| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sgncl | Structured version Visualization version GIF version | ||
| Description: Closure of the signum. (Contributed by Thierry Arnoux, 28-Sep-2018.) |
| Ref | Expression |
|---|---|
| sgncl | ⊢ (𝐴 ∈ ℝ* → (sgn‘𝐴) ∈ {-1, 0, 1}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 = 0) → 𝐴 = 0) | |
| 2 | 1 | fveq2d 6862 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 = 0) → (sgn‘𝐴) = (sgn‘0)) |
| 3 | sgn0 15055 | . . . 4 ⊢ (sgn‘0) = 0 | |
| 4 | 2, 3 | eqtrdi 2780 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 = 0) → (sgn‘𝐴) = 0) |
| 5 | c0ex 11168 | . . . 4 ⊢ 0 ∈ V | |
| 6 | 5 | tpid2 4734 | . . 3 ⊢ 0 ∈ {-1, 0, 1} |
| 7 | 4, 6 | eqeltrdi 2836 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 = 0) → (sgn‘𝐴) ∈ {-1, 0, 1}) |
| 8 | sgnn 15060 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → (sgn‘𝐴) = -1) | |
| 9 | negex 11419 | . . . . . 6 ⊢ -1 ∈ V | |
| 10 | 9 | tpid1 4732 | . . . . 5 ⊢ -1 ∈ {-1, 0, 1} |
| 11 | 8, 10 | eqeltrdi 2836 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → (sgn‘𝐴) ∈ {-1, 0, 1}) |
| 12 | 11 | adantlr 715 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ 0) ∧ 𝐴 < 0) → (sgn‘𝐴) ∈ {-1, 0, 1}) |
| 13 | sgnp 15056 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (sgn‘𝐴) = 1) | |
| 14 | 1ex 11170 | . . . . . 6 ⊢ 1 ∈ V | |
| 15 | 14 | tpid3 4737 | . . . . 5 ⊢ 1 ∈ {-1, 0, 1} |
| 16 | 13, 15 | eqeltrdi 2836 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (sgn‘𝐴) ∈ {-1, 0, 1}) |
| 17 | 16 | adantlr 715 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ 0) ∧ 0 < 𝐴) → (sgn‘𝐴) ∈ {-1, 0, 1}) |
| 18 | 0xr 11221 | . . . 4 ⊢ 0 ∈ ℝ* | |
| 19 | xrlttri2 13102 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ∈ ℝ*) → (𝐴 ≠ 0 ↔ (𝐴 < 0 ∨ 0 < 𝐴))) | |
| 20 | 19 | biimpa 476 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 0 ∈ ℝ*) ∧ 𝐴 ≠ 0) → (𝐴 < 0 ∨ 0 < 𝐴)) |
| 21 | 18, 20 | mpanl2 701 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ 0) → (𝐴 < 0 ∨ 0 < 𝐴)) |
| 22 | 12, 17, 21 | mpjaodan 960 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ 0) → (sgn‘𝐴) ∈ {-1, 0, 1}) |
| 23 | 7, 22 | pm2.61dane 3012 | 1 ⊢ (𝐴 ∈ ℝ* → (sgn‘𝐴) ∈ {-1, 0, 1}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 {ctp 4593 class class class wbr 5107 ‘cfv 6511 0cc0 11068 1c1 11069 ℝ*cxr 11207 < clt 11208 -cneg 11406 sgncsgn 15052 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-i2m1 11136 ax-rnegex 11139 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-neg 11408 df-sgn 15053 |
| This theorem is referenced by: sgnclre 32757 sgnmulsgn 32767 sgnmulsgp 32768 cos9thpiminplylem2 33773 signstcl 34556 signstf 34557 signstf0 34559 signstfvn 34560 signsvtn0 34561 signstfvneq0 34563 signsvfn 34573 |
| Copyright terms: Public domain | W3C validator |