Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oe0 | Structured version Visualization version GIF version |
Description: Ordinal exponentiation with zero exponent. Definition 8.30 of [TakeutiZaring] p. 67. (Contributed by NM, 31-Dec-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
oe0 | ⊢ (𝐴 ∈ On → (𝐴 ↑o ∅) = 1o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7282 | . . . . 5 ⊢ (𝐴 = ∅ → (𝐴 ↑o ∅) = (∅ ↑o ∅)) | |
2 | oe0m0 8350 | . . . . 5 ⊢ (∅ ↑o ∅) = 1o | |
3 | 1, 2 | eqtrdi 2794 | . . . 4 ⊢ (𝐴 = ∅ → (𝐴 ↑o ∅) = 1o) |
4 | 3 | adantl 482 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐴 = ∅) → (𝐴 ↑o ∅) = 1o) |
5 | 0elon 6319 | . . . . . 6 ⊢ ∅ ∈ On | |
6 | oevn0 8345 | . . . . . 6 ⊢ (((𝐴 ∈ On ∧ ∅ ∈ On) ∧ ∅ ∈ 𝐴) → (𝐴 ↑o ∅) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘∅)) | |
7 | 5, 6 | mpanl2 698 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (𝐴 ↑o ∅) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘∅)) |
8 | 1oex 8307 | . . . . . 6 ⊢ 1o ∈ V | |
9 | 8 | rdg0 8252 | . . . . 5 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘∅) = 1o |
10 | 7, 9 | eqtrdi 2794 | . . . 4 ⊢ ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (𝐴 ↑o ∅) = 1o) |
11 | 10 | adantll 711 | . . 3 ⊢ (((𝐴 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐴 ↑o ∅) = 1o) |
12 | 4, 11 | oe0lem 8343 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐴 ∈ On) → (𝐴 ↑o ∅) = 1o) |
13 | 12 | anidms 567 | 1 ⊢ (𝐴 ∈ On → (𝐴 ↑o ∅) = 1o) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∅c0 4256 ↦ cmpt 5157 Oncon0 6266 ‘cfv 6433 (class class class)co 7275 reccrdg 8240 1oc1o 8290 ·o comu 8295 ↑o coe 8296 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-oexp 8303 |
This theorem is referenced by: oecl 8367 oe1 8375 oe1m 8376 oen0 8417 oewordri 8423 oeoalem 8427 oeoelem 8429 oeoe 8430 oeeulem 8432 nnecl 8444 oaabs2 8479 cantnff 9432 |
Copyright terms: Public domain | W3C validator |