MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tx2cn Structured version   Visualization version   GIF version

Theorem tx2cn 23639
Description: Continuity of the second projection map of a topological product. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.)
Assertion
Ref Expression
tx2cn ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (2nd ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆))

Proof of Theorem tx2cn
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f2ndres 8055 . . 3 (2nd ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)⟶𝑌
21a1i 11 . 2 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (2nd ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)⟶𝑌)
3 ffn 6747 . . . . . . . 8 ((2nd ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)⟶𝑌 → (2nd ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌))
4 elpreima 7091 . . . . . . . 8 ((2nd ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌) → (𝑧 ∈ ((2nd ↾ (𝑋 × 𝑌)) “ 𝑤) ↔ (𝑧 ∈ (𝑋 × 𝑌) ∧ ((2nd ↾ (𝑋 × 𝑌))‘𝑧) ∈ 𝑤)))
51, 3, 4mp2b 10 . . . . . . 7 (𝑧 ∈ ((2nd ↾ (𝑋 × 𝑌)) “ 𝑤) ↔ (𝑧 ∈ (𝑋 × 𝑌) ∧ ((2nd ↾ (𝑋 × 𝑌))‘𝑧) ∈ 𝑤))
6 fvres 6939 . . . . . . . . . 10 (𝑧 ∈ (𝑋 × 𝑌) → ((2nd ↾ (𝑋 × 𝑌))‘𝑧) = (2nd𝑧))
76eleq1d 2829 . . . . . . . . 9 (𝑧 ∈ (𝑋 × 𝑌) → (((2nd ↾ (𝑋 × 𝑌))‘𝑧) ∈ 𝑤 ↔ (2nd𝑧) ∈ 𝑤))
8 1st2nd2 8069 . . . . . . . . . 10 (𝑧 ∈ (𝑋 × 𝑌) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
9 xp1st 8062 . . . . . . . . . 10 (𝑧 ∈ (𝑋 × 𝑌) → (1st𝑧) ∈ 𝑋)
10 elxp6 8064 . . . . . . . . . . . 12 (𝑧 ∈ (𝑋 × 𝑤) ↔ (𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ ((1st𝑧) ∈ 𝑋 ∧ (2nd𝑧) ∈ 𝑤)))
11 anass 468 . . . . . . . . . . . 12 (((𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ (1st𝑧) ∈ 𝑋) ∧ (2nd𝑧) ∈ 𝑤) ↔ (𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ ((1st𝑧) ∈ 𝑋 ∧ (2nd𝑧) ∈ 𝑤)))
1210, 11bitr4i 278 . . . . . . . . . . 11 (𝑧 ∈ (𝑋 × 𝑤) ↔ ((𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ (1st𝑧) ∈ 𝑋) ∧ (2nd𝑧) ∈ 𝑤))
1312baib 535 . . . . . . . . . 10 ((𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ (1st𝑧) ∈ 𝑋) → (𝑧 ∈ (𝑋 × 𝑤) ↔ (2nd𝑧) ∈ 𝑤))
148, 9, 13syl2anc 583 . . . . . . . . 9 (𝑧 ∈ (𝑋 × 𝑌) → (𝑧 ∈ (𝑋 × 𝑤) ↔ (2nd𝑧) ∈ 𝑤))
157, 14bitr4d 282 . . . . . . . 8 (𝑧 ∈ (𝑋 × 𝑌) → (((2nd ↾ (𝑋 × 𝑌))‘𝑧) ∈ 𝑤𝑧 ∈ (𝑋 × 𝑤)))
1615pm5.32i 574 . . . . . . 7 ((𝑧 ∈ (𝑋 × 𝑌) ∧ ((2nd ↾ (𝑋 × 𝑌))‘𝑧) ∈ 𝑤) ↔ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑧 ∈ (𝑋 × 𝑤)))
175, 16bitri 275 . . . . . 6 (𝑧 ∈ ((2nd ↾ (𝑋 × 𝑌)) “ 𝑤) ↔ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑧 ∈ (𝑋 × 𝑤)))
18 toponss 22954 . . . . . . . . . 10 ((𝑆 ∈ (TopOn‘𝑌) ∧ 𝑤𝑆) → 𝑤𝑌)
1918adantll 713 . . . . . . . . 9 (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤𝑆) → 𝑤𝑌)
20 xpss2 5720 . . . . . . . . 9 (𝑤𝑌 → (𝑋 × 𝑤) ⊆ (𝑋 × 𝑌))
2119, 20syl 17 . . . . . . . 8 (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤𝑆) → (𝑋 × 𝑤) ⊆ (𝑋 × 𝑌))
2221sseld 4007 . . . . . . 7 (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤𝑆) → (𝑧 ∈ (𝑋 × 𝑤) → 𝑧 ∈ (𝑋 × 𝑌)))
2322pm4.71rd 562 . . . . . 6 (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤𝑆) → (𝑧 ∈ (𝑋 × 𝑤) ↔ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑧 ∈ (𝑋 × 𝑤))))
2417, 23bitr4id 290 . . . . 5 (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤𝑆) → (𝑧 ∈ ((2nd ↾ (𝑋 × 𝑌)) “ 𝑤) ↔ 𝑧 ∈ (𝑋 × 𝑤)))
2524eqrdv 2738 . . . 4 (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤𝑆) → ((2nd ↾ (𝑋 × 𝑌)) “ 𝑤) = (𝑋 × 𝑤))
26 toponmax 22953 . . . . . 6 (𝑅 ∈ (TopOn‘𝑋) → 𝑋𝑅)
27 txopn 23631 . . . . . . 7 (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑋𝑅𝑤𝑆)) → (𝑋 × 𝑤) ∈ (𝑅 ×t 𝑆))
2827expr 456 . . . . . 6 (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑋𝑅) → (𝑤𝑆 → (𝑋 × 𝑤) ∈ (𝑅 ×t 𝑆)))
2926, 28mpidan 688 . . . . 5 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑤𝑆 → (𝑋 × 𝑤) ∈ (𝑅 ×t 𝑆)))
3029imp 406 . . . 4 (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤𝑆) → (𝑋 × 𝑤) ∈ (𝑅 ×t 𝑆))
3125, 30eqeltrd 2844 . . 3 (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤𝑆) → ((2nd ↾ (𝑋 × 𝑌)) “ 𝑤) ∈ (𝑅 ×t 𝑆))
3231ralrimiva 3152 . 2 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → ∀𝑤𝑆 ((2nd ↾ (𝑋 × 𝑌)) “ 𝑤) ∈ (𝑅 ×t 𝑆))
33 txtopon 23620 . . 3 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑅 ×t 𝑆) ∈ (TopOn‘(𝑋 × 𝑌)))
34 iscn 23264 . . 3 (((𝑅 ×t 𝑆) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝑆 ∈ (TopOn‘𝑌)) → ((2nd ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆) ↔ ((2nd ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)⟶𝑌 ∧ ∀𝑤𝑆 ((2nd ↾ (𝑋 × 𝑌)) “ 𝑤) ∈ (𝑅 ×t 𝑆))))
3533, 34sylancom 587 . 2 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → ((2nd ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆) ↔ ((2nd ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)⟶𝑌 ∧ ∀𝑤𝑆 ((2nd ↾ (𝑋 × 𝑌)) “ 𝑤) ∈ (𝑅 ×t 𝑆))))
362, 32, 35mpbir2and 712 1 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (2nd ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  wss 3976  cop 4654   × cxp 5698  ccnv 5699  cres 5702  cima 5703   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  1st c1st 8028  2nd c2nd 8029  TopOnctopon 22937   Cn ccn 23253   ×t ctx 23589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-map 8886  df-topgen 17503  df-top 22921  df-topon 22938  df-bases 22974  df-cn 23256  df-tx 23591
This theorem is referenced by:  txcn  23655  txcmpb  23673  txkgen  23681  cnmpt2nd  23698  sxbrsiga  34255  txsconnlem  35208  txsconn  35209  hausgraph  43166
  Copyright terms: Public domain W3C validator