![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sgncl | Structured version Visualization version GIF version |
Description: Closure of the signum. (Contributed by Thierry Arnoux, 28-Sep-2018.) |
Ref | Expression |
---|---|
sgncl | ⊢ (𝐴 ∈ ℝ* → (sgn‘𝐴) ∈ {-1, 0, 1}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 = 0) → 𝐴 = 0) | |
2 | 1 | fveq2d 6924 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 = 0) → (sgn‘𝐴) = (sgn‘0)) |
3 | sgn0 15138 | . . . 4 ⊢ (sgn‘0) = 0 | |
4 | 2, 3 | eqtrdi 2796 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 = 0) → (sgn‘𝐴) = 0) |
5 | c0ex 11284 | . . . 4 ⊢ 0 ∈ V | |
6 | 5 | tpid2 4795 | . . 3 ⊢ 0 ∈ {-1, 0, 1} |
7 | 4, 6 | eqeltrdi 2852 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 = 0) → (sgn‘𝐴) ∈ {-1, 0, 1}) |
8 | sgnn 15143 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → (sgn‘𝐴) = -1) | |
9 | negex 11534 | . . . . . 6 ⊢ -1 ∈ V | |
10 | 9 | tpid1 4793 | . . . . 5 ⊢ -1 ∈ {-1, 0, 1} |
11 | 8, 10 | eqeltrdi 2852 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → (sgn‘𝐴) ∈ {-1, 0, 1}) |
12 | 11 | adantlr 714 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ 0) ∧ 𝐴 < 0) → (sgn‘𝐴) ∈ {-1, 0, 1}) |
13 | sgnp 15139 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (sgn‘𝐴) = 1) | |
14 | 1ex 11286 | . . . . . 6 ⊢ 1 ∈ V | |
15 | 14 | tpid3 4798 | . . . . 5 ⊢ 1 ∈ {-1, 0, 1} |
16 | 13, 15 | eqeltrdi 2852 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (sgn‘𝐴) ∈ {-1, 0, 1}) |
17 | 16 | adantlr 714 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ 0) ∧ 0 < 𝐴) → (sgn‘𝐴) ∈ {-1, 0, 1}) |
18 | 0xr 11337 | . . . 4 ⊢ 0 ∈ ℝ* | |
19 | xrlttri2 13204 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ∈ ℝ*) → (𝐴 ≠ 0 ↔ (𝐴 < 0 ∨ 0 < 𝐴))) | |
20 | 19 | biimpa 476 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 0 ∈ ℝ*) ∧ 𝐴 ≠ 0) → (𝐴 < 0 ∨ 0 < 𝐴)) |
21 | 18, 20 | mpanl2 700 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ 0) → (𝐴 < 0 ∨ 0 < 𝐴)) |
22 | 12, 17, 21 | mpjaodan 959 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ 0) → (sgn‘𝐴) ∈ {-1, 0, 1}) |
23 | 7, 22 | pm2.61dane 3035 | 1 ⊢ (𝐴 ∈ ℝ* → (sgn‘𝐴) ∈ {-1, 0, 1}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 {ctp 4652 class class class wbr 5166 ‘cfv 6573 0cc0 11184 1c1 11185 ℝ*cxr 11323 < clt 11324 -cneg 11521 sgncsgn 15135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-i2m1 11252 ax-rnegex 11255 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-neg 11523 df-sgn 15136 |
This theorem is referenced by: sgnclre 34504 sgnmulsgn 34514 sgnmulsgp 34515 signstcl 34542 signstf 34543 signstf0 34545 signstfvn 34546 signsvtn0 34547 signstfvneq0 34549 signsvfn 34559 |
Copyright terms: Public domain | W3C validator |