Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpanr1 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
Ref | Expression |
---|---|
mpanr1.1 | ⊢ 𝜓 |
mpanr1.2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
mpanr1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpanr1.1 | . 2 ⊢ 𝜓 | |
2 | mpanr1.2 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
3 | 2 | anassrs 467 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
4 | 1, 3 | mpanl2 697 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: mpanr12 701 oacl 8327 omcl 8328 oaordi 8339 oawordri 8343 oaass 8354 oarec 8355 omordi 8359 omwordri 8365 odi 8372 omass 8373 oeoelem 8391 fimax2g 8990 fimin2g 9186 frr1 9448 axcnre 10851 divdiv23zi 11658 recp1lt1 11803 divgt0i 11813 divge0i 11814 ltreci 11815 lereci 11816 lt2msqi 11817 le2msqi 11818 msq11i 11819 ltdiv23i 11829 ltdivp1i 11831 zmin 12613 ge0gtmnf 12835 hashprg 14038 sqrt11i 15024 sqrtmuli 15025 sqrtmsq2i 15027 sqrtlei 15028 sqrtlti 15029 cos01gt0 15828 wspthsnwspthsnon 28182 vc2OLD 28831 vc0 28837 vcm 28839 nvpi 28930 nvge0 28936 ipval3 28972 ipidsq 28973 sspmval 28996 opsqrlem1 30403 opsqrlem6 30408 hstle 30493 hstrbi 30529 atordi 30647 finorwe 35480 poimirlem6 35710 poimirlem7 35711 poimirlem16 35720 poimirlem19 35723 poimirlem20 35724 |
Copyright terms: Public domain | W3C validator |