Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grplsm0l Structured version   Visualization version   GIF version

Theorem grplsm0l 31591
Description: Sumset with the identity singleton is the original set. (Contributed by Thierry Arnoux, 27-Jul-2024.)
Hypotheses
Ref Expression
grplsm0l.b 𝐵 = (Base‘𝐺)
grplsm0l.p = (LSSum‘𝐺)
grplsm0l.0 0 = (0g𝐺)
Assertion
Ref Expression
grplsm0l ((𝐺 ∈ Grp ∧ 𝐴𝐵𝐴 ≠ ∅) → ({ 0 } 𝐴) = 𝐴)

Proof of Theorem grplsm0l
Dummy variables 𝑥 𝑎 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grplsm0l.b . . . . . . 7 𝐵 = (Base‘𝐺)
2 grplsm0l.0 . . . . . . 7 0 = (0g𝐺)
31, 2grpidcl 18607 . . . . . 6 (𝐺 ∈ Grp → 0𝐵)
43snssd 4742 . . . . 5 (𝐺 ∈ Grp → { 0 } ⊆ 𝐵)
5 eqid 2738 . . . . . . . 8 (+g𝐺) = (+g𝐺)
6 grplsm0l.p . . . . . . . 8 = (LSSum‘𝐺)
71, 5, 6lsmelvalx 19245 . . . . . . 7 ((𝐺 ∈ Grp ∧ { 0 } ⊆ 𝐵𝐴𝐵) → (𝑥 ∈ ({ 0 } 𝐴) ↔ ∃𝑜 ∈ { 0 }∃𝑎𝐴 𝑥 = (𝑜(+g𝐺)𝑎)))
873expa 1117 . . . . . 6 (((𝐺 ∈ Grp ∧ { 0 } ⊆ 𝐵) ∧ 𝐴𝐵) → (𝑥 ∈ ({ 0 } 𝐴) ↔ ∃𝑜 ∈ { 0 }∃𝑎𝐴 𝑥 = (𝑜(+g𝐺)𝑎)))
98an32s 649 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝐵) ∧ { 0 } ⊆ 𝐵) → (𝑥 ∈ ({ 0 } 𝐴) ↔ ∃𝑜 ∈ { 0 }∃𝑎𝐴 𝑥 = (𝑜(+g𝐺)𝑎)))
104, 9mpidan 686 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝐵) → (𝑥 ∈ ({ 0 } 𝐴) ↔ ∃𝑜 ∈ { 0 }∃𝑎𝐴 𝑥 = (𝑜(+g𝐺)𝑎)))
11103adant3 1131 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝐵𝐴 ≠ ∅) → (𝑥 ∈ ({ 0 } 𝐴) ↔ ∃𝑜 ∈ { 0 }∃𝑎𝐴 𝑥 = (𝑜(+g𝐺)𝑎)))
12 simpl1 1190 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝐵𝐴 ≠ ∅) ∧ 𝑎𝐴) → 𝐺 ∈ Grp)
13 simp2 1136 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐴𝐵𝐴 ≠ ∅) → 𝐴𝐵)
1413sselda 3921 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝐵𝐴 ≠ ∅) ∧ 𝑎𝐴) → 𝑎𝐵)
151, 5, 2grplid 18609 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑎𝐵) → ( 0 (+g𝐺)𝑎) = 𝑎)
1612, 14, 15syl2anc 584 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝐵𝐴 ≠ ∅) ∧ 𝑎𝐴) → ( 0 (+g𝐺)𝑎) = 𝑎)
1716eqeq2d 2749 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝐵𝐴 ≠ ∅) ∧ 𝑎𝐴) → (𝑥 = ( 0 (+g𝐺)𝑎) ↔ 𝑥 = 𝑎))
18 equcom 2021 . . . . . 6 (𝑥 = 𝑎𝑎 = 𝑥)
1917, 18bitrdi 287 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝐵𝐴 ≠ ∅) ∧ 𝑎𝐴) → (𝑥 = ( 0 (+g𝐺)𝑎) ↔ 𝑎 = 𝑥))
2019rexbidva 3225 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝐵𝐴 ≠ ∅) → (∃𝑎𝐴 𝑥 = ( 0 (+g𝐺)𝑎) ↔ ∃𝑎𝐴 𝑎 = 𝑥))
212fvexi 6788 . . . . 5 0 ∈ V
22 oveq1 7282 . . . . . . 7 (𝑜 = 0 → (𝑜(+g𝐺)𝑎) = ( 0 (+g𝐺)𝑎))
2322eqeq2d 2749 . . . . . 6 (𝑜 = 0 → (𝑥 = (𝑜(+g𝐺)𝑎) ↔ 𝑥 = ( 0 (+g𝐺)𝑎)))
2423rexbidv 3226 . . . . 5 (𝑜 = 0 → (∃𝑎𝐴 𝑥 = (𝑜(+g𝐺)𝑎) ↔ ∃𝑎𝐴 𝑥 = ( 0 (+g𝐺)𝑎)))
2521, 24rexsn 4618 . . . 4 (∃𝑜 ∈ { 0 }∃𝑎𝐴 𝑥 = (𝑜(+g𝐺)𝑎) ↔ ∃𝑎𝐴 𝑥 = ( 0 (+g𝐺)𝑎))
26 risset 3194 . . . 4 (𝑥𝐴 ↔ ∃𝑎𝐴 𝑎 = 𝑥)
2720, 25, 263bitr4g 314 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝐵𝐴 ≠ ∅) → (∃𝑜 ∈ { 0 }∃𝑎𝐴 𝑥 = (𝑜(+g𝐺)𝑎) ↔ 𝑥𝐴))
2811, 27bitrd 278 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝐵𝐴 ≠ ∅) → (𝑥 ∈ ({ 0 } 𝐴) ↔ 𝑥𝐴))
2928eqrdv 2736 1 ((𝐺 ∈ Grp ∧ 𝐴𝐵𝐴 ≠ ∅) → ({ 0 } 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wrex 3065  wss 3887  c0 4256  {csn 4561  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  0gc0g 17150  Grpcgrp 18577  LSSumclsm 19239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-lsm 19241
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator