![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > jctr | Structured version Visualization version GIF version |
Description: Inference conjoining a theorem to the right of a consequent. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Wolf Lammen, 24-Oct-2012.) |
Ref | Expression |
---|---|
jctl.1 | ⊢ 𝜓 |
Ref | Expression |
---|---|
jctr | ⊢ (𝜑 → (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | jctl.1 | . 2 ⊢ 𝜓 | |
3 | 1, 2 | jctir 517 | 1 ⊢ (𝜑 → (𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 386 |
This theorem is referenced by: mpanl2 693 mpanr2 696 exan 1958 relopabi 5449 brprcneu 6403 mpt2eq12 6949 tfr3 7734 oaabslem 7963 omabslem 7966 isinf 8415 pssnn 8420 preleqALT 8762 ige2m2fzo 12786 uzindi 13036 drsdirfi 17253 ga0 18043 lbsext 19486 lindfrn 20485 toprntopon 21058 fbssint 21970 filssufilg 22043 neiflim 22106 lmmbrf 23388 caucfil 23409 konigsbergssiedgwpr 27596 sspid 28105 onsucsuccmpi 32950 bj-restsn0 33531 bj-restn0 33536 poimirlem28 33926 lhpexle1 36029 diophun 38123 eldioph4b 38161 relexp1idm 38789 relexp0idm 38790 dvsid 39312 dvsef 39313 un10 39784 cnfex 39947 dvmptfprod 40904 |
Copyright terms: Public domain | W3C validator |