![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > jctr | Structured version Visualization version GIF version |
Description: Inference conjoining a theorem to the right of a consequent. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Wolf Lammen, 24-Oct-2012.) |
Ref | Expression |
---|---|
jctl.1 | ⊢ 𝜓 |
Ref | Expression |
---|---|
jctr | ⊢ (𝜑 → (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | jctl.1 | . 2 ⊢ 𝜓 | |
3 | 1, 2 | jctir 521 | 1 ⊢ (𝜑 → (𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: mpanl2 699 mpanr2 702 exan 1865 relopabi 5822 brprcneu 6881 brprcneuALT 6882 mpoeq12 7484 tfr3 8401 oaabslem 8648 omabslem 8651 enrefnn 9049 pssnn 9170 isinf 9262 isinfOLD 9263 pssnnOLD 9267 preleqALT 9614 ige2m2fzo 13697 uzindi 13949 drsdirfi 18260 ga0 19164 lbsext 20782 lindfrn 21382 toprntopon 22434 fbssint 23349 filssufilg 23422 neiflim 23485 lmmbrf 24786 caucfil 24807 lrrecfr 27436 konigsbergssiedgwpr 29540 sspid 30016 satfdmfmla 34460 satefvfmla1 34485 onsucsuccmpi 35420 bj-restn0 36063 poimirlem28 36608 lhpexle1 38971 diophun 41599 eldioph4b 41637 tfsconcatlem 42174 relexp1idm 42553 relexp0idm 42554 dvsid 43178 dvsef 43179 un10 43637 cnfex 43800 dvmptfprod 44746 |
Copyright terms: Public domain | W3C validator |