![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > jctr | Structured version Visualization version GIF version |
Description: Inference conjoining a theorem to the right of a consequent. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Wolf Lammen, 24-Oct-2012.) |
Ref | Expression |
---|---|
jctl.1 | ⊢ 𝜓 |
Ref | Expression |
---|---|
jctr | ⊢ (𝜑 → (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | jctl.1 | . 2 ⊢ 𝜓 | |
3 | 1, 2 | jctir 520 | 1 ⊢ (𝜑 → (𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: mpanl2 700 mpanr2 703 exan 1861 relopabi 5846 brprcneu 6910 brprcneuALT 6911 mpoeq12 7523 tfr3 8455 oaabslem 8703 omabslem 8706 enrefnn 9113 pssnn 9234 isinf 9323 isinfOLD 9324 preleqALT 9686 ige2m2fzo 13779 uzindi 14033 drsdirfi 18375 ga0 19338 lbsext 21188 lindfrn 21864 toprntopon 22952 fbssint 23867 filssufilg 23940 neiflim 24003 lmmbrf 25315 caucfil 25336 lrrecfr 27994 konigsbergssiedgwpr 30281 sspid 30757 satfdmfmla 35368 satefvfmla1 35393 onsucsuccmpi 36409 bj-restn0 37056 poimirlem28 37608 lhpexle1 39965 diophun 42729 eldioph4b 42767 tfsconcatlem 43298 relexp1idm 43676 relexp0idm 43677 dvsid 44300 dvsef 44301 un10 44759 cnfex 44928 dvmptfprod 45866 |
Copyright terms: Public domain | W3C validator |