Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > jctr | Structured version Visualization version GIF version |
Description: Inference conjoining a theorem to the right of a consequent. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Wolf Lammen, 24-Oct-2012.) |
Ref | Expression |
---|---|
jctl.1 | ⊢ 𝜓 |
Ref | Expression |
---|---|
jctr | ⊢ (𝜑 → (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | jctl.1 | . 2 ⊢ 𝜓 | |
3 | 1, 2 | jctir 520 | 1 ⊢ (𝜑 → (𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: mpanl2 697 mpanr2 700 exan 1866 relopabi 5721 brprcneu 6747 fvprc 6748 mpoeq12 7326 tfr3 8201 oaabslem 8437 omabslem 8440 enrefnn 8791 pssnn 8913 isinf 8965 pssnnOLD 8969 preleqALT 9305 ige2m2fzo 13378 uzindi 13630 drsdirfi 17938 ga0 18819 lbsext 20340 lindfrn 20938 toprntopon 21982 fbssint 22897 filssufilg 22970 neiflim 23033 lmmbrf 24331 caucfil 24352 konigsbergssiedgwpr 28514 sspid 28988 satfdmfmla 33262 satefvfmla1 33287 lrrecfr 34027 onsucsuccmpi 34559 bj-restn0 35188 poimirlem28 35732 lhpexle1 37949 diophun 40511 eldioph4b 40549 relexp1idm 41211 relexp0idm 41212 dvsid 41838 dvsef 41839 un10 42297 cnfex 42460 dvmptfprod 43376 |
Copyright terms: Public domain | W3C validator |