MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divdiv2 Structured version   Visualization version   GIF version

Theorem divdiv2 11979
Description: Division by a fraction. (Contributed by NM, 27-Dec-2008.)
Assertion
Ref Expression
divdiv2 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐴 / (𝐵 / 𝐶)) = ((𝐴 · 𝐶) / 𝐵))

Proof of Theorem divdiv2
StepHypRef Expression
1 ax-1cn 11213 . . . . 5 1 ∈ ℂ
2 ax-1ne0 11224 . . . . 5 1 ≠ 0
31, 2pm3.2i 470 . . . 4 (1 ∈ ℂ ∧ 1 ≠ 0)
4 divdivdiv 11968 . . . 4 (((𝐴 ∈ ℂ ∧ (1 ∈ ℂ ∧ 1 ≠ 0)) ∧ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0))) → ((𝐴 / 1) / (𝐵 / 𝐶)) = ((𝐴 · 𝐶) / (1 · 𝐵)))
53, 4mpanl2 701 . . 3 ((𝐴 ∈ ℂ ∧ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0))) → ((𝐴 / 1) / (𝐵 / 𝐶)) = ((𝐴 · 𝐶) / (1 · 𝐵)))
653impb 1115 . 2 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 1) / (𝐵 / 𝐶)) = ((𝐴 · 𝐶) / (1 · 𝐵)))
7 div1 11957 . . . 4 (𝐴 ∈ ℂ → (𝐴 / 1) = 𝐴)
873ad2ant1 1134 . . 3 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐴 / 1) = 𝐴)
98oveq1d 7446 . 2 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 1) / (𝐵 / 𝐶)) = (𝐴 / (𝐵 / 𝐶)))
10 mullid 11260 . . . . 5 (𝐵 ∈ ℂ → (1 · 𝐵) = 𝐵)
1110ad2antrl 728 . . . 4 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (1 · 𝐵) = 𝐵)
12113adant3 1133 . . 3 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (1 · 𝐵) = 𝐵)
1312oveq2d 7447 . 2 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 · 𝐶) / (1 · 𝐵)) = ((𝐴 · 𝐶) / 𝐵))
146, 9, 133eqtr3d 2785 1 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐴 / (𝐵 / 𝐶)) = ((𝐴 · 𝐶) / 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  (class class class)co 7431  cc 11153  0cc0 11155  1c1 11156   · cmul 11160   / cdiv 11920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921
This theorem is referenced by:  divdiv2d  12075  aaliou3lem3  26386  chebbnd2  27521  dchrmusum2  27538  dchrvmasumlem2  27542  mulog2sumlem2  27579  pntibndlem3  27636  pntlemb  27641  pntlemn  27644  pntlemj  27647  pntlemf  27649  ofdivdiv2  44347  expgrowth  44354
  Copyright terms: Public domain W3C validator