| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpanr1 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
| Ref | Expression |
|---|---|
| mpanr1.1 | ⊢ 𝜓 |
| mpanr1.2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| mpanr1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpanr1.1 | . 2 ⊢ 𝜓 | |
| 2 | mpanr1.2 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 3 | 2 | anassrs 467 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| 4 | 1, 3 | mpanl2 701 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mpanr12 705 oacl 8459 omcl 8460 oaordi 8470 oawordri 8474 oaass 8485 oarec 8486 omordi 8490 omwordri 8496 odi 8503 omass 8504 oeoelem 8522 undom 8989 fimax2g 9181 fimin2g 9394 frr1 9663 axcnre 11066 divdiv23zi 11885 recp1lt1 12031 divgt0i 12041 divge0i 12042 ltreci 12043 lereci 12044 lt2msqi 12045 le2msqi 12046 msq11i 12047 ltdiv23i 12057 ltdivp1i 12059 zmin 12848 ge0gtmnf 13078 hashprg 14309 sqrt11i 15299 sqrtmuli 15300 sqrtmsq2i 15302 sqrtlei 15303 sqrtlti 15304 cos01gt0 16107 wspthsnwspthsnon 29915 vc2OLD 30569 vc0 30575 vcm 30577 nvpi 30668 nvge0 30674 ipval3 30710 ipidsq 30711 sspmval 30734 opsqrlem1 32141 opsqrlem6 32146 hstle 32231 hstrbi 32267 atordi 32385 weiunlem2 36579 finorwe 37499 poimirlem6 37739 poimirlem7 37740 poimirlem16 37749 poimirlem19 37752 poimirlem20 37753 |
| Copyright terms: Public domain | W3C validator |