| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > jctr | Structured version Visualization version GIF version | ||
| Description: Inference conjoining a theorem to the right of a consequent. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Wolf Lammen, 24-Oct-2012.) |
| Ref | Expression |
|---|---|
| jctl.1 | ⊢ 𝜓 |
| Ref | Expression |
|---|---|
| jctr | ⊢ (𝜑 → (𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
| 2 | jctl.1 | . 2 ⊢ 𝜓 | |
| 3 | 1, 2 | jctir 520 | 1 ⊢ (𝜑 → (𝜑 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mpanl2 701 mpanr2 704 exan 1863 relopabi 5766 brprcneu 6818 brprcneuALT 6819 mpoeq12 7425 tfr3 8324 oaabslem 8568 omabslem 8571 enrefnn 8975 pssnn 9085 isinf 9156 preleqALT 9514 ige2m2fzo 13630 uzindi 13891 drsdirfi 18213 ga0 19212 lbsext 21102 lindfrn 21760 toprntopon 22841 fbssint 23754 filssufilg 23827 neiflim 23890 lmmbrf 25190 caucfil 25211 lrrecfr 27887 konigsbergssiedgwpr 30231 sspid 30707 satfdmfmla 35465 satefvfmla1 35490 onsucsuccmpi 36508 bj-restn0 37155 poimirlem28 37708 lhpexle1 40127 diophun 42890 eldioph4b 42928 tfsconcatlem 43453 relexp1idm 43831 relexp0idm 43832 dvsid 44448 dvsef 44449 un10 44904 cnfex 45149 dvmptfprod 46067 squeezedltsq 47010 |
| Copyright terms: Public domain | W3C validator |