Step | Hyp | Ref
| Expression |
1 | | grplsm0l.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐺) |
2 | | grplsm0l.0 |
. . . . . . 7
⊢ 0 =
(0g‘𝐺) |
3 | 1, 2 | grpidcl 18203 |
. . . . . 6
⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
4 | 3 | snssd 4702 |
. . . . 5
⊢ (𝐺 ∈ Grp → { 0 } ⊆
𝐵) |
5 | | eqid 2758 |
. . . . . . . 8
⊢
(+g‘𝐺) = (+g‘𝐺) |
6 | | grplsm0l.p |
. . . . . . . 8
⊢ ⊕ =
(LSSum‘𝐺) |
7 | 1, 5, 6 | lsmelvalx 18837 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ { 0 } ⊆
𝐵 ∧ 𝐴 ⊆ 𝐵) → (𝑥 ∈ ({ 0 } ⊕ 𝐴) ↔ ∃𝑜 ∈ { 0 }∃𝑎 ∈ 𝐴 𝑥 = (𝑜(+g‘𝐺)𝑎))) |
8 | 7 | 3expa 1115 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ { 0 } ⊆
𝐵) ∧ 𝐴 ⊆ 𝐵) → (𝑥 ∈ ({ 0 } ⊕ 𝐴) ↔ ∃𝑜 ∈ { 0 }∃𝑎 ∈ 𝐴 𝑥 = (𝑜(+g‘𝐺)𝑎))) |
9 | 8 | an32s 651 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ⊆ 𝐵) ∧ { 0 } ⊆ 𝐵) → (𝑥 ∈ ({ 0 } ⊕ 𝐴) ↔ ∃𝑜 ∈ { 0 }∃𝑎 ∈ 𝐴 𝑥 = (𝑜(+g‘𝐺)𝑎))) |
10 | 4, 9 | mpidan 688 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ⊆ 𝐵) → (𝑥 ∈ ({ 0 } ⊕ 𝐴) ↔ ∃𝑜 ∈ { 0 }∃𝑎 ∈ 𝐴 𝑥 = (𝑜(+g‘𝐺)𝑎))) |
11 | 10 | 3adant3 1129 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅) → (𝑥 ∈ ({ 0 } ⊕ 𝐴) ↔ ∃𝑜 ∈ { 0 }∃𝑎 ∈ 𝐴 𝑥 = (𝑜(+g‘𝐺)𝑎))) |
12 | | simpl1 1188 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅) ∧ 𝑎 ∈ 𝐴) → 𝐺 ∈ Grp) |
13 | | simp2 1134 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅) → 𝐴 ⊆ 𝐵) |
14 | 13 | sselda 3894 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅) ∧ 𝑎 ∈ 𝐴) → 𝑎 ∈ 𝐵) |
15 | 1, 5, 2 | grplid 18205 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑎 ∈ 𝐵) → ( 0 (+g‘𝐺)𝑎) = 𝑎) |
16 | 12, 14, 15 | syl2anc 587 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅) ∧ 𝑎 ∈ 𝐴) → ( 0 (+g‘𝐺)𝑎) = 𝑎) |
17 | 16 | eqeq2d 2769 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅) ∧ 𝑎 ∈ 𝐴) → (𝑥 = ( 0 (+g‘𝐺)𝑎) ↔ 𝑥 = 𝑎)) |
18 | | equcom 2025 |
. . . . . 6
⊢ (𝑥 = 𝑎 ↔ 𝑎 = 𝑥) |
19 | 17, 18 | bitrdi 290 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅) ∧ 𝑎 ∈ 𝐴) → (𝑥 = ( 0 (+g‘𝐺)𝑎) ↔ 𝑎 = 𝑥)) |
20 | 19 | rexbidva 3220 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅) → (∃𝑎 ∈ 𝐴 𝑥 = ( 0 (+g‘𝐺)𝑎) ↔ ∃𝑎 ∈ 𝐴 𝑎 = 𝑥)) |
21 | 2 | fvexi 6676 |
. . . . 5
⊢ 0 ∈
V |
22 | | oveq1 7162 |
. . . . . . 7
⊢ (𝑜 = 0 → (𝑜(+g‘𝐺)𝑎) = ( 0 (+g‘𝐺)𝑎)) |
23 | 22 | eqeq2d 2769 |
. . . . . 6
⊢ (𝑜 = 0 → (𝑥 = (𝑜(+g‘𝐺)𝑎) ↔ 𝑥 = ( 0 (+g‘𝐺)𝑎))) |
24 | 23 | rexbidv 3221 |
. . . . 5
⊢ (𝑜 = 0 → (∃𝑎 ∈ 𝐴 𝑥 = (𝑜(+g‘𝐺)𝑎) ↔ ∃𝑎 ∈ 𝐴 𝑥 = ( 0 (+g‘𝐺)𝑎))) |
25 | 21, 24 | rexsn 4580 |
. . . 4
⊢
(∃𝑜 ∈ {
0
}∃𝑎 ∈ 𝐴 𝑥 = (𝑜(+g‘𝐺)𝑎) ↔ ∃𝑎 ∈ 𝐴 𝑥 = ( 0 (+g‘𝐺)𝑎)) |
26 | | risset 3191 |
. . . 4
⊢ (𝑥 ∈ 𝐴 ↔ ∃𝑎 ∈ 𝐴 𝑎 = 𝑥) |
27 | 20, 25, 26 | 3bitr4g 317 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅) → (∃𝑜 ∈ { 0 }∃𝑎 ∈ 𝐴 𝑥 = (𝑜(+g‘𝐺)𝑎) ↔ 𝑥 ∈ 𝐴)) |
28 | 11, 27 | bitrd 282 |
. 2
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅) → (𝑥 ∈ ({ 0 } ⊕ 𝐴) ↔ 𝑥 ∈ 𝐴)) |
29 | 28 | eqrdv 2756 |
1
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅) → ({ 0 } ⊕ 𝐴) = 𝐴) |