MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oe0 Structured version   Visualization version   GIF version

Theorem oe0 8463
Description: Ordinal exponentiation with zero exponent. Definition 8.30 of [TakeutiZaring] p. 67. Definition 2.6 of [Schloeder] p. 4. (Contributed by NM, 31-Dec-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
oe0 (𝐴 ∈ On → (𝐴o ∅) = 1o)

Proof of Theorem oe0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oveq1 7376 . . . . 5 (𝐴 = ∅ → (𝐴o ∅) = (∅ ↑o ∅))
2 oe0m0 8461 . . . . 5 (∅ ↑o ∅) = 1o
31, 2eqtrdi 2780 . . . 4 (𝐴 = ∅ → (𝐴o ∅) = 1o)
43adantl 481 . . 3 ((𝐴 ∈ On ∧ 𝐴 = ∅) → (𝐴o ∅) = 1o)
5 0elon 6375 . . . . . 6 ∅ ∈ On
6 oevn0 8456 . . . . . 6 (((𝐴 ∈ On ∧ ∅ ∈ On) ∧ ∅ ∈ 𝐴) → (𝐴o ∅) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘∅))
75, 6mpanl2 701 . . . . 5 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (𝐴o ∅) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘∅))
8 1oex 8421 . . . . . 6 1o ∈ V
98rdg0 8366 . . . . 5 (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘∅) = 1o
107, 9eqtrdi 2780 . . . 4 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (𝐴o ∅) = 1o)
1110adantll 714 . . 3 (((𝐴 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐴o ∅) = 1o)
124, 11oe0lem 8454 . 2 ((𝐴 ∈ On ∧ 𝐴 ∈ On) → (𝐴o ∅) = 1o)
1312anidms 566 1 (𝐴 ∈ On → (𝐴o ∅) = 1o)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  c0 4292  cmpt 5183  Oncon0 6320  cfv 6499  (class class class)co 7369  reccrdg 8354  1oc1o 8404   ·o comu 8409  o coe 8410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-oexp 8417
This theorem is referenced by:  oecl  8478  oe1  8485  oe1m  8486  oen0  8527  oewordri  8533  oeoalem  8537  oeoelem  8539  oeoe  8540  oeeulem  8542  nnecl  8554  oaabs2  8590  cantnff  9603  onexoegt  43206  oe0suclim  43239  oenassex  43280  omabs2  43294  omcl2  43295
  Copyright terms: Public domain W3C validator