Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sgncl Structured version   Visualization version   GIF version

Theorem sgncl 32806
Description: Closure of the signum. (Contributed by Thierry Arnoux, 28-Sep-2018.)
Assertion
Ref Expression
sgncl (𝐴 ∈ ℝ* → (sgn‘𝐴) ∈ {-1, 0, 1})

Proof of Theorem sgncl
StepHypRef Expression
1 simpr 484 . . . . 5 ((𝐴 ∈ ℝ*𝐴 = 0) → 𝐴 = 0)
21fveq2d 6821 . . . 4 ((𝐴 ∈ ℝ*𝐴 = 0) → (sgn‘𝐴) = (sgn‘0))
3 sgn0 14991 . . . 4 (sgn‘0) = 0
42, 3eqtrdi 2782 . . 3 ((𝐴 ∈ ℝ*𝐴 = 0) → (sgn‘𝐴) = 0)
5 c0ex 11101 . . . 4 0 ∈ V
65tpid2 4718 . . 3 0 ∈ {-1, 0, 1}
74, 6eqeltrdi 2839 . 2 ((𝐴 ∈ ℝ*𝐴 = 0) → (sgn‘𝐴) ∈ {-1, 0, 1})
8 sgnn 14996 . . . . 5 ((𝐴 ∈ ℝ*𝐴 < 0) → (sgn‘𝐴) = -1)
9 negex 11353 . . . . . 6 -1 ∈ V
109tpid1 4716 . . . . 5 -1 ∈ {-1, 0, 1}
118, 10eqeltrdi 2839 . . . 4 ((𝐴 ∈ ℝ*𝐴 < 0) → (sgn‘𝐴) ∈ {-1, 0, 1})
1211adantlr 715 . . 3 (((𝐴 ∈ ℝ*𝐴 ≠ 0) ∧ 𝐴 < 0) → (sgn‘𝐴) ∈ {-1, 0, 1})
13 sgnp 14992 . . . . 5 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (sgn‘𝐴) = 1)
14 1ex 11103 . . . . . 6 1 ∈ V
1514tpid3 4721 . . . . 5 1 ∈ {-1, 0, 1}
1613, 15eqeltrdi 2839 . . . 4 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (sgn‘𝐴) ∈ {-1, 0, 1})
1716adantlr 715 . . 3 (((𝐴 ∈ ℝ*𝐴 ≠ 0) ∧ 0 < 𝐴) → (sgn‘𝐴) ∈ {-1, 0, 1})
18 0xr 11154 . . . 4 0 ∈ ℝ*
19 xrlttri2 13036 . . . . 5 ((𝐴 ∈ ℝ* ∧ 0 ∈ ℝ*) → (𝐴 ≠ 0 ↔ (𝐴 < 0 ∨ 0 < 𝐴)))
2019biimpa 476 . . . 4 (((𝐴 ∈ ℝ* ∧ 0 ∈ ℝ*) ∧ 𝐴 ≠ 0) → (𝐴 < 0 ∨ 0 < 𝐴))
2118, 20mpanl2 701 . . 3 ((𝐴 ∈ ℝ*𝐴 ≠ 0) → (𝐴 < 0 ∨ 0 < 𝐴))
2212, 17, 21mpjaodan 960 . 2 ((𝐴 ∈ ℝ*𝐴 ≠ 0) → (sgn‘𝐴) ∈ {-1, 0, 1})
237, 22pm2.61dane 3015 1 (𝐴 ∈ ℝ* → (sgn‘𝐴) ∈ {-1, 0, 1})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1541  wcel 2111  wne 2928  {ctp 4575   class class class wbr 5086  cfv 6476  0cc0 11001  1c1 11002  *cxr 11140   < clt 11141  -cneg 11340  sgncsgn 14988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-i2m1 11069  ax-rnegex 11072  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-po 5519  df-so 5520  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-neg 11342  df-sgn 14989
This theorem is referenced by:  sgnclre  32807  sgnmulsgn  32817  sgnmulsgp  32818  cos9thpiminplylem2  33788  signstcl  34570  signstf  34571  signstf0  34573  signstfvn  34574  signsvtn0  34575  signstfvneq0  34577  signsvfn  34587
  Copyright terms: Public domain W3C validator