![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > supxrpnf | Structured version Visualization version GIF version |
Description: The supremum of a set of extended reals containing plus infinity is plus infinity. (Contributed by NM, 15-Oct-2005.) |
Ref | Expression |
---|---|
supxrpnf | ⊢ ((𝐴 ⊆ ℝ* ∧ +∞ ∈ 𝐴) → sup(𝐴, ℝ*, < ) = +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3972 | . . . . 5 ⊢ (𝐴 ⊆ ℝ* → (𝑦 ∈ 𝐴 → 𝑦 ∈ ℝ*)) | |
2 | pnfnlt 13135 | . . . . 5 ⊢ (𝑦 ∈ ℝ* → ¬ +∞ < 𝑦) | |
3 | 1, 2 | syl6 35 | . . . 4 ⊢ (𝐴 ⊆ ℝ* → (𝑦 ∈ 𝐴 → ¬ +∞ < 𝑦)) |
4 | 3 | ralrimiv 3141 | . . 3 ⊢ (𝐴 ⊆ ℝ* → ∀𝑦 ∈ 𝐴 ¬ +∞ < 𝑦) |
5 | breq2 5147 | . . . . . 6 ⊢ (𝑧 = +∞ → (𝑦 < 𝑧 ↔ 𝑦 < +∞)) | |
6 | 5 | rspcev 3608 | . . . . 5 ⊢ ((+∞ ∈ 𝐴 ∧ 𝑦 < +∞) → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧) |
7 | 6 | ex 412 | . . . 4 ⊢ (+∞ ∈ 𝐴 → (𝑦 < +∞ → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) |
8 | 7 | ralrimivw 3146 | . . 3 ⊢ (+∞ ∈ 𝐴 → ∀𝑦 ∈ ℝ (𝑦 < +∞ → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) |
9 | 4, 8 | anim12i 612 | . 2 ⊢ ((𝐴 ⊆ ℝ* ∧ +∞ ∈ 𝐴) → (∀𝑦 ∈ 𝐴 ¬ +∞ < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < +∞ → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) |
10 | pnfxr 11293 | . . 3 ⊢ +∞ ∈ ℝ* | |
11 | supxr 13319 | . . 3 ⊢ (((𝐴 ⊆ ℝ* ∧ +∞ ∈ ℝ*) ∧ (∀𝑦 ∈ 𝐴 ¬ +∞ < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < +∞ → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) → sup(𝐴, ℝ*, < ) = +∞) | |
12 | 10, 11 | mpanl2 700 | . 2 ⊢ ((𝐴 ⊆ ℝ* ∧ (∀𝑦 ∈ 𝐴 ¬ +∞ < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < +∞ → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) → sup(𝐴, ℝ*, < ) = +∞) |
13 | 9, 12 | syldan 590 | 1 ⊢ ((𝐴 ⊆ ℝ* ∧ +∞ ∈ 𝐴) → sup(𝐴, ℝ*, < ) = +∞) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∀wral 3057 ∃wrex 3066 ⊆ wss 3945 class class class wbr 5143 supcsup 9458 ℝcr 11132 +∞cpnf 11270 ℝ*cxr 11272 < clt 11273 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5571 df-po 5585 df-so 5586 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-er 8719 df-en 8959 df-dom 8960 df-sdom 8961 df-sup 9460 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 |
This theorem is referenced by: xrsup 13860 volsup 25479 supxrge 44711 supminfxr2 44842 sge0tsms 45759 sge0sup 45770 |
Copyright terms: Public domain | W3C validator |