MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supxrunb2 Structured version   Visualization version   GIF version

Theorem supxrunb2 13344
Description: The supremum of an unbounded-above set of extended reals is plus infinity. (Contributed by NM, 19-Jan-2006.)
Assertion
Ref Expression
supxrunb2 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦 ↔ sup(𝐴, ℝ*, < ) = +∞))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem supxrunb2
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3957 . . . . . . . 8 (𝐴 ⊆ ℝ* → (𝑧𝐴𝑧 ∈ ℝ*))
2 pnfnlt 13152 . . . . . . . 8 (𝑧 ∈ ℝ* → ¬ +∞ < 𝑧)
31, 2syl6 35 . . . . . . 7 (𝐴 ⊆ ℝ* → (𝑧𝐴 → ¬ +∞ < 𝑧))
43ralrimiv 3132 . . . . . 6 (𝐴 ⊆ ℝ* → ∀𝑧𝐴 ¬ +∞ < 𝑧)
54adantr 480 . . . . 5 ((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦) → ∀𝑧𝐴 ¬ +∞ < 𝑧)
6 breq1 5126 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → (𝑥 < 𝑦𝑧 < 𝑦))
76rexbidv 3166 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (∃𝑦𝐴 𝑥 < 𝑦 ↔ ∃𝑦𝐴 𝑧 < 𝑦))
87rspcva 3603 . . . . . . . . . . . . 13 ((𝑧 ∈ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦) → ∃𝑦𝐴 𝑧 < 𝑦)
98adantrr 717 . . . . . . . . . . . 12 ((𝑧 ∈ ℝ ∧ (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦𝐴 ⊆ ℝ*)) → ∃𝑦𝐴 𝑧 < 𝑦)
109ancoms 458 . . . . . . . . . . 11 (((∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦𝐴 ⊆ ℝ*) ∧ 𝑧 ∈ ℝ) → ∃𝑦𝐴 𝑧 < 𝑦)
1110exp31 419 . . . . . . . . . 10 (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦 → (𝐴 ⊆ ℝ* → (𝑧 ∈ ℝ → ∃𝑦𝐴 𝑧 < 𝑦)))
1211a1dd 50 . . . . . . . . 9 (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦 → (𝐴 ⊆ ℝ* → (𝑧 < +∞ → (𝑧 ∈ ℝ → ∃𝑦𝐴 𝑧 < 𝑦))))
1312com4r 94 . . . . . . . 8 (𝑧 ∈ ℝ → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦 → (𝐴 ⊆ ℝ* → (𝑧 < +∞ → ∃𝑦𝐴 𝑧 < 𝑦))))
1413com13 88 . . . . . . 7 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦 → (𝑧 ∈ ℝ → (𝑧 < +∞ → ∃𝑦𝐴 𝑧 < 𝑦))))
1514imp 406 . . . . . 6 ((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦) → (𝑧 ∈ ℝ → (𝑧 < +∞ → ∃𝑦𝐴 𝑧 < 𝑦)))
1615ralrimiv 3132 . . . . 5 ((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦) → ∀𝑧 ∈ ℝ (𝑧 < +∞ → ∃𝑦𝐴 𝑧 < 𝑦))
175, 16jca 511 . . . 4 ((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦) → (∀𝑧𝐴 ¬ +∞ < 𝑧 ∧ ∀𝑧 ∈ ℝ (𝑧 < +∞ → ∃𝑦𝐴 𝑧 < 𝑦)))
18 pnfxr 11297 . . . . 5 +∞ ∈ ℝ*
19 supxr 13337 . . . . 5 (((𝐴 ⊆ ℝ* ∧ +∞ ∈ ℝ*) ∧ (∀𝑧𝐴 ¬ +∞ < 𝑧 ∧ ∀𝑧 ∈ ℝ (𝑧 < +∞ → ∃𝑦𝐴 𝑧 < 𝑦))) → sup(𝐴, ℝ*, < ) = +∞)
2018, 19mpanl2 701 . . . 4 ((𝐴 ⊆ ℝ* ∧ (∀𝑧𝐴 ¬ +∞ < 𝑧 ∧ ∀𝑧 ∈ ℝ (𝑧 < +∞ → ∃𝑦𝐴 𝑧 < 𝑦))) → sup(𝐴, ℝ*, < ) = +∞)
2117, 20syldan 591 . . 3 ((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦) → sup(𝐴, ℝ*, < ) = +∞)
2221ex 412 . 2 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦 → sup(𝐴, ℝ*, < ) = +∞))
23 rexr 11289 . . . . . . 7 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
2423ad2antlr 727 . . . . . 6 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) = +∞) → 𝑥 ∈ ℝ*)
25 ltpnf 13144 . . . . . . . . 9 (𝑥 ∈ ℝ → 𝑥 < +∞)
26 breq2 5127 . . . . . . . . 9 (sup(𝐴, ℝ*, < ) = +∞ → (𝑥 < sup(𝐴, ℝ*, < ) ↔ 𝑥 < +∞))
2725, 26imbitrrid 246 . . . . . . . 8 (sup(𝐴, ℝ*, < ) = +∞ → (𝑥 ∈ ℝ → 𝑥 < sup(𝐴, ℝ*, < )))
2827impcom 407 . . . . . . 7 ((𝑥 ∈ ℝ ∧ sup(𝐴, ℝ*, < ) = +∞) → 𝑥 < sup(𝐴, ℝ*, < ))
2928adantll 714 . . . . . 6 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) = +∞) → 𝑥 < sup(𝐴, ℝ*, < ))
30 xrltso 13165 . . . . . . . 8 < Or ℝ*
3130a1i 11 . . . . . . 7 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) = +∞) → < Or ℝ*)
32 xrsupss 13333 . . . . . . . 8 (𝐴 ⊆ ℝ* → ∃𝑧 ∈ ℝ* (∀𝑤𝐴 ¬ 𝑧 < 𝑤 ∧ ∀𝑤 ∈ ℝ* (𝑤 < 𝑧 → ∃𝑦𝐴 𝑤 < 𝑦)))
3332ad2antrr 726 . . . . . . 7 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) = +∞) → ∃𝑧 ∈ ℝ* (∀𝑤𝐴 ¬ 𝑧 < 𝑤 ∧ ∀𝑤 ∈ ℝ* (𝑤 < 𝑧 → ∃𝑦𝐴 𝑤 < 𝑦)))
3431, 33suplub 9482 . . . . . 6 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) = +∞) → ((𝑥 ∈ ℝ*𝑥 < sup(𝐴, ℝ*, < )) → ∃𝑦𝐴 𝑥 < 𝑦))
3524, 29, 34mp2and 699 . . . . 5 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ sup(𝐴, ℝ*, < ) = +∞) → ∃𝑦𝐴 𝑥 < 𝑦)
3635exp31 419 . . . 4 (𝐴 ⊆ ℝ* → (𝑥 ∈ ℝ → (sup(𝐴, ℝ*, < ) = +∞ → ∃𝑦𝐴 𝑥 < 𝑦)))
3736com23 86 . . 3 (𝐴 ⊆ ℝ* → (sup(𝐴, ℝ*, < ) = +∞ → (𝑥 ∈ ℝ → ∃𝑦𝐴 𝑥 < 𝑦)))
3837ralrimdv 3139 . 2 (𝐴 ⊆ ℝ* → (sup(𝐴, ℝ*, < ) = +∞ → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦))
3922, 38impbid 212 1 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦 ↔ sup(𝐴, ℝ*, < ) = +∞))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wral 3050  wrex 3059  wss 3931   class class class wbr 5123   Or wor 5571  supcsup 9462  cr 11136  +∞cpnf 11274  *cxr 11276   < clt 11277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-po 5572  df-so 5573  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-sup 9464  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477
This theorem is referenced by:  supxrbnd2  13346  supxrbnd  13352  suplesup  45307  supxrunb3  45367  supminfxr  45432  sge0pnffigt  46368
  Copyright terms: Public domain W3C validator