![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpanr1 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
Ref | Expression |
---|---|
mpanr1.1 | ⊢ 𝜓 |
mpanr1.2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
mpanr1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpanr1.1 | . 2 ⊢ 𝜓 | |
2 | mpanr1.2 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
3 | 2 | anassrs 460 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
4 | 1, 3 | mpanl2 693 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 386 |
This theorem is referenced by: mpanr12 697 oacl 7856 omcl 7857 oaordi 7867 oawordri 7871 oaass 7882 oarec 7883 omordi 7887 omwordri 7893 odi 7900 omass 7901 oeoelem 7919 fimax2g 8449 fimin2g 8646 axcnre 10274 divdiv23zi 11071 recp1lt1 11214 divgt0i 11225 divge0i 11226 ltreci 11227 lereci 11228 lt2msqi 11229 le2msqi 11230 msq11i 11231 ltdiv23i 11241 ltdivp1i 11243 zmin 12028 ge0gtmnf 12251 hashprg 13431 sqrt11i 14464 sqrtmuli 14465 sqrtmsq2i 14467 sqrtlei 14468 sqrtlti 14469 cos01gt0 15256 wspthsnwspthsnon 27202 vc2OLD 27947 vc0 27953 vcm 27955 nvpi 28046 nvge0 28052 ipval3 28088 ipidsq 28089 sspmval 28112 opsqrlem1 29523 opsqrlem6 29528 hstle 29613 hstrbi 29649 atordi 29767 poimirlem6 33903 poimirlem7 33904 poimirlem16 33913 poimirlem19 33916 poimirlem20 33917 |
Copyright terms: Public domain | W3C validator |