| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpanr1 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
| Ref | Expression |
|---|---|
| mpanr1.1 | ⊢ 𝜓 |
| mpanr1.2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| mpanr1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpanr1.1 | . 2 ⊢ 𝜓 | |
| 2 | mpanr1.2 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 3 | 2 | anassrs 467 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| 4 | 1, 3 | mpanl2 701 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mpanr12 705 oacl 8450 omcl 8451 oaordi 8461 oawordri 8465 oaass 8476 oarec 8477 omordi 8481 omwordri 8487 odi 8494 omass 8495 oeoelem 8513 undom 8978 fimax2g 9170 fimin2g 9383 frr1 9652 axcnre 11055 divdiv23zi 11874 recp1lt1 12020 divgt0i 12030 divge0i 12031 ltreci 12032 lereci 12033 lt2msqi 12034 le2msqi 12035 msq11i 12036 ltdiv23i 12046 ltdivp1i 12048 zmin 12842 ge0gtmnf 13071 hashprg 14302 sqrt11i 15292 sqrtmuli 15293 sqrtmsq2i 15295 sqrtlei 15296 sqrtlti 15297 cos01gt0 16100 wspthsnwspthsnon 29895 vc2OLD 30546 vc0 30552 vcm 30554 nvpi 30645 nvge0 30651 ipval3 30687 ipidsq 30688 sspmval 30711 opsqrlem1 32118 opsqrlem6 32123 hstle 32208 hstrbi 32244 atordi 32362 weiunlem2 36503 finorwe 37422 poimirlem6 37672 poimirlem7 37673 poimirlem16 37682 poimirlem19 37685 poimirlem20 37686 |
| Copyright terms: Public domain | W3C validator |