![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > supxrpnf | Structured version Visualization version GIF version |
Description: The supremum of a set of extended reals containing plus infinity is plus infinity. (Contributed by NM, 15-Oct-2005.) |
Ref | Expression |
---|---|
supxrpnf | ⊢ ((𝐴 ⊆ ℝ* ∧ +∞ ∈ 𝐴) → sup(𝐴, ℝ*, < ) = +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3975 | . . . . 5 ⊢ (𝐴 ⊆ ℝ* → (𝑦 ∈ 𝐴 → 𝑦 ∈ ℝ*)) | |
2 | pnfnlt 13107 | . . . . 5 ⊢ (𝑦 ∈ ℝ* → ¬ +∞ < 𝑦) | |
3 | 1, 2 | syl6 35 | . . . 4 ⊢ (𝐴 ⊆ ℝ* → (𝑦 ∈ 𝐴 → ¬ +∞ < 𝑦)) |
4 | 3 | ralrimiv 3145 | . . 3 ⊢ (𝐴 ⊆ ℝ* → ∀𝑦 ∈ 𝐴 ¬ +∞ < 𝑦) |
5 | breq2 5152 | . . . . . 6 ⊢ (𝑧 = +∞ → (𝑦 < 𝑧 ↔ 𝑦 < +∞)) | |
6 | 5 | rspcev 3612 | . . . . 5 ⊢ ((+∞ ∈ 𝐴 ∧ 𝑦 < +∞) → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧) |
7 | 6 | ex 413 | . . . 4 ⊢ (+∞ ∈ 𝐴 → (𝑦 < +∞ → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) |
8 | 7 | ralrimivw 3150 | . . 3 ⊢ (+∞ ∈ 𝐴 → ∀𝑦 ∈ ℝ (𝑦 < +∞ → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) |
9 | 4, 8 | anim12i 613 | . 2 ⊢ ((𝐴 ⊆ ℝ* ∧ +∞ ∈ 𝐴) → (∀𝑦 ∈ 𝐴 ¬ +∞ < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < +∞ → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) |
10 | pnfxr 11267 | . . 3 ⊢ +∞ ∈ ℝ* | |
11 | supxr 13291 | . . 3 ⊢ (((𝐴 ⊆ ℝ* ∧ +∞ ∈ ℝ*) ∧ (∀𝑦 ∈ 𝐴 ¬ +∞ < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < +∞ → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) → sup(𝐴, ℝ*, < ) = +∞) | |
12 | 10, 11 | mpanl2 699 | . 2 ⊢ ((𝐴 ⊆ ℝ* ∧ (∀𝑦 ∈ 𝐴 ¬ +∞ < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < +∞ → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) → sup(𝐴, ℝ*, < ) = +∞) |
13 | 9, 12 | syldan 591 | 1 ⊢ ((𝐴 ⊆ ℝ* ∧ +∞ ∈ 𝐴) → sup(𝐴, ℝ*, < ) = +∞) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3061 ∃wrex 3070 ⊆ wss 3948 class class class wbr 5148 supcsup 9434 ℝcr 11108 +∞cpnf 11244 ℝ*cxr 11246 < clt 11247 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-sup 9436 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 |
This theorem is referenced by: xrsup 13832 volsup 25072 supxrge 44038 supminfxr2 44169 sge0tsms 45086 sge0sup 45097 |
Copyright terms: Public domain | W3C validator |