| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpanr1 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
| Ref | Expression |
|---|---|
| mpanr1.1 | ⊢ 𝜓 |
| mpanr1.2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| mpanr1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpanr1.1 | . 2 ⊢ 𝜓 | |
| 2 | mpanr1.2 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 3 | 2 | anassrs 467 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| 4 | 1, 3 | mpanl2 701 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mpanr12 705 oacl 8499 omcl 8500 oaordi 8510 oawordri 8514 oaass 8525 oarec 8526 omordi 8530 omwordri 8536 odi 8543 omass 8544 oeoelem 8562 undom 9029 fimax2g 9233 fimin2g 9450 frr1 9712 axcnre 11117 divdiv23zi 11935 recp1lt1 12081 divgt0i 12091 divge0i 12092 ltreci 12093 lereci 12094 lt2msqi 12095 le2msqi 12096 msq11i 12097 ltdiv23i 12107 ltdivp1i 12109 zmin 12903 ge0gtmnf 13132 hashprg 14360 sqrt11i 15351 sqrtmuli 15352 sqrtmsq2i 15354 sqrtlei 15355 sqrtlti 15356 cos01gt0 16159 wspthsnwspthsnon 29846 vc2OLD 30497 vc0 30503 vcm 30505 nvpi 30596 nvge0 30602 ipval3 30638 ipidsq 30639 sspmval 30662 opsqrlem1 32069 opsqrlem6 32074 hstle 32159 hstrbi 32195 atordi 32313 weiunlem2 36451 finorwe 37370 poimirlem6 37620 poimirlem7 37621 poimirlem16 37630 poimirlem19 37633 poimirlem20 37634 |
| Copyright terms: Public domain | W3C validator |