| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpanr1 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
| Ref | Expression |
|---|---|
| mpanr1.1 | ⊢ 𝜓 |
| mpanr1.2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| mpanr1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpanr1.1 | . 2 ⊢ 𝜓 | |
| 2 | mpanr1.2 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 3 | 2 | anassrs 467 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| 4 | 1, 3 | mpanl2 701 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mpanr12 705 oacl 8552 omcl 8553 oaordi 8563 oawordri 8567 oaass 8578 oarec 8579 omordi 8583 omwordri 8589 odi 8596 omass 8597 oeoelem 8615 undom 9078 fimax2g 9299 fimin2g 9516 frr1 9778 axcnre 11183 divdiv23zi 11999 recp1lt1 12145 divgt0i 12155 divge0i 12156 ltreci 12157 lereci 12158 lt2msqi 12159 le2msqi 12160 msq11i 12161 ltdiv23i 12171 ltdivp1i 12173 zmin 12965 ge0gtmnf 13193 hashprg 14418 sqrt11i 15408 sqrtmuli 15409 sqrtmsq2i 15411 sqrtlei 15412 sqrtlti 15413 cos01gt0 16214 wspthsnwspthsnon 29903 vc2OLD 30554 vc0 30560 vcm 30562 nvpi 30653 nvge0 30659 ipval3 30695 ipidsq 30696 sspmval 30719 opsqrlem1 32126 opsqrlem6 32131 hstle 32216 hstrbi 32252 atordi 32370 weiunlem2 36486 finorwe 37405 poimirlem6 37655 poimirlem7 37656 poimirlem16 37665 poimirlem19 37668 poimirlem20 37669 |
| Copyright terms: Public domain | W3C validator |