| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > jctr | Structured version Visualization version GIF version | ||
| Description: Inference conjoining a theorem to the right of a consequent. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Wolf Lammen, 24-Oct-2012.) |
| Ref | Expression |
|---|---|
| jctl.1 | ⊢ 𝜓 |
| Ref | Expression |
|---|---|
| jctr | ⊢ (𝜑 → (𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
| 2 | jctl.1 | . 2 ⊢ 𝜓 | |
| 3 | 1, 2 | jctir 520 | 1 ⊢ (𝜑 → (𝜑 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mpanl2 701 mpanr2 704 exan 1862 relopabi 5785 brprcneu 6848 brprcneuALT 6849 mpoeq12 7462 tfr3 8367 oaabslem 8611 omabslem 8614 enrefnn 9018 pssnn 9132 isinf 9207 isinfOLD 9208 preleqALT 9570 ige2m2fzo 13689 uzindi 13947 drsdirfi 18266 ga0 19230 lbsext 21073 lindfrn 21730 toprntopon 22812 fbssint 23725 filssufilg 23798 neiflim 23861 lmmbrf 25162 caucfil 25183 lrrecfr 27850 konigsbergssiedgwpr 30178 sspid 30654 satfdmfmla 35387 satefvfmla1 35412 onsucsuccmpi 36431 bj-restn0 37078 poimirlem28 37642 lhpexle1 40002 diophun 42761 eldioph4b 42799 tfsconcatlem 43325 relexp1idm 43703 relexp0idm 43704 dvsid 44320 dvsef 44321 un10 44777 cnfex 45022 dvmptfprod 45943 squeezedltsq 46887 |
| Copyright terms: Public domain | W3C validator |