![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > jctr | Structured version Visualization version GIF version |
Description: Inference conjoining a theorem to the right of a consequent. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Wolf Lammen, 24-Oct-2012.) |
Ref | Expression |
---|---|
jctl.1 | ⊢ 𝜓 |
Ref | Expression |
---|---|
jctr | ⊢ (𝜑 → (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | jctl.1 | . 2 ⊢ 𝜓 | |
3 | 1, 2 | jctir 520 | 1 ⊢ (𝜑 → (𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: mpanl2 701 mpanr2 704 exan 1860 relopabi 5835 brprcneu 6897 brprcneuALT 6898 mpoeq12 7506 tfr3 8438 oaabslem 8684 omabslem 8687 enrefnn 9086 pssnn 9207 isinf 9294 isinfOLD 9295 preleqALT 9655 ige2m2fzo 13764 uzindi 14020 drsdirfi 18363 ga0 19329 lbsext 21183 lindfrn 21859 toprntopon 22947 fbssint 23862 filssufilg 23935 neiflim 23998 lmmbrf 25310 caucfil 25331 lrrecfr 27991 konigsbergssiedgwpr 30278 sspid 30754 satfdmfmla 35385 satefvfmla1 35410 onsucsuccmpi 36426 bj-restn0 37073 poimirlem28 37635 lhpexle1 39991 diophun 42761 eldioph4b 42799 tfsconcatlem 43326 relexp1idm 43704 relexp0idm 43705 dvsid 44327 dvsef 44328 un10 44786 cnfex 44966 dvmptfprod 45901 |
Copyright terms: Public domain | W3C validator |