MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tx2cn Structured version   Visualization version   GIF version

Theorem tx2cn 23634
Description: Continuity of the second projection map of a topological product. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.)
Assertion
Ref Expression
tx2cn ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (2nd ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆))

Proof of Theorem tx2cn
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f2ndres 8038 . . 3 (2nd ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)⟶𝑌
21a1i 11 . 2 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (2nd ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)⟶𝑌)
3 ffn 6737 . . . . . . . 8 ((2nd ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)⟶𝑌 → (2nd ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌))
4 elpreima 7078 . . . . . . . 8 ((2nd ↾ (𝑋 × 𝑌)) Fn (𝑋 × 𝑌) → (𝑧 ∈ ((2nd ↾ (𝑋 × 𝑌)) “ 𝑤) ↔ (𝑧 ∈ (𝑋 × 𝑌) ∧ ((2nd ↾ (𝑋 × 𝑌))‘𝑧) ∈ 𝑤)))
51, 3, 4mp2b 10 . . . . . . 7 (𝑧 ∈ ((2nd ↾ (𝑋 × 𝑌)) “ 𝑤) ↔ (𝑧 ∈ (𝑋 × 𝑌) ∧ ((2nd ↾ (𝑋 × 𝑌))‘𝑧) ∈ 𝑤))
6 fvres 6926 . . . . . . . . . 10 (𝑧 ∈ (𝑋 × 𝑌) → ((2nd ↾ (𝑋 × 𝑌))‘𝑧) = (2nd𝑧))
76eleq1d 2824 . . . . . . . . 9 (𝑧 ∈ (𝑋 × 𝑌) → (((2nd ↾ (𝑋 × 𝑌))‘𝑧) ∈ 𝑤 ↔ (2nd𝑧) ∈ 𝑤))
8 1st2nd2 8052 . . . . . . . . . 10 (𝑧 ∈ (𝑋 × 𝑌) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
9 xp1st 8045 . . . . . . . . . 10 (𝑧 ∈ (𝑋 × 𝑌) → (1st𝑧) ∈ 𝑋)
10 elxp6 8047 . . . . . . . . . . . 12 (𝑧 ∈ (𝑋 × 𝑤) ↔ (𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ ((1st𝑧) ∈ 𝑋 ∧ (2nd𝑧) ∈ 𝑤)))
11 anass 468 . . . . . . . . . . . 12 (((𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ (1st𝑧) ∈ 𝑋) ∧ (2nd𝑧) ∈ 𝑤) ↔ (𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ ((1st𝑧) ∈ 𝑋 ∧ (2nd𝑧) ∈ 𝑤)))
1210, 11bitr4i 278 . . . . . . . . . . 11 (𝑧 ∈ (𝑋 × 𝑤) ↔ ((𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ (1st𝑧) ∈ 𝑋) ∧ (2nd𝑧) ∈ 𝑤))
1312baib 535 . . . . . . . . . 10 ((𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ (1st𝑧) ∈ 𝑋) → (𝑧 ∈ (𝑋 × 𝑤) ↔ (2nd𝑧) ∈ 𝑤))
148, 9, 13syl2anc 584 . . . . . . . . 9 (𝑧 ∈ (𝑋 × 𝑌) → (𝑧 ∈ (𝑋 × 𝑤) ↔ (2nd𝑧) ∈ 𝑤))
157, 14bitr4d 282 . . . . . . . 8 (𝑧 ∈ (𝑋 × 𝑌) → (((2nd ↾ (𝑋 × 𝑌))‘𝑧) ∈ 𝑤𝑧 ∈ (𝑋 × 𝑤)))
1615pm5.32i 574 . . . . . . 7 ((𝑧 ∈ (𝑋 × 𝑌) ∧ ((2nd ↾ (𝑋 × 𝑌))‘𝑧) ∈ 𝑤) ↔ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑧 ∈ (𝑋 × 𝑤)))
175, 16bitri 275 . . . . . 6 (𝑧 ∈ ((2nd ↾ (𝑋 × 𝑌)) “ 𝑤) ↔ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑧 ∈ (𝑋 × 𝑤)))
18 toponss 22949 . . . . . . . . . 10 ((𝑆 ∈ (TopOn‘𝑌) ∧ 𝑤𝑆) → 𝑤𝑌)
1918adantll 714 . . . . . . . . 9 (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤𝑆) → 𝑤𝑌)
20 xpss2 5709 . . . . . . . . 9 (𝑤𝑌 → (𝑋 × 𝑤) ⊆ (𝑋 × 𝑌))
2119, 20syl 17 . . . . . . . 8 (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤𝑆) → (𝑋 × 𝑤) ⊆ (𝑋 × 𝑌))
2221sseld 3994 . . . . . . 7 (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤𝑆) → (𝑧 ∈ (𝑋 × 𝑤) → 𝑧 ∈ (𝑋 × 𝑌)))
2322pm4.71rd 562 . . . . . 6 (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤𝑆) → (𝑧 ∈ (𝑋 × 𝑤) ↔ (𝑧 ∈ (𝑋 × 𝑌) ∧ 𝑧 ∈ (𝑋 × 𝑤))))
2417, 23bitr4id 290 . . . . 5 (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤𝑆) → (𝑧 ∈ ((2nd ↾ (𝑋 × 𝑌)) “ 𝑤) ↔ 𝑧 ∈ (𝑋 × 𝑤)))
2524eqrdv 2733 . . . 4 (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤𝑆) → ((2nd ↾ (𝑋 × 𝑌)) “ 𝑤) = (𝑋 × 𝑤))
26 toponmax 22948 . . . . . 6 (𝑅 ∈ (TopOn‘𝑋) → 𝑋𝑅)
27 txopn 23626 . . . . . . 7 (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ (𝑋𝑅𝑤𝑆)) → (𝑋 × 𝑤) ∈ (𝑅 ×t 𝑆))
2827expr 456 . . . . . 6 (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑋𝑅) → (𝑤𝑆 → (𝑋 × 𝑤) ∈ (𝑅 ×t 𝑆)))
2926, 28mpidan 689 . . . . 5 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑤𝑆 → (𝑋 × 𝑤) ∈ (𝑅 ×t 𝑆)))
3029imp 406 . . . 4 (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤𝑆) → (𝑋 × 𝑤) ∈ (𝑅 ×t 𝑆))
3125, 30eqeltrd 2839 . . 3 (((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) ∧ 𝑤𝑆) → ((2nd ↾ (𝑋 × 𝑌)) “ 𝑤) ∈ (𝑅 ×t 𝑆))
3231ralrimiva 3144 . 2 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → ∀𝑤𝑆 ((2nd ↾ (𝑋 × 𝑌)) “ 𝑤) ∈ (𝑅 ×t 𝑆))
33 txtopon 23615 . . 3 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑅 ×t 𝑆) ∈ (TopOn‘(𝑋 × 𝑌)))
34 iscn 23259 . . 3 (((𝑅 ×t 𝑆) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝑆 ∈ (TopOn‘𝑌)) → ((2nd ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆) ↔ ((2nd ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)⟶𝑌 ∧ ∀𝑤𝑆 ((2nd ↾ (𝑋 × 𝑌)) “ 𝑤) ∈ (𝑅 ×t 𝑆))))
3533, 34sylancom 588 . 2 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → ((2nd ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆) ↔ ((2nd ↾ (𝑋 × 𝑌)):(𝑋 × 𝑌)⟶𝑌 ∧ ∀𝑤𝑆 ((2nd ↾ (𝑋 × 𝑌)) “ 𝑤) ∈ (𝑅 ×t 𝑆))))
362, 32, 35mpbir2and 713 1 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (2nd ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  wss 3963  cop 4637   × cxp 5687  ccnv 5688  cres 5691  cima 5692   Fn wfn 6558  wf 6559  cfv 6563  (class class class)co 7431  1st c1st 8011  2nd c2nd 8012  TopOnctopon 22932   Cn ccn 23248   ×t ctx 23584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-map 8867  df-topgen 17490  df-top 22916  df-topon 22933  df-bases 22969  df-cn 23251  df-tx 23586
This theorem is referenced by:  txcn  23650  txcmpb  23668  txkgen  23676  cnmpt2nd  23693  sxbrsiga  34272  txsconnlem  35225  txsconn  35226  hausgraph  43194
  Copyright terms: Public domain W3C validator