MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addltmul Structured version   Visualization version   GIF version

Theorem addltmul 11618
Description: Sum is less than product for numbers greater than 2. (Contributed by Stefan Allan, 24-Sep-2010.)
Assertion
Ref Expression
addltmul (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (2 < 𝐴 ∧ 2 < 𝐵)) → (𝐴 + 𝐵) < (𝐴 · 𝐵))

Proof of Theorem addltmul
StepHypRef Expression
1 2re 11449 . . . . . . 7 2 ∈ ℝ
2 1re 10376 . . . . . . 7 1 ∈ ℝ
3 ltsub1 10871 . . . . . . 7 ((2 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (2 < 𝐴 ↔ (2 − 1) < (𝐴 − 1)))
41, 2, 3mp3an13 1525 . . . . . 6 (𝐴 ∈ ℝ → (2 < 𝐴 ↔ (2 − 1) < (𝐴 − 1)))
5 2m1e1 11508 . . . . . . 7 (2 − 1) = 1
65breq1i 4893 . . . . . 6 ((2 − 1) < (𝐴 − 1) ↔ 1 < (𝐴 − 1))
74, 6syl6bb 279 . . . . 5 (𝐴 ∈ ℝ → (2 < 𝐴 ↔ 1 < (𝐴 − 1)))
8 ltsub1 10871 . . . . . . 7 ((2 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 ∈ ℝ) → (2 < 𝐵 ↔ (2 − 1) < (𝐵 − 1)))
91, 2, 8mp3an13 1525 . . . . . 6 (𝐵 ∈ ℝ → (2 < 𝐵 ↔ (2 − 1) < (𝐵 − 1)))
105breq1i 4893 . . . . . 6 ((2 − 1) < (𝐵 − 1) ↔ 1 < (𝐵 − 1))
119, 10syl6bb 279 . . . . 5 (𝐵 ∈ ℝ → (2 < 𝐵 ↔ 1 < (𝐵 − 1)))
127, 11bi2anan9 629 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((2 < 𝐴 ∧ 2 < 𝐵) ↔ (1 < (𝐴 − 1) ∧ 1 < (𝐵 − 1))))
13 peano2rem 10690 . . . . 5 (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℝ)
14 peano2rem 10690 . . . . 5 (𝐵 ∈ ℝ → (𝐵 − 1) ∈ ℝ)
15 mulgt1 11236 . . . . . 6 ((((𝐴 − 1) ∈ ℝ ∧ (𝐵 − 1) ∈ ℝ) ∧ (1 < (𝐴 − 1) ∧ 1 < (𝐵 − 1))) → 1 < ((𝐴 − 1) · (𝐵 − 1)))
1615ex 403 . . . . 5 (((𝐴 − 1) ∈ ℝ ∧ (𝐵 − 1) ∈ ℝ) → ((1 < (𝐴 − 1) ∧ 1 < (𝐵 − 1)) → 1 < ((𝐴 − 1) · (𝐵 − 1))))
1713, 14, 16syl2an 589 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((1 < (𝐴 − 1) ∧ 1 < (𝐵 − 1)) → 1 < ((𝐴 − 1) · (𝐵 − 1))))
1812, 17sylbid 232 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((2 < 𝐴 ∧ 2 < 𝐵) → 1 < ((𝐴 − 1) · (𝐵 − 1))))
19 recn 10362 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
20 recn 10362 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
21 ax-1cn 10330 . . . . . . 7 1 ∈ ℂ
22 mulsub 10818 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) ∧ (𝐵 ∈ ℂ ∧ 1 ∈ ℂ)) → ((𝐴 − 1) · (𝐵 − 1)) = (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1))))
2321, 22mpanl2 691 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 1 ∈ ℂ)) → ((𝐴 − 1) · (𝐵 − 1)) = (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1))))
2421, 23mpanr2 694 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 1) · (𝐵 − 1)) = (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1))))
2519, 20, 24syl2an 589 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 − 1) · (𝐵 − 1)) = (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1))))
2625breq2d 4898 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < ((𝐴 − 1) · (𝐵 − 1)) ↔ 1 < (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1)))))
27 1t1e1 11544 . . . . . . 7 (1 · 1) = 1
2827oveq2i 6933 . . . . . 6 ((𝐴 · 𝐵) + (1 · 1)) = ((𝐴 · 𝐵) + 1)
2928breq2i 4894 . . . . 5 ((((𝐴 · 1) + (𝐵 · 1)) + 1) < ((𝐴 · 𝐵) + (1 · 1)) ↔ (((𝐴 · 1) + (𝐵 · 1)) + 1) < ((𝐴 · 𝐵) + 1))
30 remulcl 10357 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐴 · 1) ∈ ℝ)
312, 30mpan2 681 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 · 1) ∈ ℝ)
32 remulcl 10357 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐵 · 1) ∈ ℝ)
332, 32mpan2 681 . . . . . . 7 (𝐵 ∈ ℝ → (𝐵 · 1) ∈ ℝ)
34 readdcl 10355 . . . . . . 7 (((𝐴 · 1) ∈ ℝ ∧ (𝐵 · 1) ∈ ℝ) → ((𝐴 · 1) + (𝐵 · 1)) ∈ ℝ)
3531, 33, 34syl2an 589 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 1) + (𝐵 · 1)) ∈ ℝ)
36 remulcl 10357 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
372, 2remulcli 10393 . . . . . . 7 (1 · 1) ∈ ℝ
38 readdcl 10355 . . . . . . 7 (((𝐴 · 𝐵) ∈ ℝ ∧ (1 · 1) ∈ ℝ) → ((𝐴 · 𝐵) + (1 · 1)) ∈ ℝ)
3936, 37, 38sylancl 580 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 𝐵) + (1 · 1)) ∈ ℝ)
40 ltaddsub2 10850 . . . . . . 7 ((((𝐴 · 1) + (𝐵 · 1)) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝐴 · 𝐵) + (1 · 1)) ∈ ℝ) → ((((𝐴 · 1) + (𝐵 · 1)) + 1) < ((𝐴 · 𝐵) + (1 · 1)) ↔ 1 < (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1)))))
412, 40mp3an2 1522 . . . . . 6 ((((𝐴 · 1) + (𝐵 · 1)) ∈ ℝ ∧ ((𝐴 · 𝐵) + (1 · 1)) ∈ ℝ) → ((((𝐴 · 1) + (𝐵 · 1)) + 1) < ((𝐴 · 𝐵) + (1 · 1)) ↔ 1 < (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1)))))
4235, 39, 41syl2anc 579 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐴 · 1) + (𝐵 · 1)) + 1) < ((𝐴 · 𝐵) + (1 · 1)) ↔ 1 < (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1)))))
4329, 42syl5rbbr 278 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < (((𝐴 · 𝐵) + (1 · 1)) − ((𝐴 · 1) + (𝐵 · 1))) ↔ (((𝐴 · 1) + (𝐵 · 1)) + 1) < ((𝐴 · 𝐵) + 1)))
44 ltadd1 10842 . . . . . . 7 ((((𝐴 · 1) + (𝐵 · 1)) ∈ ℝ ∧ (𝐴 · 𝐵) ∈ ℝ ∧ 1 ∈ ℝ) → (((𝐴 · 1) + (𝐵 · 1)) < (𝐴 · 𝐵) ↔ (((𝐴 · 1) + (𝐵 · 1)) + 1) < ((𝐴 · 𝐵) + 1)))
452, 44mp3an3 1523 . . . . . 6 ((((𝐴 · 1) + (𝐵 · 1)) ∈ ℝ ∧ (𝐴 · 𝐵) ∈ ℝ) → (((𝐴 · 1) + (𝐵 · 1)) < (𝐴 · 𝐵) ↔ (((𝐴 · 1) + (𝐵 · 1)) + 1) < ((𝐴 · 𝐵) + 1)))
4635, 36, 45syl2anc 579 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 · 1) + (𝐵 · 1)) < (𝐴 · 𝐵) ↔ (((𝐴 · 1) + (𝐵 · 1)) + 1) < ((𝐴 · 𝐵) + 1)))
47 ax-1rid 10342 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴)
48 ax-1rid 10342 . . . . . . 7 (𝐵 ∈ ℝ → (𝐵 · 1) = 𝐵)
4947, 48oveqan12d 6941 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 1) + (𝐵 · 1)) = (𝐴 + 𝐵))
5049breq1d 4896 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 · 1) + (𝐵 · 1)) < (𝐴 · 𝐵) ↔ (𝐴 + 𝐵) < (𝐴 · 𝐵)))
5146, 50bitr3d 273 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((((𝐴 · 1) + (𝐵 · 1)) + 1) < ((𝐴 · 𝐵) + 1) ↔ (𝐴 + 𝐵) < (𝐴 · 𝐵)))
5226, 43, 513bitrd 297 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < ((𝐴 − 1) · (𝐵 − 1)) ↔ (𝐴 + 𝐵) < (𝐴 · 𝐵)))
5318, 52sylibd 231 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((2 < 𝐴 ∧ 2 < 𝐵) → (𝐴 + 𝐵) < (𝐴 · 𝐵)))
5453imp 397 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (2 < 𝐴 ∧ 2 < 𝐵)) → (𝐴 + 𝐵) < (𝐴 · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1601  wcel 2107   class class class wbr 4886  (class class class)co 6922  cc 10270  cr 10271  1c1 10273   + caddc 10275   · cmul 10277   < clt 10411  cmin 10606  2c2 11430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-po 5274  df-so 5275  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-2 11438
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator