MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oe0 Structured version   Visualization version   GIF version

Theorem oe0 8542
Description: Ordinal exponentiation with zero exponent. Definition 8.30 of [TakeutiZaring] p. 67. Definition 2.6 of [Schloeder] p. 4. (Contributed by NM, 31-Dec-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
oe0 (𝐴 ∈ On → (𝐴o ∅) = 1o)

Proof of Theorem oe0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oveq1 7421 . . . . 5 (𝐴 = ∅ → (𝐴o ∅) = (∅ ↑o ∅))
2 oe0m0 8540 . . . . 5 (∅ ↑o ∅) = 1o
31, 2eqtrdi 2782 . . . 4 (𝐴 = ∅ → (𝐴o ∅) = 1o)
43adantl 480 . . 3 ((𝐴 ∈ On ∧ 𝐴 = ∅) → (𝐴o ∅) = 1o)
5 0elon 6420 . . . . . 6 ∅ ∈ On
6 oevn0 8535 . . . . . 6 (((𝐴 ∈ On ∧ ∅ ∈ On) ∧ ∅ ∈ 𝐴) → (𝐴o ∅) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘∅))
75, 6mpanl2 699 . . . . 5 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (𝐴o ∅) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘∅))
8 1oex 8496 . . . . . 6 1o ∈ V
98rdg0 8441 . . . . 5 (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘∅) = 1o
107, 9eqtrdi 2782 . . . 4 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (𝐴o ∅) = 1o)
1110adantll 712 . . 3 (((𝐴 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐴o ∅) = 1o)
124, 11oe0lem 8533 . 2 ((𝐴 ∈ On ∧ 𝐴 ∈ On) → (𝐴o ∅) = 1o)
1312anidms 565 1 (𝐴 ∈ On → (𝐴o ∅) = 1o)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  Vcvv 3463  c0 4323  cmpt 5227  Oncon0 6366  cfv 6544  (class class class)co 7414  reccrdg 8429  1oc1o 8479   ·o comu 8484  o coe 8485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5295  ax-nul 5302  ax-pr 5424  ax-un 7736
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3366  df-rab 3421  df-v 3465  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4324  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4907  df-iun 4996  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6303  df-ord 6369  df-on 6370  df-lim 6371  df-suc 6372  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7867  df-2nd 7994  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-1o 8486  df-oexp 8492
This theorem is referenced by:  oecl  8557  oe1  8564  oe1m  8565  oen0  8606  oewordri  8612  oeoalem  8616  oeoelem  8618  oeoe  8619  oeeulem  8621  nnecl  8633  oaabs2  8669  cantnff  9708  onexoegt  42944  oe0suclim  42978  oenassex  43019  omabs2  43033  omcl2  43034
  Copyright terms: Public domain W3C validator