![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpanr1 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
Ref | Expression |
---|---|
mpanr1.1 | ⊢ 𝜓 |
mpanr1.2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
mpanr1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpanr1.1 | . 2 ⊢ 𝜓 | |
2 | mpanr1.2 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
3 | 2 | anassrs 467 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
4 | 1, 3 | mpanl2 700 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: mpanr12 704 oacl 8591 omcl 8592 oaordi 8602 oawordri 8606 oaass 8617 oarec 8618 omordi 8622 omwordri 8628 odi 8635 omass 8636 oeoelem 8654 undom 9125 fimax2g 9350 fimin2g 9566 frr1 9828 axcnre 11233 divdiv23zi 12047 recp1lt1 12193 divgt0i 12203 divge0i 12204 ltreci 12205 lereci 12206 lt2msqi 12207 le2msqi 12208 msq11i 12209 ltdiv23i 12219 ltdivp1i 12221 zmin 13009 ge0gtmnf 13234 hashprg 14444 sqrt11i 15433 sqrtmuli 15434 sqrtmsq2i 15436 sqrtlei 15437 sqrtlti 15438 cos01gt0 16239 wspthsnwspthsnon 29949 vc2OLD 30600 vc0 30606 vcm 30608 nvpi 30699 nvge0 30705 ipval3 30741 ipidsq 30742 sspmval 30765 opsqrlem1 32172 opsqrlem6 32177 hstle 32262 hstrbi 32298 atordi 32416 weiunlem2 36429 finorwe 37348 poimirlem6 37586 poimirlem7 37587 poimirlem16 37596 poimirlem19 37599 poimirlem20 37600 |
Copyright terms: Public domain | W3C validator |