Step | Hyp | Ref
| Expression |
1 | | ssel 3914 |
. . . . . . . 8
⊢ (𝐴 ⊆ ℝ*
→ (𝑧 ∈ 𝐴 → 𝑧 ∈
ℝ*)) |
2 | | pnfnlt 12864 |
. . . . . . . 8
⊢ (𝑧 ∈ ℝ*
→ ¬ +∞ < 𝑧) |
3 | 1, 2 | syl6 35 |
. . . . . . 7
⊢ (𝐴 ⊆ ℝ*
→ (𝑧 ∈ 𝐴 → ¬ +∞ <
𝑧)) |
4 | 3 | ralrimiv 3102 |
. . . . . 6
⊢ (𝐴 ⊆ ℝ*
→ ∀𝑧 ∈
𝐴 ¬ +∞ < 𝑧) |
5 | 4 | adantr 481 |
. . . . 5
⊢ ((𝐴 ⊆ ℝ*
∧ ∀𝑥 ∈
ℝ ∃𝑦 ∈
𝐴 𝑥 < 𝑦) → ∀𝑧 ∈ 𝐴 ¬ +∞ < 𝑧) |
6 | | breq1 5077 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑧 → (𝑥 < 𝑦 ↔ 𝑧 < 𝑦)) |
7 | 6 | rexbidv 3226 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑧 → (∃𝑦 ∈ 𝐴 𝑥 < 𝑦 ↔ ∃𝑦 ∈ 𝐴 𝑧 < 𝑦)) |
8 | 7 | rspcva 3559 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ ℝ ∧
∀𝑥 ∈ ℝ
∃𝑦 ∈ 𝐴 𝑥 < 𝑦) → ∃𝑦 ∈ 𝐴 𝑧 < 𝑦) |
9 | 8 | adantrr 714 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ ℝ ∧
(∀𝑥 ∈ ℝ
∃𝑦 ∈ 𝐴 𝑥 < 𝑦 ∧ 𝐴 ⊆ ℝ*)) →
∃𝑦 ∈ 𝐴 𝑧 < 𝑦) |
10 | 9 | ancoms 459 |
. . . . . . . . . . 11
⊢
(((∀𝑥 ∈
ℝ ∃𝑦 ∈
𝐴 𝑥 < 𝑦 ∧ 𝐴 ⊆ ℝ*) ∧ 𝑧 ∈ ℝ) →
∃𝑦 ∈ 𝐴 𝑧 < 𝑦) |
11 | 10 | exp31 420 |
. . . . . . . . . 10
⊢
(∀𝑥 ∈
ℝ ∃𝑦 ∈
𝐴 𝑥 < 𝑦 → (𝐴 ⊆ ℝ* → (𝑧 ∈ ℝ →
∃𝑦 ∈ 𝐴 𝑧 < 𝑦))) |
12 | 11 | a1dd 50 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
ℝ ∃𝑦 ∈
𝐴 𝑥 < 𝑦 → (𝐴 ⊆ ℝ* → (𝑧 < +∞ → (𝑧 ∈ ℝ →
∃𝑦 ∈ 𝐴 𝑧 < 𝑦)))) |
13 | 12 | com4r 94 |
. . . . . . . 8
⊢ (𝑧 ∈ ℝ →
(∀𝑥 ∈ ℝ
∃𝑦 ∈ 𝐴 𝑥 < 𝑦 → (𝐴 ⊆ ℝ* → (𝑧 < +∞ →
∃𝑦 ∈ 𝐴 𝑧 < 𝑦)))) |
14 | 13 | com13 88 |
. . . . . . 7
⊢ (𝐴 ⊆ ℝ*
→ (∀𝑥 ∈
ℝ ∃𝑦 ∈
𝐴 𝑥 < 𝑦 → (𝑧 ∈ ℝ → (𝑧 < +∞ → ∃𝑦 ∈ 𝐴 𝑧 < 𝑦)))) |
15 | 14 | imp 407 |
. . . . . 6
⊢ ((𝐴 ⊆ ℝ*
∧ ∀𝑥 ∈
ℝ ∃𝑦 ∈
𝐴 𝑥 < 𝑦) → (𝑧 ∈ ℝ → (𝑧 < +∞ → ∃𝑦 ∈ 𝐴 𝑧 < 𝑦))) |
16 | 15 | ralrimiv 3102 |
. . . . 5
⊢ ((𝐴 ⊆ ℝ*
∧ ∀𝑥 ∈
ℝ ∃𝑦 ∈
𝐴 𝑥 < 𝑦) → ∀𝑧 ∈ ℝ (𝑧 < +∞ → ∃𝑦 ∈ 𝐴 𝑧 < 𝑦)) |
17 | 5, 16 | jca 512 |
. . . 4
⊢ ((𝐴 ⊆ ℝ*
∧ ∀𝑥 ∈
ℝ ∃𝑦 ∈
𝐴 𝑥 < 𝑦) → (∀𝑧 ∈ 𝐴 ¬ +∞ < 𝑧 ∧ ∀𝑧 ∈ ℝ (𝑧 < +∞ → ∃𝑦 ∈ 𝐴 𝑧 < 𝑦))) |
18 | | pnfxr 11029 |
. . . . 5
⊢ +∞
∈ ℝ* |
19 | | supxr 13047 |
. . . . 5
⊢ (((𝐴 ⊆ ℝ*
∧ +∞ ∈ ℝ*) ∧ (∀𝑧 ∈ 𝐴 ¬ +∞ < 𝑧 ∧ ∀𝑧 ∈ ℝ (𝑧 < +∞ → ∃𝑦 ∈ 𝐴 𝑧 < 𝑦))) → sup(𝐴, ℝ*, < ) =
+∞) |
20 | 18, 19 | mpanl2 698 |
. . . 4
⊢ ((𝐴 ⊆ ℝ*
∧ (∀𝑧 ∈
𝐴 ¬ +∞ < 𝑧 ∧ ∀𝑧 ∈ ℝ (𝑧 < +∞ →
∃𝑦 ∈ 𝐴 𝑧 < 𝑦))) → sup(𝐴, ℝ*, < ) =
+∞) |
21 | 17, 20 | syldan 591 |
. . 3
⊢ ((𝐴 ⊆ ℝ*
∧ ∀𝑥 ∈
ℝ ∃𝑦 ∈
𝐴 𝑥 < 𝑦) → sup(𝐴, ℝ*, < ) =
+∞) |
22 | 21 | ex 413 |
. 2
⊢ (𝐴 ⊆ ℝ*
→ (∀𝑥 ∈
ℝ ∃𝑦 ∈
𝐴 𝑥 < 𝑦 → sup(𝐴, ℝ*, < ) =
+∞)) |
23 | | rexr 11021 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ → 𝑥 ∈
ℝ*) |
24 | 23 | ad2antlr 724 |
. . . . . 6
⊢ (((𝐴 ⊆ ℝ*
∧ 𝑥 ∈ ℝ)
∧ sup(𝐴,
ℝ*, < ) = +∞) → 𝑥 ∈ ℝ*) |
25 | | ltpnf 12856 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ → 𝑥 < +∞) |
26 | | breq2 5078 |
. . . . . . . . 9
⊢
(sup(𝐴,
ℝ*, < ) = +∞ → (𝑥 < sup(𝐴, ℝ*, < ) ↔ 𝑥 <
+∞)) |
27 | 25, 26 | syl5ibr 245 |
. . . . . . . 8
⊢
(sup(𝐴,
ℝ*, < ) = +∞ → (𝑥 ∈ ℝ → 𝑥 < sup(𝐴, ℝ*, <
))) |
28 | 27 | impcom 408 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ ∧ sup(𝐴, ℝ*, < ) =
+∞) → 𝑥 <
sup(𝐴, ℝ*,
< )) |
29 | 28 | adantll 711 |
. . . . . 6
⊢ (((𝐴 ⊆ ℝ*
∧ 𝑥 ∈ ℝ)
∧ sup(𝐴,
ℝ*, < ) = +∞) → 𝑥 < sup(𝐴, ℝ*, <
)) |
30 | | xrltso 12875 |
. . . . . . . 8
⊢ < Or
ℝ* |
31 | 30 | a1i 11 |
. . . . . . 7
⊢ (((𝐴 ⊆ ℝ*
∧ 𝑥 ∈ ℝ)
∧ sup(𝐴,
ℝ*, < ) = +∞) → < Or
ℝ*) |
32 | | xrsupss 13043 |
. . . . . . . 8
⊢ (𝐴 ⊆ ℝ*
→ ∃𝑧 ∈
ℝ* (∀𝑤 ∈ 𝐴 ¬ 𝑧 < 𝑤 ∧ ∀𝑤 ∈ ℝ* (𝑤 < 𝑧 → ∃𝑦 ∈ 𝐴 𝑤 < 𝑦))) |
33 | 32 | ad2antrr 723 |
. . . . . . 7
⊢ (((𝐴 ⊆ ℝ*
∧ 𝑥 ∈ ℝ)
∧ sup(𝐴,
ℝ*, < ) = +∞) → ∃𝑧 ∈ ℝ* (∀𝑤 ∈ 𝐴 ¬ 𝑧 < 𝑤 ∧ ∀𝑤 ∈ ℝ* (𝑤 < 𝑧 → ∃𝑦 ∈ 𝐴 𝑤 < 𝑦))) |
34 | 31, 33 | suplub 9219 |
. . . . . 6
⊢ (((𝐴 ⊆ ℝ*
∧ 𝑥 ∈ ℝ)
∧ sup(𝐴,
ℝ*, < ) = +∞) → ((𝑥 ∈ ℝ* ∧ 𝑥 < sup(𝐴, ℝ*, < )) →
∃𝑦 ∈ 𝐴 𝑥 < 𝑦)) |
35 | 24, 29, 34 | mp2and 696 |
. . . . 5
⊢ (((𝐴 ⊆ ℝ*
∧ 𝑥 ∈ ℝ)
∧ sup(𝐴,
ℝ*, < ) = +∞) → ∃𝑦 ∈ 𝐴 𝑥 < 𝑦) |
36 | 35 | exp31 420 |
. . . 4
⊢ (𝐴 ⊆ ℝ*
→ (𝑥 ∈ ℝ
→ (sup(𝐴,
ℝ*, < ) = +∞ → ∃𝑦 ∈ 𝐴 𝑥 < 𝑦))) |
37 | 36 | com23 86 |
. . 3
⊢ (𝐴 ⊆ ℝ*
→ (sup(𝐴,
ℝ*, < ) = +∞ → (𝑥 ∈ ℝ → ∃𝑦 ∈ 𝐴 𝑥 < 𝑦))) |
38 | 37 | ralrimdv 3105 |
. 2
⊢ (𝐴 ⊆ ℝ*
→ (sup(𝐴,
ℝ*, < ) = +∞ → ∀𝑥 ∈ ℝ ∃𝑦 ∈ 𝐴 𝑥 < 𝑦)) |
39 | 22, 38 | impbid 211 |
1
⊢ (𝐴 ⊆ ℝ*
→ (∀𝑥 ∈
ℝ ∃𝑦 ∈
𝐴 𝑥 < 𝑦 ↔ sup(𝐴, ℝ*, < ) =
+∞)) |