![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpanr1 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
Ref | Expression |
---|---|
mpanr1.1 | ⊢ 𝜓 |
mpanr1.2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
mpanr1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpanr1.1 | . 2 ⊢ 𝜓 | |
2 | mpanr1.2 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
3 | 2 | anassrs 467 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
4 | 1, 3 | mpanl2 701 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: mpanr12 705 oacl 8572 omcl 8573 oaordi 8583 oawordri 8587 oaass 8598 oarec 8599 omordi 8603 omwordri 8609 odi 8616 omass 8617 oeoelem 8635 undom 9098 fimax2g 9320 fimin2g 9535 frr1 9797 axcnre 11202 divdiv23zi 12018 recp1lt1 12164 divgt0i 12174 divge0i 12175 ltreci 12176 lereci 12177 lt2msqi 12178 le2msqi 12179 msq11i 12180 ltdiv23i 12190 ltdivp1i 12192 zmin 12984 ge0gtmnf 13211 hashprg 14431 sqrt11i 15420 sqrtmuli 15421 sqrtmsq2i 15423 sqrtlei 15424 sqrtlti 15425 cos01gt0 16224 wspthsnwspthsnon 29946 vc2OLD 30597 vc0 30603 vcm 30605 nvpi 30696 nvge0 30702 ipval3 30738 ipidsq 30739 sspmval 30762 opsqrlem1 32169 opsqrlem6 32174 hstle 32259 hstrbi 32295 atordi 32413 weiunlem2 36446 finorwe 37365 poimirlem6 37613 poimirlem7 37614 poimirlem16 37623 poimirlem19 37626 poimirlem20 37627 |
Copyright terms: Public domain | W3C validator |