| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > jctr | Structured version Visualization version GIF version | ||
| Description: Inference conjoining a theorem to the right of a consequent. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Wolf Lammen, 24-Oct-2012.) |
| Ref | Expression |
|---|---|
| jctl.1 | ⊢ 𝜓 |
| Ref | Expression |
|---|---|
| jctr | ⊢ (𝜑 → (𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
| 2 | jctl.1 | . 2 ⊢ 𝜓 | |
| 3 | 1, 2 | jctir 520 | 1 ⊢ (𝜑 → (𝜑 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mpanl2 701 mpanr2 704 exan 1862 relopabi 5769 brprcneu 6816 brprcneuALT 6817 mpoeq12 7426 tfr3 8328 oaabslem 8572 omabslem 8575 enrefnn 8979 pssnn 9092 isinf 9165 isinfOLD 9166 preleqALT 9532 ige2m2fzo 13649 uzindi 13907 drsdirfi 18229 ga0 19195 lbsext 21088 lindfrn 21746 toprntopon 22828 fbssint 23741 filssufilg 23814 neiflim 23877 lmmbrf 25178 caucfil 25199 lrrecfr 27873 konigsbergssiedgwpr 30211 sspid 30687 satfdmfmla 35372 satefvfmla1 35397 onsucsuccmpi 36416 bj-restn0 37063 poimirlem28 37627 lhpexle1 39987 diophun 42746 eldioph4b 42784 tfsconcatlem 43309 relexp1idm 43687 relexp0idm 43688 dvsid 44304 dvsef 44305 un10 44761 cnfex 45006 dvmptfprod 45927 squeezedltsq 46871 |
| Copyright terms: Public domain | W3C validator |