Step | Hyp | Ref
| Expression |
1 | | f2ndres 7786 |
. . 3
⊢
(2nd ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)⟶𝑌 |
2 | 1 | a1i 11 |
. 2
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (2nd ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)⟶𝑌) |
3 | | ffn 6545 |
. . . . . . . 8
⊢
((2nd ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)⟶𝑌 → (2nd ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌)) |
4 | | elpreima 6878 |
. . . . . . . 8
⊢
((2nd ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌) → (𝑧 ∈ (◡(2nd ↾ (𝑋 × 𝑌)) “ 𝑤) ↔ (𝑧 ∈ (𝑋 × 𝑌) ∧ ((2nd ↾ (𝑋 × 𝑌))‘𝑧) ∈ 𝑤))) |
5 | 1, 3, 4 | mp2b 10 |
. . . . . . 7
⊢ (𝑧 ∈ (◡(2nd ↾ (𝑋 × 𝑌)) “ 𝑤) ↔ (𝑧 ∈ (𝑋 × 𝑌) ∧ ((2nd ↾ (𝑋 × 𝑌))‘𝑧) ∈ 𝑤)) |
6 | | fvres 6736 |
. . . . . . . . . 10
⊢ (𝑧 ∈ (𝑋 × 𝑌) → ((2nd ↾ (𝑋 × 𝑌))‘𝑧) = (2nd ‘𝑧)) |
7 | 6 | eleq1d 2822 |
. . . . . . . . 9
⊢ (𝑧 ∈ (𝑋 × 𝑌) → (((2nd ↾ (𝑋 × 𝑌))‘𝑧) ∈ 𝑤 ↔ (2nd ‘𝑧) ∈ 𝑤)) |
8 | | 1st2nd2 7800 |
. . . . . . . . . 10
⊢ (𝑧 ∈ (𝑋 × 𝑌) → 𝑧 = 〈(1st ‘𝑧), (2nd ‘𝑧)〉) |
9 | | xp1st 7793 |
. . . . . . . . . 10
⊢ (𝑧 ∈ (𝑋 × 𝑌) → (1st ‘𝑧) ∈ 𝑋) |
10 | | elxp6 7795 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ (𝑋 × 𝑤) ↔ (𝑧 = 〈(1st ‘𝑧), (2nd ‘𝑧)〉 ∧ ((1st
‘𝑧) ∈ 𝑋 ∧ (2nd
‘𝑧) ∈ 𝑤))) |
11 | | anass 472 |
. . . . . . . . . . . 12
⊢ (((𝑧 = 〈(1st
‘𝑧), (2nd
‘𝑧)〉 ∧
(1st ‘𝑧)
∈ 𝑋) ∧
(2nd ‘𝑧)
∈ 𝑤) ↔ (𝑧 = 〈(1st
‘𝑧), (2nd
‘𝑧)〉 ∧
((1st ‘𝑧)
∈ 𝑋 ∧
(2nd ‘𝑧)
∈ 𝑤))) |
12 | 10, 11 | bitr4i 281 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ (𝑋 × 𝑤) ↔ ((𝑧 = 〈(1st ‘𝑧), (2nd ‘𝑧)〉 ∧ (1st
‘𝑧) ∈ 𝑋) ∧ (2nd
‘𝑧) ∈ 𝑤)) |
13 | 12 | baib 539 |
. . . . . . . . . 10
⊢ ((𝑧 = 〈(1st
‘𝑧), (2nd
‘𝑧)〉 ∧
(1st ‘𝑧)
∈ 𝑋) → (𝑧 ∈ (𝑋 × 𝑤) ↔ (2nd ‘𝑧) ∈ 𝑤)) |
14 | 8, 9, 13 | syl2anc 587 |
. . . . . . . . 9
⊢ (𝑧 ∈ (𝑋 × 𝑌) → (𝑧 ∈ (𝑋 × 𝑤) ↔ (2nd ‘𝑧) ∈ 𝑤)) |
15 | 7, 14 | bitr4d 285 |
. . . . . . . 8
⊢ (𝑧 ∈ (𝑋 × 𝑌) → (((2nd ↾ (𝑋 × 𝑌))‘𝑧) ∈ 𝑤 ↔ 𝑧 ∈ (𝑋 × 𝑤))) |
16 | 15 | pm5.32i 578 |
. . . . . . 7
⊢ ((𝑧 ∈ (𝑋 × 𝑌) ∧ ((2nd ↾ (𝑋 × 𝑌))‘𝑧) ∈ 𝑤) ↔ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑧 ∈ (𝑋 × 𝑤))) |
17 | 5, 16 | bitri 278 |
. . . . . 6
⊢ (𝑧 ∈ (◡(2nd ↾ (𝑋 × 𝑌)) “ 𝑤) ↔ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑧 ∈ (𝑋 × 𝑤))) |
18 | | toponss 21824 |
. . . . . . . . . 10
⊢ ((𝑆 ∈ (TopOn‘𝑌) ∧ 𝑤 ∈ 𝑆) → 𝑤 ⊆ 𝑌) |
19 | 18 | adantll 714 |
. . . . . . . . 9
⊢ (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤 ∈ 𝑆) → 𝑤 ⊆ 𝑌) |
20 | | xpss2 5571 |
. . . . . . . . 9
⊢ (𝑤 ⊆ 𝑌 → (𝑋 × 𝑤) ⊆ (𝑋 × 𝑌)) |
21 | 19, 20 | syl 17 |
. . . . . . . 8
⊢ (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤 ∈ 𝑆) → (𝑋 × 𝑤) ⊆ (𝑋 × 𝑌)) |
22 | 21 | sseld 3900 |
. . . . . . 7
⊢ (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤 ∈ 𝑆) → (𝑧 ∈ (𝑋 × 𝑤) → 𝑧 ∈ (𝑋 × 𝑌))) |
23 | 22 | pm4.71rd 566 |
. . . . . 6
⊢ (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤 ∈ 𝑆) → (𝑧 ∈ (𝑋 × 𝑤) ↔ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑧 ∈ (𝑋 × 𝑤)))) |
24 | 17, 23 | bitr4id 293 |
. . . . 5
⊢ (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤 ∈ 𝑆) → (𝑧 ∈ (◡(2nd ↾ (𝑋 × 𝑌)) “ 𝑤) ↔ 𝑧 ∈ (𝑋 × 𝑤))) |
25 | 24 | eqrdv 2735 |
. . . 4
⊢ (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤 ∈ 𝑆) → (◡(2nd ↾ (𝑋 × 𝑌)) “ 𝑤) = (𝑋 × 𝑤)) |
26 | | toponmax 21823 |
. . . . . 6
⊢ (𝑅 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝑅) |
27 | | txopn 22499 |
. . . . . . 7
⊢ (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑋 ∈ 𝑅 ∧ 𝑤 ∈ 𝑆)) → (𝑋 × 𝑤) ∈ (𝑅 ×t 𝑆)) |
28 | 27 | expr 460 |
. . . . . 6
⊢ (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑋 ∈ 𝑅) → (𝑤 ∈ 𝑆 → (𝑋 × 𝑤) ∈ (𝑅 ×t 𝑆))) |
29 | 26, 28 | mpidan 689 |
. . . . 5
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑤 ∈ 𝑆 → (𝑋 × 𝑤) ∈ (𝑅 ×t 𝑆))) |
30 | 29 | imp 410 |
. . . 4
⊢ (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤 ∈ 𝑆) → (𝑋 × 𝑤) ∈ (𝑅 ×t 𝑆)) |
31 | 25, 30 | eqeltrd 2838 |
. . 3
⊢ (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤 ∈ 𝑆) → (◡(2nd ↾ (𝑋 × 𝑌)) “ 𝑤) ∈ (𝑅 ×t 𝑆)) |
32 | 31 | ralrimiva 3105 |
. 2
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → ∀𝑤 ∈ 𝑆 (◡(2nd ↾ (𝑋 × 𝑌)) “ 𝑤) ∈ (𝑅 ×t 𝑆)) |
33 | | txtopon 22488 |
. . 3
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑅 ×t 𝑆) ∈ (TopOn‘(𝑋 × 𝑌))) |
34 | | iscn 22132 |
. . 3
⊢ (((𝑅 ×t 𝑆) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝑆 ∈ (TopOn‘𝑌)) → ((2nd ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆) ↔ ((2nd ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)⟶𝑌 ∧ ∀𝑤 ∈ 𝑆 (◡(2nd ↾ (𝑋 × 𝑌)) “ 𝑤) ∈ (𝑅 ×t 𝑆)))) |
35 | 33, 34 | sylancom 591 |
. 2
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → ((2nd ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆) ↔ ((2nd ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)⟶𝑌 ∧ ∀𝑤 ∈ 𝑆 (◡(2nd ↾ (𝑋 × 𝑌)) “ 𝑤) ∈ (𝑅 ×t 𝑆)))) |
36 | 2, 32, 35 | mpbir2and 713 |
1
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (2nd ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆)) |