MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oe0 Structured version   Visualization version   GIF version

Theorem oe0 8432
Description: Ordinal exponentiation with zero exponent. Definition 8.30 of [TakeutiZaring] p. 67. (Contributed by NM, 31-Dec-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
oe0 (𝐴 ∈ On → (𝐴o ∅) = 1o)

Proof of Theorem oe0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oveq1 7353 . . . . 5 (𝐴 = ∅ → (𝐴o ∅) = (∅ ↑o ∅))
2 oe0m0 8430 . . . . 5 (∅ ↑o ∅) = 1o
31, 2eqtrdi 2793 . . . 4 (𝐴 = ∅ → (𝐴o ∅) = 1o)
43adantl 483 . . 3 ((𝐴 ∈ On ∧ 𝐴 = ∅) → (𝐴o ∅) = 1o)
5 0elon 6364 . . . . . 6 ∅ ∈ On
6 oevn0 8425 . . . . . 6 (((𝐴 ∈ On ∧ ∅ ∈ On) ∧ ∅ ∈ 𝐴) → (𝐴o ∅) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘∅))
75, 6mpanl2 699 . . . . 5 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (𝐴o ∅) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘∅))
8 1oex 8386 . . . . . 6 1o ∈ V
98rdg0 8331 . . . . 5 (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘∅) = 1o
107, 9eqtrdi 2793 . . . 4 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (𝐴o ∅) = 1o)
1110adantll 712 . . 3 (((𝐴 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐴o ∅) = 1o)
124, 11oe0lem 8423 . 2 ((𝐴 ∈ On ∧ 𝐴 ∈ On) → (𝐴o ∅) = 1o)
1312anidms 568 1 (𝐴 ∈ On → (𝐴o ∅) = 1o)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1541  wcel 2106  Vcvv 3443  c0 4277  cmpt 5183  Oncon0 6310  cfv 6488  (class class class)co 7346  reccrdg 8319  1oc1o 8369   ·o comu 8374  o coe 8375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5251  ax-nul 5258  ax-pr 5379  ax-un 7659
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3735  df-csb 3851  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3924  df-nul 4278  df-if 4482  df-pw 4557  df-sn 4582  df-pr 4584  df-op 4588  df-uni 4861  df-iun 4951  df-br 5101  df-opab 5163  df-mpt 5184  df-tr 5218  df-id 5525  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5582  df-we 5584  df-xp 5633  df-rel 5634  df-cnv 5635  df-co 5636  df-dm 5637  df-rn 5638  df-res 5639  df-ima 5640  df-pred 6246  df-ord 6313  df-on 6314  df-lim 6315  df-suc 6316  df-iota 6440  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7790  df-2nd 7909  df-frecs 8176  df-wrecs 8207  df-recs 8281  df-rdg 8320  df-1o 8376  df-oexp 8382
This theorem is referenced by:  oecl  8447  oe1  8455  oe1m  8456  oen0  8497  oewordri  8503  oeoalem  8507  oeoelem  8509  oeoe  8510  oeeulem  8512  nnecl  8524  oaabs2  8559  cantnff  9540  omabs2  41369  omcl2  41370
  Copyright terms: Public domain W3C validator