Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > jctr | Structured version Visualization version GIF version |
Description: Inference conjoining a theorem to the right of a consequent. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Wolf Lammen, 24-Oct-2012.) |
Ref | Expression |
---|---|
jctl.1 | ⊢ 𝜓 |
Ref | Expression |
---|---|
jctr | ⊢ (𝜑 → (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | jctl.1 | . 2 ⊢ 𝜓 | |
3 | 1, 2 | jctir 521 | 1 ⊢ (𝜑 → (𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: mpanl2 698 mpanr2 701 exan 1866 relopabi 5734 brprcneu 6773 brprcneuALT 6774 mpoeq12 7357 tfr3 8239 oaabslem 8486 omabslem 8489 enrefnn 8846 pssnn 8960 isinf 9045 pssnnOLD 9049 preleqALT 9384 ige2m2fzo 13459 uzindi 13711 drsdirfi 18032 ga0 18913 lbsext 20434 lindfrn 21037 toprntopon 22083 fbssint 22998 filssufilg 23071 neiflim 23134 lmmbrf 24435 caucfil 24456 konigsbergssiedgwpr 28622 sspid 29096 satfdmfmla 33371 satefvfmla1 33396 lrrecfr 34109 onsucsuccmpi 34641 bj-restn0 35270 poimirlem28 35814 lhpexle1 38029 diophun 40602 eldioph4b 40640 relexp1idm 41329 relexp0idm 41330 dvsid 41956 dvsef 41957 un10 42415 cnfex 42578 dvmptfprod 43493 |
Copyright terms: Public domain | W3C validator |