Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > nmopadjlem | Structured version Visualization version GIF version |
Description: Lemma for nmopadji 30448. (Contributed by NM, 22-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmopadjle.1 | ⊢ 𝑇 ∈ BndLinOp |
Ref | Expression |
---|---|
nmopadjlem | ⊢ (normop‘(adjℎ‘𝑇)) ≤ (normop‘𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmopadjle.1 | . . . 4 ⊢ 𝑇 ∈ BndLinOp | |
2 | adjbdln 30441 | . . . 4 ⊢ (𝑇 ∈ BndLinOp → (adjℎ‘𝑇) ∈ BndLinOp) | |
3 | bdopf 30220 | . . . 4 ⊢ ((adjℎ‘𝑇) ∈ BndLinOp → (adjℎ‘𝑇): ℋ⟶ ℋ) | |
4 | 1, 2, 3 | mp2b 10 | . . 3 ⊢ (adjℎ‘𝑇): ℋ⟶ ℋ |
5 | bdopf 30220 | . . . 4 ⊢ (𝑇 ∈ BndLinOp → 𝑇: ℋ⟶ ℋ) | |
6 | nmopxr 30224 | . . . 4 ⊢ (𝑇: ℋ⟶ ℋ → (normop‘𝑇) ∈ ℝ*) | |
7 | 1, 5, 6 | mp2b 10 | . . 3 ⊢ (normop‘𝑇) ∈ ℝ* |
8 | nmopub 30266 | . . 3 ⊢ (((adjℎ‘𝑇): ℋ⟶ ℋ ∧ (normop‘𝑇) ∈ ℝ*) → ((normop‘(adjℎ‘𝑇)) ≤ (normop‘𝑇) ↔ ∀𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 → (normℎ‘((adjℎ‘𝑇)‘𝑦)) ≤ (normop‘𝑇)))) | |
9 | 4, 7, 8 | mp2an 689 | . 2 ⊢ ((normop‘(adjℎ‘𝑇)) ≤ (normop‘𝑇) ↔ ∀𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 → (normℎ‘((adjℎ‘𝑇)‘𝑦)) ≤ (normop‘𝑇))) |
10 | 4 | ffvelrni 6957 | . . . . . . 7 ⊢ (𝑦 ∈ ℋ → ((adjℎ‘𝑇)‘𝑦) ∈ ℋ) |
11 | normcl 29483 | . . . . . . 7 ⊢ (((adjℎ‘𝑇)‘𝑦) ∈ ℋ → (normℎ‘((adjℎ‘𝑇)‘𝑦)) ∈ ℝ) | |
12 | 10, 11 | syl 17 | . . . . . 6 ⊢ (𝑦 ∈ ℋ → (normℎ‘((adjℎ‘𝑇)‘𝑦)) ∈ ℝ) |
13 | 12 | adantr 481 | . . . . 5 ⊢ ((𝑦 ∈ ℋ ∧ (normℎ‘𝑦) ≤ 1) → (normℎ‘((adjℎ‘𝑇)‘𝑦)) ∈ ℝ) |
14 | nmopre 30228 | . . . . . . . 8 ⊢ (𝑇 ∈ BndLinOp → (normop‘𝑇) ∈ ℝ) | |
15 | 1, 14 | ax-mp 5 | . . . . . . 7 ⊢ (normop‘𝑇) ∈ ℝ |
16 | normcl 29483 | . . . . . . 7 ⊢ (𝑦 ∈ ℋ → (normℎ‘𝑦) ∈ ℝ) | |
17 | remulcl 10957 | . . . . . . 7 ⊢ (((normop‘𝑇) ∈ ℝ ∧ (normℎ‘𝑦) ∈ ℝ) → ((normop‘𝑇) · (normℎ‘𝑦)) ∈ ℝ) | |
18 | 15, 16, 17 | sylancr 587 | . . . . . 6 ⊢ (𝑦 ∈ ℋ → ((normop‘𝑇) · (normℎ‘𝑦)) ∈ ℝ) |
19 | 18 | adantr 481 | . . . . 5 ⊢ ((𝑦 ∈ ℋ ∧ (normℎ‘𝑦) ≤ 1) → ((normop‘𝑇) · (normℎ‘𝑦)) ∈ ℝ) |
20 | 1re 10976 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
21 | 15, 20 | remulcli 10992 | . . . . . 6 ⊢ ((normop‘𝑇) · 1) ∈ ℝ |
22 | 21 | a1i 11 | . . . . 5 ⊢ ((𝑦 ∈ ℋ ∧ (normℎ‘𝑦) ≤ 1) → ((normop‘𝑇) · 1) ∈ ℝ) |
23 | 1 | nmopadjlei 30446 | . . . . . 6 ⊢ (𝑦 ∈ ℋ → (normℎ‘((adjℎ‘𝑇)‘𝑦)) ≤ ((normop‘𝑇) · (normℎ‘𝑦))) |
24 | 23 | adantr 481 | . . . . 5 ⊢ ((𝑦 ∈ ℋ ∧ (normℎ‘𝑦) ≤ 1) → (normℎ‘((adjℎ‘𝑇)‘𝑦)) ≤ ((normop‘𝑇) · (normℎ‘𝑦))) |
25 | nmopge0 30269 | . . . . . . . . . 10 ⊢ (𝑇: ℋ⟶ ℋ → 0 ≤ (normop‘𝑇)) | |
26 | 1, 5, 25 | mp2b 10 | . . . . . . . . 9 ⊢ 0 ≤ (normop‘𝑇) |
27 | 15, 26 | pm3.2i 471 | . . . . . . . 8 ⊢ ((normop‘𝑇) ∈ ℝ ∧ 0 ≤ (normop‘𝑇)) |
28 | lemul2a 11830 | . . . . . . . 8 ⊢ ((((normℎ‘𝑦) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((normop‘𝑇) ∈ ℝ ∧ 0 ≤ (normop‘𝑇))) ∧ (normℎ‘𝑦) ≤ 1) → ((normop‘𝑇) · (normℎ‘𝑦)) ≤ ((normop‘𝑇) · 1)) | |
29 | 27, 28 | mp3anl3 1456 | . . . . . . 7 ⊢ ((((normℎ‘𝑦) ∈ ℝ ∧ 1 ∈ ℝ) ∧ (normℎ‘𝑦) ≤ 1) → ((normop‘𝑇) · (normℎ‘𝑦)) ≤ ((normop‘𝑇) · 1)) |
30 | 20, 29 | mpanl2 698 | . . . . . 6 ⊢ (((normℎ‘𝑦) ∈ ℝ ∧ (normℎ‘𝑦) ≤ 1) → ((normop‘𝑇) · (normℎ‘𝑦)) ≤ ((normop‘𝑇) · 1)) |
31 | 16, 30 | sylan 580 | . . . . 5 ⊢ ((𝑦 ∈ ℋ ∧ (normℎ‘𝑦) ≤ 1) → ((normop‘𝑇) · (normℎ‘𝑦)) ≤ ((normop‘𝑇) · 1)) |
32 | 13, 19, 22, 24, 31 | letrd 11132 | . . . 4 ⊢ ((𝑦 ∈ ℋ ∧ (normℎ‘𝑦) ≤ 1) → (normℎ‘((adjℎ‘𝑇)‘𝑦)) ≤ ((normop‘𝑇) · 1)) |
33 | 15 | recni 10990 | . . . . 5 ⊢ (normop‘𝑇) ∈ ℂ |
34 | 33 | mulid1i 10980 | . . . 4 ⊢ ((normop‘𝑇) · 1) = (normop‘𝑇) |
35 | 32, 34 | breqtrdi 5120 | . . 3 ⊢ ((𝑦 ∈ ℋ ∧ (normℎ‘𝑦) ≤ 1) → (normℎ‘((adjℎ‘𝑇)‘𝑦)) ≤ (normop‘𝑇)) |
36 | 35 | ex 413 | . 2 ⊢ (𝑦 ∈ ℋ → ((normℎ‘𝑦) ≤ 1 → (normℎ‘((adjℎ‘𝑇)‘𝑦)) ≤ (normop‘𝑇))) |
37 | 9, 36 | mprgbir 3081 | 1 ⊢ (normop‘(adjℎ‘𝑇)) ≤ (normop‘𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2110 ∀wral 3066 class class class wbr 5079 ⟶wf 6428 ‘cfv 6432 (class class class)co 7271 ℝcr 10871 0cc0 10872 1c1 10873 · cmul 10877 ℝ*cxr 11009 ≤ cle 11011 ℋchba 29277 normℎcno 29281 normopcnop 29303 BndLinOpcbo 29306 adjℎcado 29313 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-inf2 9377 ax-cc 10192 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 ax-pre-sup 10950 ax-addf 10951 ax-mulf 10952 ax-hilex 29357 ax-hfvadd 29358 ax-hvcom 29359 ax-hvass 29360 ax-hv0cl 29361 ax-hvaddid 29362 ax-hfvmul 29363 ax-hvmulid 29364 ax-hvmulass 29365 ax-hvdistr1 29366 ax-hvdistr2 29367 ax-hvmul0 29368 ax-hfi 29437 ax-his1 29440 ax-his2 29441 ax-his3 29442 ax-his4 29443 ax-hcompl 29560 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-iin 4933 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-se 5546 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-isom 6441 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-of 7527 df-om 7707 df-1st 7824 df-2nd 7825 df-supp 7969 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-1o 8288 df-2o 8289 df-oadd 8292 df-omul 8293 df-er 8481 df-map 8600 df-pm 8601 df-ixp 8669 df-en 8717 df-dom 8718 df-sdom 8719 df-fin 8720 df-fsupp 9107 df-fi 9148 df-sup 9179 df-inf 9180 df-oi 9247 df-card 9698 df-acn 9701 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12437 df-uz 12582 df-q 12688 df-rp 12730 df-xneg 12847 df-xadd 12848 df-xmul 12849 df-ioo 13082 df-ico 13084 df-icc 13085 df-fz 13239 df-fzo 13382 df-fl 13510 df-seq 13720 df-exp 13781 df-hash 14043 df-cj 14808 df-re 14809 df-im 14810 df-sqrt 14944 df-abs 14945 df-clim 15195 df-rlim 15196 df-sum 15396 df-struct 16846 df-sets 16863 df-slot 16881 df-ndx 16893 df-base 16911 df-ress 16940 df-plusg 16973 df-mulr 16974 df-starv 16975 df-sca 16976 df-vsca 16977 df-ip 16978 df-tset 16979 df-ple 16980 df-ds 16982 df-unif 16983 df-hom 16984 df-cco 16985 df-rest 17131 df-topn 17132 df-0g 17150 df-gsum 17151 df-topgen 17152 df-pt 17153 df-prds 17156 df-xrs 17211 df-qtop 17216 df-imas 17217 df-xps 17219 df-mre 17293 df-mrc 17294 df-acs 17296 df-mgm 18324 df-sgrp 18373 df-mnd 18384 df-submnd 18429 df-mulg 18699 df-cntz 18921 df-cmn 19386 df-psmet 20587 df-xmet 20588 df-met 20589 df-bl 20590 df-mopn 20591 df-fbas 20592 df-fg 20593 df-cnfld 20596 df-top 22041 df-topon 22058 df-topsp 22080 df-bases 22094 df-cld 22168 df-ntr 22169 df-cls 22170 df-nei 22247 df-cn 22376 df-cnp 22377 df-lm 22378 df-t1 22463 df-haus 22464 df-tx 22711 df-hmeo 22904 df-fil 22995 df-fm 23087 df-flim 23088 df-flf 23089 df-xms 23471 df-ms 23472 df-tms 23473 df-cfil 24417 df-cau 24418 df-cmet 24419 df-grpo 28851 df-gid 28852 df-ginv 28853 df-gdiv 28854 df-ablo 28903 df-vc 28917 df-nv 28950 df-va 28953 df-ba 28954 df-sm 28955 df-0v 28956 df-vs 28957 df-nmcv 28958 df-ims 28959 df-dip 29059 df-ssp 29080 df-ph 29171 df-cbn 29221 df-hnorm 29326 df-hba 29327 df-hvsub 29329 df-hlim 29330 df-hcau 29331 df-sh 29565 df-ch 29579 df-oc 29610 df-ch0 29611 df-shs 29666 df-pjh 29753 df-h0op 30106 df-nmop 30197 df-cnop 30198 df-lnop 30199 df-bdop 30200 df-unop 30201 df-hmop 30202 df-nmfn 30203 df-nlfn 30204 df-cnfn 30205 df-lnfn 30206 df-adjh 30207 |
This theorem is referenced by: nmopadji 30448 |
Copyright terms: Public domain | W3C validator |