Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sgncl | Structured version Visualization version GIF version |
Description: Closure of the signum. (Contributed by Thierry Arnoux, 28-Sep-2018.) |
Ref | Expression |
---|---|
sgncl | ⊢ (𝐴 ∈ ℝ* → (sgn‘𝐴) ∈ {-1, 0, 1}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 488 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 = 0) → 𝐴 = 0) | |
2 | 1 | fveq2d 6678 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 = 0) → (sgn‘𝐴) = (sgn‘0)) |
3 | sgn0 14538 | . . . 4 ⊢ (sgn‘0) = 0 | |
4 | 2, 3 | eqtrdi 2789 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 = 0) → (sgn‘𝐴) = 0) |
5 | c0ex 10713 | . . . 4 ⊢ 0 ∈ V | |
6 | 5 | tpid2 4661 | . . 3 ⊢ 0 ∈ {-1, 0, 1} |
7 | 4, 6 | eqeltrdi 2841 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 = 0) → (sgn‘𝐴) ∈ {-1, 0, 1}) |
8 | sgnn 14543 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → (sgn‘𝐴) = -1) | |
9 | negex 10962 | . . . . . 6 ⊢ -1 ∈ V | |
10 | 9 | tpid1 4659 | . . . . 5 ⊢ -1 ∈ {-1, 0, 1} |
11 | 8, 10 | eqeltrdi 2841 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → (sgn‘𝐴) ∈ {-1, 0, 1}) |
12 | 11 | adantlr 715 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ 0) ∧ 𝐴 < 0) → (sgn‘𝐴) ∈ {-1, 0, 1}) |
13 | sgnp 14539 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (sgn‘𝐴) = 1) | |
14 | 1ex 10715 | . . . . . 6 ⊢ 1 ∈ V | |
15 | 14 | tpid3 4664 | . . . . 5 ⊢ 1 ∈ {-1, 0, 1} |
16 | 13, 15 | eqeltrdi 2841 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (sgn‘𝐴) ∈ {-1, 0, 1}) |
17 | 16 | adantlr 715 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ 0) ∧ 0 < 𝐴) → (sgn‘𝐴) ∈ {-1, 0, 1}) |
18 | 0xr 10766 | . . . 4 ⊢ 0 ∈ ℝ* | |
19 | xrlttri2 12618 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ∈ ℝ*) → (𝐴 ≠ 0 ↔ (𝐴 < 0 ∨ 0 < 𝐴))) | |
20 | 19 | biimpa 480 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 0 ∈ ℝ*) ∧ 𝐴 ≠ 0) → (𝐴 < 0 ∨ 0 < 𝐴)) |
21 | 18, 20 | mpanl2 701 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ 0) → (𝐴 < 0 ∨ 0 < 𝐴)) |
22 | 12, 17, 21 | mpjaodan 958 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ 0) → (sgn‘𝐴) ∈ {-1, 0, 1}) |
23 | 7, 22 | pm2.61dane 3021 | 1 ⊢ (𝐴 ∈ ℝ* → (sgn‘𝐴) ∈ {-1, 0, 1}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∨ wo 846 = wceq 1542 ∈ wcel 2114 ≠ wne 2934 {ctp 4520 class class class wbr 5030 ‘cfv 6339 0cc0 10615 1c1 10616 ℝ*cxr 10752 < clt 10753 -cneg 10949 sgncsgn 14535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-cnex 10671 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-i2m1 10683 ax-rnegex 10686 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-br 5031 df-opab 5093 df-mpt 5111 df-id 5429 df-po 5442 df-so 5443 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-ov 7173 df-er 8320 df-en 8556 df-dom 8557 df-sdom 8558 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-neg 10951 df-sgn 14536 |
This theorem is referenced by: sgnclre 32076 sgnmulsgn 32086 sgnmulsgp 32087 signstcl 32114 signstf 32115 signstf0 32117 signstfvn 32118 signsvtn0 32119 signstfvneq0 32121 signsvfn 32131 |
Copyright terms: Public domain | W3C validator |