![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpanr1 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
Ref | Expression |
---|---|
mpanr1.1 | ⊢ 𝜓 |
mpanr1.2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
mpanr1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpanr1.1 | . 2 ⊢ 𝜓 | |
2 | mpanr1.2 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
3 | 2 | anassrs 469 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
4 | 1, 3 | mpanl2 700 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: mpanr12 704 oacl 8535 omcl 8536 oaordi 8546 oawordri 8550 oaass 8561 oarec 8562 omordi 8566 omwordri 8572 odi 8579 omass 8580 oeoelem 8598 undom 9059 fimax2g 9289 fimin2g 9492 frr1 9754 axcnre 11159 divdiv23zi 11967 recp1lt1 12112 divgt0i 12122 divge0i 12123 ltreci 12124 lereci 12125 lt2msqi 12126 le2msqi 12127 msq11i 12128 ltdiv23i 12138 ltdivp1i 12140 zmin 12928 ge0gtmnf 13151 hashprg 14355 sqrt11i 15331 sqrtmuli 15332 sqrtmsq2i 15334 sqrtlei 15335 sqrtlti 15336 cos01gt0 16134 wspthsnwspthsnon 29170 vc2OLD 29821 vc0 29827 vcm 29829 nvpi 29920 nvge0 29926 ipval3 29962 ipidsq 29963 sspmval 29986 opsqrlem1 31393 opsqrlem6 31398 hstle 31483 hstrbi 31519 atordi 31637 finorwe 36263 poimirlem6 36494 poimirlem7 36495 poimirlem16 36504 poimirlem19 36507 poimirlem20 36508 |
Copyright terms: Public domain | W3C validator |