| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oe0 | Structured version Visualization version GIF version | ||
| Description: Ordinal exponentiation with zero exponent. Definition 8.30 of [TakeutiZaring] p. 67. Definition 2.6 of [Schloeder] p. 4. (Contributed by NM, 31-Dec-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| Ref | Expression |
|---|---|
| oe0 | ⊢ (𝐴 ∈ On → (𝐴 ↑o ∅) = 1o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7376 | . . . . 5 ⊢ (𝐴 = ∅ → (𝐴 ↑o ∅) = (∅ ↑o ∅)) | |
| 2 | oe0m0 8461 | . . . . 5 ⊢ (∅ ↑o ∅) = 1o | |
| 3 | 1, 2 | eqtrdi 2780 | . . . 4 ⊢ (𝐴 = ∅ → (𝐴 ↑o ∅) = 1o) |
| 4 | 3 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐴 = ∅) → (𝐴 ↑o ∅) = 1o) |
| 5 | 0elon 6375 | . . . . . 6 ⊢ ∅ ∈ On | |
| 6 | oevn0 8456 | . . . . . 6 ⊢ (((𝐴 ∈ On ∧ ∅ ∈ On) ∧ ∅ ∈ 𝐴) → (𝐴 ↑o ∅) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘∅)) | |
| 7 | 5, 6 | mpanl2 701 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (𝐴 ↑o ∅) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘∅)) |
| 8 | 1oex 8421 | . . . . . 6 ⊢ 1o ∈ V | |
| 9 | 8 | rdg0 8366 | . . . . 5 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘∅) = 1o |
| 10 | 7, 9 | eqtrdi 2780 | . . . 4 ⊢ ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (𝐴 ↑o ∅) = 1o) |
| 11 | 10 | adantll 714 | . . 3 ⊢ (((𝐴 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐴 ↑o ∅) = 1o) |
| 12 | 4, 11 | oe0lem 8454 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐴 ∈ On) → (𝐴 ↑o ∅) = 1o) |
| 13 | 12 | anidms 566 | 1 ⊢ (𝐴 ∈ On → (𝐴 ↑o ∅) = 1o) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ∅c0 4292 ↦ cmpt 5183 Oncon0 6320 ‘cfv 6499 (class class class)co 7369 reccrdg 8354 1oc1o 8404 ·o comu 8409 ↑o coe 8410 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-oexp 8417 |
| This theorem is referenced by: oecl 8478 oe1 8485 oe1m 8486 oen0 8527 oewordri 8533 oeoalem 8537 oeoelem 8539 oeoe 8540 oeeulem 8542 nnecl 8554 oaabs2 8590 cantnff 9603 onexoegt 43206 oe0suclim 43239 oenassex 43280 omabs2 43294 omcl2 43295 |
| Copyright terms: Public domain | W3C validator |