![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpanr1 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
Ref | Expression |
---|---|
mpanr1.1 | ⊢ 𝜓 |
mpanr1.2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
mpanr1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpanr1.1 | . 2 ⊢ 𝜓 | |
2 | mpanr1.2 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
3 | 2 | anassrs 468 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
4 | 1, 3 | mpanl2 699 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: mpanr12 703 oacl 8537 omcl 8538 oaordi 8548 oawordri 8552 oaass 8563 oarec 8564 omordi 8568 omwordri 8574 odi 8581 omass 8582 oeoelem 8600 undom 9061 fimax2g 9291 fimin2g 9494 frr1 9756 axcnre 11161 divdiv23zi 11971 recp1lt1 12116 divgt0i 12126 divge0i 12127 ltreci 12128 lereci 12129 lt2msqi 12130 le2msqi 12131 msq11i 12132 ltdiv23i 12142 ltdivp1i 12144 zmin 12932 ge0gtmnf 13155 hashprg 14359 sqrt11i 15335 sqrtmuli 15336 sqrtmsq2i 15338 sqrtlei 15339 sqrtlti 15340 cos01gt0 16138 wspthsnwspthsnon 29425 vc2OLD 30076 vc0 30082 vcm 30084 nvpi 30175 nvge0 30181 ipval3 30217 ipidsq 30218 sspmval 30241 opsqrlem1 31648 opsqrlem6 31653 hstle 31738 hstrbi 31774 atordi 31892 finorwe 36566 poimirlem6 36797 poimirlem7 36798 poimirlem16 36807 poimirlem19 36810 poimirlem20 36811 |
Copyright terms: Public domain | W3C validator |