Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sgncl Structured version   Visualization version   GIF version

Theorem sgncl 31701
Description: Closure of the signum. (Contributed by Thierry Arnoux, 28-Sep-2018.)
Assertion
Ref Expression
sgncl (𝐴 ∈ ℝ* → (sgn‘𝐴) ∈ {-1, 0, 1})

Proof of Theorem sgncl
StepHypRef Expression
1 simpr 485 . . . . 5 ((𝐴 ∈ ℝ*𝐴 = 0) → 𝐴 = 0)
21fveq2d 6673 . . . 4 ((𝐴 ∈ ℝ*𝐴 = 0) → (sgn‘𝐴) = (sgn‘0))
3 sgn0 14443 . . . 4 (sgn‘0) = 0
42, 3syl6eq 2877 . . 3 ((𝐴 ∈ ℝ*𝐴 = 0) → (sgn‘𝐴) = 0)
5 c0ex 10629 . . . 4 0 ∈ V
65tpid2 4705 . . 3 0 ∈ {-1, 0, 1}
74, 6syl6eqel 2926 . 2 ((𝐴 ∈ ℝ*𝐴 = 0) → (sgn‘𝐴) ∈ {-1, 0, 1})
8 sgnn 14448 . . . . 5 ((𝐴 ∈ ℝ*𝐴 < 0) → (sgn‘𝐴) = -1)
9 negex 10878 . . . . . 6 -1 ∈ V
109tpid1 4703 . . . . 5 -1 ∈ {-1, 0, 1}
118, 10syl6eqel 2926 . . . 4 ((𝐴 ∈ ℝ*𝐴 < 0) → (sgn‘𝐴) ∈ {-1, 0, 1})
1211adantlr 711 . . 3 (((𝐴 ∈ ℝ*𝐴 ≠ 0) ∧ 𝐴 < 0) → (sgn‘𝐴) ∈ {-1, 0, 1})
13 sgnp 14444 . . . . 5 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (sgn‘𝐴) = 1)
14 1ex 10631 . . . . . 6 1 ∈ V
1514tpid3 4708 . . . . 5 1 ∈ {-1, 0, 1}
1613, 15syl6eqel 2926 . . . 4 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (sgn‘𝐴) ∈ {-1, 0, 1})
1716adantlr 711 . . 3 (((𝐴 ∈ ℝ*𝐴 ≠ 0) ∧ 0 < 𝐴) → (sgn‘𝐴) ∈ {-1, 0, 1})
18 0xr 10682 . . . 4 0 ∈ ℝ*
19 xrlttri2 12530 . . . . 5 ((𝐴 ∈ ℝ* ∧ 0 ∈ ℝ*) → (𝐴 ≠ 0 ↔ (𝐴 < 0 ∨ 0 < 𝐴)))
2019biimpa 477 . . . 4 (((𝐴 ∈ ℝ* ∧ 0 ∈ ℝ*) ∧ 𝐴 ≠ 0) → (𝐴 < 0 ∨ 0 < 𝐴))
2118, 20mpanl2 697 . . 3 ((𝐴 ∈ ℝ*𝐴 ≠ 0) → (𝐴 < 0 ∨ 0 < 𝐴))
2212, 17, 21mpjaodan 954 . 2 ((𝐴 ∈ ℝ*𝐴 ≠ 0) → (sgn‘𝐴) ∈ {-1, 0, 1})
237, 22pm2.61dane 3109 1 (𝐴 ∈ ℝ* → (sgn‘𝐴) ∈ {-1, 0, 1})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 843   = wceq 1530  wcel 2107  wne 3021  {ctp 4568   class class class wbr 5063  cfv 6354  0cc0 10531  1c1 10532  *cxr 10668   < clt 10669  -cneg 10865  sgncsgn 14440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-i2m1 10599  ax-rnegex 10602  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-br 5064  df-opab 5126  df-mpt 5144  df-id 5459  df-po 5473  df-so 5474  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-ov 7153  df-er 8284  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-neg 10867  df-sgn 14441
This theorem is referenced by:  sgnclre  31702  sgnmulsgn  31712  sgnmulsgp  31713  signstcl  31740  signstf  31741  signstf0  31743  signstfvn  31744  signsvtn0  31745  signstfvneq0  31747  signsvfn  31757
  Copyright terms: Public domain W3C validator