MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addltmul Structured version   Visualization version   GIF version

Theorem addltmul 11868
Description: Sum is less than product for numbers greater than 2. (Contributed by Stefan Allan, 24-Sep-2010.)
Assertion
Ref Expression
addltmul (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (2 < 𝐴 ∧ 2 < 𝐵)) → (𝐴 + 𝐵) < (𝐴 · 𝐵))

Proof of Theorem addltmul
StepHypRef Expression
1 2re 11706 . . . . . . 7 2 ∈ ℝ
2 1re 10635 . . . . . . 7 1 ∈ ℝ
3 ltsub1 11130 . . . . . . 7 ((2 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (2 < 𝐴 ↔ (2 − 1) < (𝐴 − 1)))
41, 2, 3mp3an13 1449 . . . . . 6 (𝐴 ∈ ℝ → (2 < 𝐴 ↔ (2 − 1) < (𝐴 − 1)))
5 2m1e1 11758 . . . . . . 7 (2 − 1) = 1
65breq1i 5060 . . . . . 6 ((2 − 1) < (𝐴 − 1) ↔ 1 < (𝐴 − 1))
74, 6syl6bb 290 . . . . 5 (𝐴 ∈ ℝ → (2 < 𝐴 ↔ 1 < (𝐴 − 1)))
8 ltsub1 11130 . . . . . . 7 ((2 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 ∈ ℝ) → (2 < 𝐵 ↔ (2 − 1) < (𝐵 − 1)))
91, 2, 8mp3an13 1449 . . . . . 6 (𝐵 ∈ ℝ → (2 < 𝐵 ↔ (2 − 1) < (𝐵 − 1)))
105breq1i 5060 . . . . . 6 ((2 − 1) < (𝐵 − 1) ↔ 1 < (𝐵 − 1))
119, 10syl6bb 290 . . . . 5 (𝐵 ∈ ℝ → (2 < 𝐵 ↔ 1 < (𝐵 − 1)))
127, 11bi2anan9 638 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((2 < 𝐴 ∧ 2 < 𝐵) ↔ (1 < (𝐴 − 1) ∧ 1 < (𝐵 − 1))))
13 peano2rem 10947 . . . . 5 (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℝ)
14 peano2rem 10947 . . . . 5 (𝐵 ∈ ℝ → (𝐵 − 1) ∈ ℝ)
15 mulgt1 11493 . . . . . 6 ((((𝐴 − 1) ∈ ℝ ∧ (𝐵 − 1) ∈ ℝ) ∧ (1 < (𝐴 − 1) ∧ 1 < (𝐵 − 1))) → 1 < ((𝐴 − 1) · (𝐵 − 1)))
1615ex 416 . . . . 5 (((𝐴 − 1) ∈ ℝ ∧ (𝐵 − 1) ∈ ℝ) → ((1 < (𝐴 − 1) ∧ 1 < (𝐵 − 1)) → 1 < ((𝐴 − 1) · (𝐵 − 1))))
1713, 14, 16syl2an 598 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((1 < (𝐴 − 1) ∧ 1 < (𝐵 − 1)) → 1 < ((𝐴 − 1) · (𝐵 − 1))))
1812, 17sylbid 243 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((2 < 𝐴 ∧ 2 < 𝐵) → 1 < ((𝐴 − 1) · (𝐵 − 1))))
19 recn 10621 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
20 recn 10621 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
21 ax-1cn 10589 . . . . . . 7 1 ∈ ℂ
22 mulsub 11077 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) ∧ (𝐵 ∈ ℂ ∧ 1 ∈ ℂ)) → ((𝐴 − 1) · (𝐵 − 1)) = (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1))))
2321, 22mpanl2 700 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 1 ∈ ℂ)) → ((𝐴 − 1) · (𝐵 − 1)) = (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1))))
2421, 23mpanr2 703 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 1) · (𝐵 − 1)) = (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1))))
2519, 20, 24syl2an 598 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 − 1) · (𝐵 − 1)) = (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1))))
2625breq2d 5065 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < ((𝐴 − 1) · (𝐵 − 1)) ↔ 1 < (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1)))))
27 remulcl 10616 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐴 · 1) ∈ ℝ)
282, 27mpan2 690 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 · 1) ∈ ℝ)
29 remulcl 10616 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐵 · 1) ∈ ℝ)
302, 29mpan2 690 . . . . . . 7 (𝐵 ∈ ℝ → (𝐵 · 1) ∈ ℝ)
31 readdcl 10614 . . . . . . 7 (((𝐴 · 1) ∈ ℝ ∧ (𝐵 · 1) ∈ ℝ) → ((𝐴 · 1) + (𝐵 · 1)) ∈ ℝ)
3228, 30, 31syl2an 598 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 1) + (𝐵 · 1)) ∈ ℝ)
33 remulcl 10616 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
342, 2remulcli 10651 . . . . . . 7 (1 · 1) ∈ ℝ
35 readdcl 10614 . . . . . . 7 (((𝐴 · 𝐵) ∈ ℝ ∧ (1 · 1) ∈ ℝ) → ((𝐴 · 𝐵) + (1 · 1)) ∈ ℝ)
3633, 34, 35sylancl 589 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 𝐵) + (1 · 1)) ∈ ℝ)
37 ltaddsub2 11109 . . . . . . 7 ((((𝐴 · 1) + (𝐵 · 1)) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝐴 · 𝐵) + (1 · 1)) ∈ ℝ) → ((((𝐴 · 1) + (𝐵 · 1)) + 1) < ((𝐴 · 𝐵) + (1 · 1)) ↔ 1 < (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1)))))
382, 37mp3an2 1446 . . . . . 6 ((((𝐴 · 1) + (𝐵 · 1)) ∈ ℝ ∧ ((𝐴 · 𝐵) + (1 · 1)) ∈ ℝ) → ((((𝐴 · 1) + (𝐵 · 1)) + 1) < ((𝐴 · 𝐵) + (1 · 1)) ↔ 1 < (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1)))))
3932, 36, 38syl2anc 587 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐴 · 1) + (𝐵 · 1)) + 1) < ((𝐴 · 𝐵) + (1 · 1)) ↔ 1 < (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1)))))
40 1t1e1 11794 . . . . . . 7 (1 · 1) = 1
4140oveq2i 7157 . . . . . 6 ((𝐴 · 𝐵) + (1 · 1)) = ((𝐴 · 𝐵) + 1)
4241breq2i 5061 . . . . 5 ((((𝐴 · 1) + (𝐵 · 1)) + 1) < ((𝐴 · 𝐵) + (1 · 1)) ↔ (((𝐴 · 1) + (𝐵 · 1)) + 1) < ((𝐴 · 𝐵) + 1))
4339, 42bitr3di 289 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1))) ↔ (((𝐴 · 1) + (𝐵 · 1)) + 1) < ((𝐴 · 𝐵) + 1)))
44 ltadd1 11101 . . . . . . 7 ((((𝐴 · 1) + (𝐵 · 1)) ∈ ℝ ∧ (𝐴 · 𝐵) ∈ ℝ ∧ 1 ∈ ℝ) → (((𝐴 · 1) + (𝐵 · 1)) < (𝐴 · 𝐵) ↔ (((𝐴 · 1) + (𝐵 · 1)) + 1) < ((𝐴 · 𝐵) + 1)))
452, 44mp3an3 1447 . . . . . 6 ((((𝐴 · 1) + (𝐵 · 1)) ∈ ℝ ∧ (𝐴 · 𝐵) ∈ ℝ) → (((𝐴 · 1) + (𝐵 · 1)) < (𝐴 · 𝐵) ↔ (((𝐴 · 1) + (𝐵 · 1)) + 1) < ((𝐴 · 𝐵) + 1)))
4632, 33, 45syl2anc 587 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 · 1) + (𝐵 · 1)) < (𝐴 · 𝐵) ↔ (((𝐴 · 1) + (𝐵 · 1)) + 1) < ((𝐴 · 𝐵) + 1)))
47 ax-1rid 10601 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴)
48 ax-1rid 10601 . . . . . . 7 (𝐵 ∈ ℝ → (𝐵 · 1) = 𝐵)
4947, 48oveqan12d 7165 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 1) + (𝐵 · 1)) = (𝐴 + 𝐵))
5049breq1d 5063 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 · 1) + (𝐵 · 1)) < (𝐴 · 𝐵) ↔ (𝐴 + 𝐵) < (𝐴 · 𝐵)))
5146, 50bitr3d 284 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐴 · 1) + (𝐵 · 1)) + 1) < ((𝐴 · 𝐵) + 1) ↔ (𝐴 + 𝐵) < (𝐴 · 𝐵)))
5226, 43, 513bitrd 308 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < ((𝐴 − 1) · (𝐵 − 1)) ↔ (𝐴 + 𝐵) < (𝐴 · 𝐵)))
5318, 52sylibd 242 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((2 < 𝐴 ∧ 2 < 𝐵) → (𝐴 + 𝐵) < (𝐴 · 𝐵)))
5453imp 410 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (2 < 𝐴 ∧ 2 < 𝐵)) → (𝐴 + 𝐵) < (𝐴 · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115   class class class wbr 5053  (class class class)co 7146  cc 10529  cr 10530  1c1 10532   + caddc 10534   · cmul 10536   < clt 10669  cmin 10864  2c2 11687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7452  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4826  df-br 5054  df-opab 5116  df-mpt 5134  df-id 5448  df-po 5462  df-so 5463  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-riota 7104  df-ov 7149  df-oprab 7150  df-mpo 7151  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-2 11695
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator