![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > jctr | Structured version Visualization version GIF version |
Description: Inference conjoining a theorem to the right of a consequent. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Wolf Lammen, 24-Oct-2012.) |
Ref | Expression |
---|---|
jctl.1 | ⊢ 𝜓 |
Ref | Expression |
---|---|
jctr | ⊢ (𝜑 → (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | jctl.1 | . 2 ⊢ 𝜓 | |
3 | 1, 2 | jctir 519 | 1 ⊢ (𝜑 → (𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 |
This theorem is referenced by: mpanl2 699 mpanr2 702 exan 1857 relopabi 5823 brprcneu 6884 brprcneuALT 6885 mpoeq12 7491 tfr3 8418 oaabslem 8666 omabslem 8669 enrefnn 9070 pssnn 9191 isinf 9283 isinfOLD 9284 pssnnOLD 9288 preleqALT 9640 ige2m2fzo 13727 uzindi 13979 drsdirfi 18296 ga0 19253 lbsext 21055 lindfrn 21759 toprntopon 22857 fbssint 23772 filssufilg 23845 neiflim 23908 lmmbrf 25220 caucfil 25241 lrrecfr 27890 konigsbergssiedgwpr 30115 sspid 30591 satfdmfmla 35080 satefvfmla1 35105 onsucsuccmpi 35997 bj-restn0 36639 poimirlem28 37191 lhpexle1 39550 diophun 42258 eldioph4b 42296 tfsconcatlem 42830 relexp1idm 43209 relexp0idm 43210 dvsid 43833 dvsef 43834 un10 44292 cnfex 44455 dvmptfprod 45396 |
Copyright terms: Public domain | W3C validator |