| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpanr1 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
| Ref | Expression |
|---|---|
| mpanr1.1 | ⊢ 𝜓 |
| mpanr1.2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| mpanr1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpanr1.1 | . 2 ⊢ 𝜓 | |
| 2 | mpanr1.2 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 3 | 2 | anassrs 467 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| 4 | 1, 3 | mpanl2 701 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mpanr12 705 oacl 8460 omcl 8461 oaordi 8471 oawordri 8475 oaass 8486 oarec 8487 omordi 8491 omwordri 8497 odi 8504 omass 8505 oeoelem 8523 undom 8989 fimax2g 9191 fimin2g 9408 frr1 9674 axcnre 11077 divdiv23zi 11895 recp1lt1 12041 divgt0i 12051 divge0i 12052 ltreci 12053 lereci 12054 lt2msqi 12055 le2msqi 12056 msq11i 12057 ltdiv23i 12067 ltdivp1i 12069 zmin 12863 ge0gtmnf 13092 hashprg 14320 sqrt11i 15310 sqrtmuli 15311 sqrtmsq2i 15313 sqrtlei 15314 sqrtlti 15315 cos01gt0 16118 wspthsnwspthsnon 29879 vc2OLD 30530 vc0 30536 vcm 30538 nvpi 30629 nvge0 30635 ipval3 30671 ipidsq 30672 sspmval 30695 opsqrlem1 32102 opsqrlem6 32107 hstle 32192 hstrbi 32228 atordi 32346 weiunlem2 36439 finorwe 37358 poimirlem6 37608 poimirlem7 37609 poimirlem16 37618 poimirlem19 37621 poimirlem20 37622 |
| Copyright terms: Public domain | W3C validator |