| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > jctr | Structured version Visualization version GIF version | ||
| Description: Inference conjoining a theorem to the right of a consequent. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Wolf Lammen, 24-Oct-2012.) |
| Ref | Expression |
|---|---|
| jctl.1 | ⊢ 𝜓 |
| Ref | Expression |
|---|---|
| jctr | ⊢ (𝜑 → (𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
| 2 | jctl.1 | . 2 ⊢ 𝜓 | |
| 3 | 1, 2 | jctir 520 | 1 ⊢ (𝜑 → (𝜑 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mpanl2 701 mpanr2 704 exan 1862 relopabi 5788 brprcneu 6851 brprcneuALT 6852 mpoeq12 7465 tfr3 8370 oaabslem 8614 omabslem 8617 enrefnn 9021 pssnn 9138 isinf 9214 isinfOLD 9215 preleqALT 9577 ige2m2fzo 13696 uzindi 13954 drsdirfi 18273 ga0 19237 lbsext 21080 lindfrn 21737 toprntopon 22819 fbssint 23732 filssufilg 23805 neiflim 23868 lmmbrf 25169 caucfil 25190 lrrecfr 27857 konigsbergssiedgwpr 30185 sspid 30661 satfdmfmla 35394 satefvfmla1 35419 onsucsuccmpi 36438 bj-restn0 37085 poimirlem28 37649 lhpexle1 40009 diophun 42768 eldioph4b 42806 tfsconcatlem 43332 relexp1idm 43710 relexp0idm 43711 dvsid 44327 dvsef 44328 un10 44784 cnfex 45029 dvmptfprod 45950 squeezedltsq 46894 |
| Copyright terms: Public domain | W3C validator |