MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  jctr Structured version   Visualization version   GIF version

Theorem jctr 524
Description: Inference conjoining a theorem to the right of a consequent. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Wolf Lammen, 24-Oct-2012.)
Hypothesis
Ref Expression
jctl.1 𝜓
Assertion
Ref Expression
jctr (𝜑 → (𝜑𝜓))

Proof of Theorem jctr
StepHypRef Expression
1 id 22 . 2 (𝜑𝜑)
2 jctl.1 . 2 𝜓
31, 2jctir 520 1 (𝜑 → (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  mpanl2  701  mpanr2  704  exan  1863  relopabi  5762  brprcneu  6812  brprcneuALT  6813  mpoeq12  7419  tfr3  8318  oaabslem  8562  omabslem  8565  enrefnn  8968  pssnn  9078  isinf  9149  preleqALT  9507  ige2m2fzo  13625  uzindi  13886  drsdirfi  18208  ga0  19208  lbsext  21098  lindfrn  21756  toprntopon  22838  fbssint  23751  filssufilg  23824  neiflim  23887  lmmbrf  25187  caucfil  25208  lrrecfr  27884  konigsbergssiedgwpr  30224  sspid  30700  satfdmfmla  35432  satefvfmla1  35457  onsucsuccmpi  36476  bj-restn0  37123  poimirlem28  37687  lhpexle1  40046  diophun  42805  eldioph4b  42843  tfsconcatlem  43368  relexp1idm  43746  relexp0idm  43747  dvsid  44363  dvsef  44364  un10  44819  cnfex  45064  dvmptfprod  45982  squeezedltsq  46916
  Copyright terms: Public domain W3C validator