Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sgncl Structured version   Visualization version   GIF version

Theorem sgncl 32810
Description: Closure of the signum. (Contributed by Thierry Arnoux, 28-Sep-2018.)
Assertion
Ref Expression
sgncl (𝐴 ∈ ℝ* → (sgn‘𝐴) ∈ {-1, 0, 1})

Proof of Theorem sgncl
StepHypRef Expression
1 simpr 484 . . . . 5 ((𝐴 ∈ ℝ*𝐴 = 0) → 𝐴 = 0)
21fveq2d 6880 . . . 4 ((𝐴 ∈ ℝ*𝐴 = 0) → (sgn‘𝐴) = (sgn‘0))
3 sgn0 15108 . . . 4 (sgn‘0) = 0
42, 3eqtrdi 2786 . . 3 ((𝐴 ∈ ℝ*𝐴 = 0) → (sgn‘𝐴) = 0)
5 c0ex 11229 . . . 4 0 ∈ V
65tpid2 4746 . . 3 0 ∈ {-1, 0, 1}
74, 6eqeltrdi 2842 . 2 ((𝐴 ∈ ℝ*𝐴 = 0) → (sgn‘𝐴) ∈ {-1, 0, 1})
8 sgnn 15113 . . . . 5 ((𝐴 ∈ ℝ*𝐴 < 0) → (sgn‘𝐴) = -1)
9 negex 11480 . . . . . 6 -1 ∈ V
109tpid1 4744 . . . . 5 -1 ∈ {-1, 0, 1}
118, 10eqeltrdi 2842 . . . 4 ((𝐴 ∈ ℝ*𝐴 < 0) → (sgn‘𝐴) ∈ {-1, 0, 1})
1211adantlr 715 . . 3 (((𝐴 ∈ ℝ*𝐴 ≠ 0) ∧ 𝐴 < 0) → (sgn‘𝐴) ∈ {-1, 0, 1})
13 sgnp 15109 . . . . 5 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (sgn‘𝐴) = 1)
14 1ex 11231 . . . . . 6 1 ∈ V
1514tpid3 4749 . . . . 5 1 ∈ {-1, 0, 1}
1613, 15eqeltrdi 2842 . . . 4 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (sgn‘𝐴) ∈ {-1, 0, 1})
1716adantlr 715 . . 3 (((𝐴 ∈ ℝ*𝐴 ≠ 0) ∧ 0 < 𝐴) → (sgn‘𝐴) ∈ {-1, 0, 1})
18 0xr 11282 . . . 4 0 ∈ ℝ*
19 xrlttri2 13158 . . . . 5 ((𝐴 ∈ ℝ* ∧ 0 ∈ ℝ*) → (𝐴 ≠ 0 ↔ (𝐴 < 0 ∨ 0 < 𝐴)))
2019biimpa 476 . . . 4 (((𝐴 ∈ ℝ* ∧ 0 ∈ ℝ*) ∧ 𝐴 ≠ 0) → (𝐴 < 0 ∨ 0 < 𝐴))
2118, 20mpanl2 701 . . 3 ((𝐴 ∈ ℝ*𝐴 ≠ 0) → (𝐴 < 0 ∨ 0 < 𝐴))
2212, 17, 21mpjaodan 960 . 2 ((𝐴 ∈ ℝ*𝐴 ≠ 0) → (sgn‘𝐴) ∈ {-1, 0, 1})
237, 22pm2.61dane 3019 1 (𝐴 ∈ ℝ* → (sgn‘𝐴) ∈ {-1, 0, 1})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2108  wne 2932  {ctp 4605   class class class wbr 5119  cfv 6531  0cc0 11129  1c1 11130  *cxr 11268   < clt 11269  -cneg 11467  sgncsgn 15105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-i2m1 11197  ax-rnegex 11200  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-neg 11469  df-sgn 15106
This theorem is referenced by:  sgnclre  32811  sgnmulsgn  32821  sgnmulsgp  32822  cos9thpiminplylem2  33817  signstcl  34597  signstf  34598  signstf0  34600  signstfvn  34601  signsvtn0  34602  signstfvneq0  34604  signsvfn  34614
  Copyright terms: Public domain W3C validator