| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > jctr | Structured version Visualization version GIF version | ||
| Description: Inference conjoining a theorem to the right of a consequent. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Wolf Lammen, 24-Oct-2012.) |
| Ref | Expression |
|---|---|
| jctl.1 | ⊢ 𝜓 |
| Ref | Expression |
|---|---|
| jctr | ⊢ (𝜑 → (𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
| 2 | jctl.1 | . 2 ⊢ 𝜓 | |
| 3 | 1, 2 | jctir 520 | 1 ⊢ (𝜑 → (𝜑 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mpanl2 701 mpanr2 704 exan 1863 relopabi 5762 brprcneu 6812 brprcneuALT 6813 mpoeq12 7419 tfr3 8318 oaabslem 8562 omabslem 8565 enrefnn 8968 pssnn 9078 isinf 9149 preleqALT 9507 ige2m2fzo 13625 uzindi 13886 drsdirfi 18208 ga0 19208 lbsext 21098 lindfrn 21756 toprntopon 22838 fbssint 23751 filssufilg 23824 neiflim 23887 lmmbrf 25187 caucfil 25208 lrrecfr 27884 konigsbergssiedgwpr 30224 sspid 30700 satfdmfmla 35432 satefvfmla1 35457 onsucsuccmpi 36476 bj-restn0 37123 poimirlem28 37687 lhpexle1 40046 diophun 42805 eldioph4b 42843 tfsconcatlem 43368 relexp1idm 43746 relexp0idm 43747 dvsid 44363 dvsef 44364 un10 44819 cnfex 45064 dvmptfprod 45982 squeezedltsq 46916 |
| Copyright terms: Public domain | W3C validator |