![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > jctr | Structured version Visualization version GIF version |
Description: Inference conjoining a theorem to the right of a consequent. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Wolf Lammen, 24-Oct-2012.) |
Ref | Expression |
---|---|
jctl.1 | ⊢ 𝜓 |
Ref | Expression |
---|---|
jctr | ⊢ (𝜑 → (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | jctl.1 | . 2 ⊢ 𝜓 | |
3 | 1, 2 | jctir 521 | 1 ⊢ (𝜑 → (𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: mpanl2 699 mpanr2 702 exan 1865 relopabi 5822 brprcneu 6881 brprcneuALT 6882 mpoeq12 7481 tfr3 8398 oaabslem 8645 omabslem 8648 enrefnn 9046 pssnn 9167 isinf 9259 isinfOLD 9260 pssnnOLD 9264 preleqALT 9611 ige2m2fzo 13694 uzindi 13946 drsdirfi 18257 ga0 19161 lbsext 20775 lindfrn 21375 toprntopon 22426 fbssint 23341 filssufilg 23414 neiflim 23477 lmmbrf 24778 caucfil 24799 lrrecfr 27424 konigsbergssiedgwpr 29499 sspid 29973 satfdmfmla 34386 satefvfmla1 34411 onsucsuccmpi 35323 bj-restn0 35966 poimirlem28 36511 lhpexle1 38874 diophun 41501 eldioph4b 41539 tfsconcatlem 42076 relexp1idm 42455 relexp0idm 42456 dvsid 43080 dvsef 43081 un10 43539 cnfex 43702 dvmptfprod 44651 |
Copyright terms: Public domain | W3C validator |