![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > jctr | Structured version Visualization version GIF version |
Description: Inference conjoining a theorem to the right of a consequent. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Wolf Lammen, 24-Oct-2012.) |
Ref | Expression |
---|---|
jctl.1 | ⊢ 𝜓 |
Ref | Expression |
---|---|
jctr | ⊢ (𝜑 → (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | jctl.1 | . 2 ⊢ 𝜓 | |
3 | 1, 2 | jctir 520 | 1 ⊢ (𝜑 → (𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: mpanl2 700 mpanr2 703 exan 1858 relopabi 5818 brprcneu 6881 brprcneuALT 6882 mpoeq12 7487 tfr3 8413 oaabslem 8661 omabslem 8664 enrefnn 9063 pssnn 9184 isinf 9276 isinfOLD 9277 pssnnOLD 9281 preleqALT 9632 ige2m2fzo 13719 uzindi 13971 drsdirfi 18288 ga0 19240 lbsext 21040 lindfrn 21742 toprntopon 22814 fbssint 23729 filssufilg 23802 neiflim 23865 lmmbrf 25177 caucfil 25198 lrrecfr 27847 konigsbergssiedgwpr 30046 sspid 30522 satfdmfmla 34946 satefvfmla1 34971 onsucsuccmpi 35863 bj-restn0 36505 poimirlem28 37056 lhpexle1 39418 diophun 42115 eldioph4b 42153 tfsconcatlem 42688 relexp1idm 43067 relexp0idm 43068 dvsid 43691 dvsef 43692 un10 44150 cnfex 44313 dvmptfprod 45256 |
Copyright terms: Public domain | W3C validator |