MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divdiv2 Structured version   Visualization version   GIF version

Theorem divdiv2 11840
Description: Division by a fraction. (Contributed by NM, 27-Dec-2008.)
Assertion
Ref Expression
divdiv2 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐴 / (𝐵 / 𝐶)) = ((𝐴 · 𝐶) / 𝐵))

Proof of Theorem divdiv2
StepHypRef Expression
1 ax-1cn 11071 . . . . 5 1 ∈ ℂ
2 ax-1ne0 11082 . . . . 5 1 ≠ 0
31, 2pm3.2i 470 . . . 4 (1 ∈ ℂ ∧ 1 ≠ 0)
4 divdivdiv 11829 . . . 4 (((𝐴 ∈ ℂ ∧ (1 ∈ ℂ ∧ 1 ≠ 0)) ∧ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0))) → ((𝐴 / 1) / (𝐵 / 𝐶)) = ((𝐴 · 𝐶) / (1 · 𝐵)))
53, 4mpanl2 701 . . 3 ((𝐴 ∈ ℂ ∧ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0))) → ((𝐴 / 1) / (𝐵 / 𝐶)) = ((𝐴 · 𝐶) / (1 · 𝐵)))
653impb 1114 . 2 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 1) / (𝐵 / 𝐶)) = ((𝐴 · 𝐶) / (1 · 𝐵)))
7 div1 11818 . . . 4 (𝐴 ∈ ℂ → (𝐴 / 1) = 𝐴)
873ad2ant1 1133 . . 3 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐴 / 1) = 𝐴)
98oveq1d 7367 . 2 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 1) / (𝐵 / 𝐶)) = (𝐴 / (𝐵 / 𝐶)))
10 mullid 11118 . . . . 5 (𝐵 ∈ ℂ → (1 · 𝐵) = 𝐵)
1110ad2antrl 728 . . . 4 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (1 · 𝐵) = 𝐵)
12113adant3 1132 . . 3 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (1 · 𝐵) = 𝐵)
1312oveq2d 7368 . 2 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 · 𝐶) / (1 · 𝐵)) = ((𝐴 · 𝐶) / 𝐵))
146, 9, 133eqtr3d 2776 1 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐴 / (𝐵 / 𝐶)) = ((𝐴 · 𝐶) / 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  (class class class)co 7352  cc 11011  0cc0 11013  1c1 11014   · cmul 11018   / cdiv 11781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782
This theorem is referenced by:  divdiv2d  11936  aaliou3lem3  26280  chebbnd2  27416  dchrmusum2  27433  dchrvmasumlem2  27437  mulog2sumlem2  27474  pntibndlem3  27531  pntlemb  27536  pntlemn  27539  pntlemj  27542  pntlemf  27544  ofdivdiv2  44445  expgrowth  44452
  Copyright terms: Public domain W3C validator