ↑o ∅) = 1o | |
3 | 1, 2 | eqtrdi 2793 | . . . 4 ⊢ (𝐴 = ∅ → (𝐴 ↑o ∅) = 1o) |
4 | 3 | adantl 483 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐴 = ∅) → (𝐴 ↑o ∅) = 1o) |
5 | 0elon 6364 | . . . . . 6 ⊢ ∅ ∈ On | |
6 | oevn0 8425 | . . . . . 6 ⊢ (((𝐴 ∈ On ∧ ∅ ∈ On) ∧ ∅ ∈ 𝐴) → (𝐴 ↑o ∅) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘∅)) | |
7 | 5, 6 | mpanl2 699 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (𝐴 ↑o ∅) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘∅)) |
8 | 1oex 8386 | . . . . . 6 ⊢ 1o ∈ V | |
9 | 8 | rdg0 8331 | . . . . 5 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘∅) = 1o |
10 | 7, 9 | eqtrdi 2793 | . . . 4 ⊢ ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (𝐴 ↑o ∅) = 1o) |
11 | 10 | adantll 712 | . . 3 ⊢ (((𝐴 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐴 ↑o ∅) = 1o) |
12 | 4, 11 | oe0lem 8423 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐴 ∈ On) → (𝐴 ↑o ∅) = 1o) |
13 | 12 | anidms 568 | 1 ⊢ (𝐴 ∈ On → (𝐴 ↑o ∅) = 1o) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1541 ∈ wcel 2106 Vcvv 3443 ∅c0 4277 ↦ cmpt 5183 Oncon0 6310 ‘cfv 6488 (class class class)co 7346 reccrdg 8319 1oc1o 8369 ·o comu 8374 ↑o coe 8375 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5251 ax-nul 5258 ax-pr 5379 ax-un 7659 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3735 df-csb 3851 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3924 df-nul 4278 df-if 4482 df-pw 4557 df-sn 4582 df-pr 4584 df-op 4588 df-uni 4861 df-iun 4951 df-br 5101 df-opab 5163 df-mpt 5184 df-tr 5218 df-id 5525 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5582 df-we 5584 df-xp 5633 df-rel 5634 df-cnv 5635 df-co 5636 df-dm 5637 df-rn 5638 df-res 5639 df-ima 5640 df-pred 6246 df-ord 6313 df-on 6314 df-lim 6315 df-suc 6316 df-iota 6440 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7790 df-2nd 7909 df-frecs 8176 df-wrecs 8207 df-recs 8281 df-rdg 8320 df-1o 8376 df-oexp 8382 |
This theorem is referenced by: oecl 8447 oe1 8455 oe1m 8456 oen0 8497 oewordri 8503 oeoalem 8507 oeoelem 8509 oeoe 8510 oeeulem 8512 nnecl 8524 oaabs2 8559 cantnff 9540 omabs2 41369 omcl2 41370 |
Copyright terms: Public domain | W3C validator |