| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sgncl | Structured version Visualization version GIF version | ||
| Description: Closure of the signum. (Contributed by Thierry Arnoux, 28-Sep-2018.) |
| Ref | Expression |
|---|---|
| sgncl | ⊢ (𝐴 ∈ ℝ* → (sgn‘𝐴) ∈ {-1, 0, 1}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 = 0) → 𝐴 = 0) | |
| 2 | 1 | fveq2d 6880 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 = 0) → (sgn‘𝐴) = (sgn‘0)) |
| 3 | sgn0 15108 | . . . 4 ⊢ (sgn‘0) = 0 | |
| 4 | 2, 3 | eqtrdi 2786 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 = 0) → (sgn‘𝐴) = 0) |
| 5 | c0ex 11229 | . . . 4 ⊢ 0 ∈ V | |
| 6 | 5 | tpid2 4746 | . . 3 ⊢ 0 ∈ {-1, 0, 1} |
| 7 | 4, 6 | eqeltrdi 2842 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 = 0) → (sgn‘𝐴) ∈ {-1, 0, 1}) |
| 8 | sgnn 15113 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → (sgn‘𝐴) = -1) | |
| 9 | negex 11480 | . . . . . 6 ⊢ -1 ∈ V | |
| 10 | 9 | tpid1 4744 | . . . . 5 ⊢ -1 ∈ {-1, 0, 1} |
| 11 | 8, 10 | eqeltrdi 2842 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → (sgn‘𝐴) ∈ {-1, 0, 1}) |
| 12 | 11 | adantlr 715 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ 0) ∧ 𝐴 < 0) → (sgn‘𝐴) ∈ {-1, 0, 1}) |
| 13 | sgnp 15109 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (sgn‘𝐴) = 1) | |
| 14 | 1ex 11231 | . . . . . 6 ⊢ 1 ∈ V | |
| 15 | 14 | tpid3 4749 | . . . . 5 ⊢ 1 ∈ {-1, 0, 1} |
| 16 | 13, 15 | eqeltrdi 2842 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (sgn‘𝐴) ∈ {-1, 0, 1}) |
| 17 | 16 | adantlr 715 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐴 ≠ 0) ∧ 0 < 𝐴) → (sgn‘𝐴) ∈ {-1, 0, 1}) |
| 18 | 0xr 11282 | . . . 4 ⊢ 0 ∈ ℝ* | |
| 19 | xrlttri2 13158 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ∈ ℝ*) → (𝐴 ≠ 0 ↔ (𝐴 < 0 ∨ 0 < 𝐴))) | |
| 20 | 19 | biimpa 476 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 0 ∈ ℝ*) ∧ 𝐴 ≠ 0) → (𝐴 < 0 ∨ 0 < 𝐴)) |
| 21 | 18, 20 | mpanl2 701 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ 0) → (𝐴 < 0 ∨ 0 < 𝐴)) |
| 22 | 12, 17, 21 | mpjaodan 960 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ 0) → (sgn‘𝐴) ∈ {-1, 0, 1}) |
| 23 | 7, 22 | pm2.61dane 3019 | 1 ⊢ (𝐴 ∈ ℝ* → (sgn‘𝐴) ∈ {-1, 0, 1}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 {ctp 4605 class class class wbr 5119 ‘cfv 6531 0cc0 11129 1c1 11130 ℝ*cxr 11268 < clt 11269 -cneg 11467 sgncsgn 15105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-i2m1 11197 ax-rnegex 11200 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-neg 11469 df-sgn 15106 |
| This theorem is referenced by: sgnclre 32811 sgnmulsgn 32821 sgnmulsgp 32822 cos9thpiminplylem2 33817 signstcl 34597 signstf 34598 signstf0 34600 signstfvn 34601 signsvtn0 34602 signstfvneq0 34604 signsvfn 34614 |
| Copyright terms: Public domain | W3C validator |