| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > jctr | Structured version Visualization version GIF version | ||
| Description: Inference conjoining a theorem to the right of a consequent. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Wolf Lammen, 24-Oct-2012.) |
| Ref | Expression |
|---|---|
| jctl.1 | ⊢ 𝜓 |
| Ref | Expression |
|---|---|
| jctr | ⊢ (𝜑 → (𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
| 2 | jctl.1 | . 2 ⊢ 𝜓 | |
| 3 | 1, 2 | jctir 520 | 1 ⊢ (𝜑 → (𝜑 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mpanl2 701 mpanr2 704 exan 1862 relopabi 5806 brprcneu 6871 brprcneuALT 6872 mpoeq12 7485 tfr3 8418 oaabslem 8664 omabslem 8667 enrefnn 9066 pssnn 9187 isinf 9273 isinfOLD 9274 preleqALT 9636 ige2m2fzo 13749 uzindi 14005 drsdirfi 18322 ga0 19286 lbsext 21129 lindfrn 21786 toprntopon 22868 fbssint 23781 filssufilg 23854 neiflim 23917 lmmbrf 25219 caucfil 25240 lrrecfr 27907 konigsbergssiedgwpr 30235 sspid 30711 satfdmfmla 35427 satefvfmla1 35452 onsucsuccmpi 36466 bj-restn0 37113 poimirlem28 37677 lhpexle1 40032 diophun 42763 eldioph4b 42801 tfsconcatlem 43327 relexp1idm 43705 relexp0idm 43706 dvsid 44322 dvsef 44323 un10 44779 cnfex 45019 dvmptfprod 45941 squeezedltsq 46885 |
| Copyright terms: Public domain | W3C validator |