| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oe0 | Structured version Visualization version GIF version | ||
| Description: Ordinal exponentiation with zero exponent. Definition 8.30 of [TakeutiZaring] p. 67. Definition 2.6 of [Schloeder] p. 4. (Contributed by NM, 31-Dec-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| Ref | Expression |
|---|---|
| oe0 | ⊢ (𝐴 ∈ On → (𝐴 ↑o ∅) = 1o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7353 | . . . . 5 ⊢ (𝐴 = ∅ → (𝐴 ↑o ∅) = (∅ ↑o ∅)) | |
| 2 | oe0m0 8435 | . . . . 5 ⊢ (∅ ↑o ∅) = 1o | |
| 3 | 1, 2 | eqtrdi 2782 | . . . 4 ⊢ (𝐴 = ∅ → (𝐴 ↑o ∅) = 1o) |
| 4 | 3 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐴 = ∅) → (𝐴 ↑o ∅) = 1o) |
| 5 | 0elon 6361 | . . . . . 6 ⊢ ∅ ∈ On | |
| 6 | oevn0 8430 | . . . . . 6 ⊢ (((𝐴 ∈ On ∧ ∅ ∈ On) ∧ ∅ ∈ 𝐴) → (𝐴 ↑o ∅) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘∅)) | |
| 7 | 5, 6 | mpanl2 701 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (𝐴 ↑o ∅) = (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘∅)) |
| 8 | 1oex 8395 | . . . . . 6 ⊢ 1o ∈ V | |
| 9 | 8 | rdg0 8340 | . . . . 5 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 ·o 𝐴)), 1o)‘∅) = 1o |
| 10 | 7, 9 | eqtrdi 2782 | . . . 4 ⊢ ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (𝐴 ↑o ∅) = 1o) |
| 11 | 10 | adantll 714 | . . 3 ⊢ (((𝐴 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐴 ↑o ∅) = 1o) |
| 12 | 4, 11 | oe0lem 8428 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐴 ∈ On) → (𝐴 ↑o ∅) = 1o) |
| 13 | 12 | anidms 566 | 1 ⊢ (𝐴 ∈ On → (𝐴 ↑o ∅) = 1o) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4280 ↦ cmpt 5170 Oncon0 6306 ‘cfv 6481 (class class class)co 7346 reccrdg 8328 1oc1o 8378 ·o comu 8383 ↑o coe 8384 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-oexp 8391 |
| This theorem is referenced by: oecl 8452 oe1 8459 oe1m 8460 oen0 8501 oewordri 8507 oeoalem 8511 oeoelem 8513 oeoe 8514 oeeulem 8516 nnecl 8528 oaabs2 8564 cantnff 9564 onexoegt 43285 oe0suclim 43318 oenassex 43359 omabs2 43373 omcl2 43374 |
| Copyright terms: Public domain | W3C validator |