Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grplsm0l Structured version   Visualization version   GIF version

Theorem grplsm0l 31493
Description: Sumset with the identity singleton is the original set. (Contributed by Thierry Arnoux, 27-Jul-2024.)
Hypotheses
Ref Expression
grplsm0l.b 𝐵 = (Base‘𝐺)
grplsm0l.p = (LSSum‘𝐺)
grplsm0l.0 0 = (0g𝐺)
Assertion
Ref Expression
grplsm0l ((𝐺 ∈ Grp ∧ 𝐴𝐵𝐴 ≠ ∅) → ({ 0 } 𝐴) = 𝐴)

Proof of Theorem grplsm0l
Dummy variables 𝑥 𝑎 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grplsm0l.b . . . . . . 7 𝐵 = (Base‘𝐺)
2 grplsm0l.0 . . . . . . 7 0 = (0g𝐺)
31, 2grpidcl 18522 . . . . . 6 (𝐺 ∈ Grp → 0𝐵)
43snssd 4739 . . . . 5 (𝐺 ∈ Grp → { 0 } ⊆ 𝐵)
5 eqid 2738 . . . . . . . 8 (+g𝐺) = (+g𝐺)
6 grplsm0l.p . . . . . . . 8 = (LSSum‘𝐺)
71, 5, 6lsmelvalx 19160 . . . . . . 7 ((𝐺 ∈ Grp ∧ { 0 } ⊆ 𝐵𝐴𝐵) → (𝑥 ∈ ({ 0 } 𝐴) ↔ ∃𝑜 ∈ { 0 }∃𝑎𝐴 𝑥 = (𝑜(+g𝐺)𝑎)))
873expa 1116 . . . . . 6 (((𝐺 ∈ Grp ∧ { 0 } ⊆ 𝐵) ∧ 𝐴𝐵) → (𝑥 ∈ ({ 0 } 𝐴) ↔ ∃𝑜 ∈ { 0 }∃𝑎𝐴 𝑥 = (𝑜(+g𝐺)𝑎)))
98an32s 648 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝐵) ∧ { 0 } ⊆ 𝐵) → (𝑥 ∈ ({ 0 } 𝐴) ↔ ∃𝑜 ∈ { 0 }∃𝑎𝐴 𝑥 = (𝑜(+g𝐺)𝑎)))
104, 9mpidan 685 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝐵) → (𝑥 ∈ ({ 0 } 𝐴) ↔ ∃𝑜 ∈ { 0 }∃𝑎𝐴 𝑥 = (𝑜(+g𝐺)𝑎)))
11103adant3 1130 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝐵𝐴 ≠ ∅) → (𝑥 ∈ ({ 0 } 𝐴) ↔ ∃𝑜 ∈ { 0 }∃𝑎𝐴 𝑥 = (𝑜(+g𝐺)𝑎)))
12 simpl1 1189 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝐵𝐴 ≠ ∅) ∧ 𝑎𝐴) → 𝐺 ∈ Grp)
13 simp2 1135 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐴𝐵𝐴 ≠ ∅) → 𝐴𝐵)
1413sselda 3917 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝐵𝐴 ≠ ∅) ∧ 𝑎𝐴) → 𝑎𝐵)
151, 5, 2grplid 18524 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑎𝐵) → ( 0 (+g𝐺)𝑎) = 𝑎)
1612, 14, 15syl2anc 583 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝐵𝐴 ≠ ∅) ∧ 𝑎𝐴) → ( 0 (+g𝐺)𝑎) = 𝑎)
1716eqeq2d 2749 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝐵𝐴 ≠ ∅) ∧ 𝑎𝐴) → (𝑥 = ( 0 (+g𝐺)𝑎) ↔ 𝑥 = 𝑎))
18 equcom 2022 . . . . . 6 (𝑥 = 𝑎𝑎 = 𝑥)
1917, 18bitrdi 286 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝐵𝐴 ≠ ∅) ∧ 𝑎𝐴) → (𝑥 = ( 0 (+g𝐺)𝑎) ↔ 𝑎 = 𝑥))
2019rexbidva 3224 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝐵𝐴 ≠ ∅) → (∃𝑎𝐴 𝑥 = ( 0 (+g𝐺)𝑎) ↔ ∃𝑎𝐴 𝑎 = 𝑥))
212fvexi 6770 . . . . 5 0 ∈ V
22 oveq1 7262 . . . . . . 7 (𝑜 = 0 → (𝑜(+g𝐺)𝑎) = ( 0 (+g𝐺)𝑎))
2322eqeq2d 2749 . . . . . 6 (𝑜 = 0 → (𝑥 = (𝑜(+g𝐺)𝑎) ↔ 𝑥 = ( 0 (+g𝐺)𝑎)))
2423rexbidv 3225 . . . . 5 (𝑜 = 0 → (∃𝑎𝐴 𝑥 = (𝑜(+g𝐺)𝑎) ↔ ∃𝑎𝐴 𝑥 = ( 0 (+g𝐺)𝑎)))
2521, 24rexsn 4615 . . . 4 (∃𝑜 ∈ { 0 }∃𝑎𝐴 𝑥 = (𝑜(+g𝐺)𝑎) ↔ ∃𝑎𝐴 𝑥 = ( 0 (+g𝐺)𝑎))
26 risset 3193 . . . 4 (𝑥𝐴 ↔ ∃𝑎𝐴 𝑎 = 𝑥)
2720, 25, 263bitr4g 313 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝐵𝐴 ≠ ∅) → (∃𝑜 ∈ { 0 }∃𝑎𝐴 𝑥 = (𝑜(+g𝐺)𝑎) ↔ 𝑥𝐴))
2811, 27bitrd 278 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝐵𝐴 ≠ ∅) → (𝑥 ∈ ({ 0 } 𝐴) ↔ 𝑥𝐴))
2928eqrdv 2736 1 ((𝐺 ∈ Grp ∧ 𝐴𝐵𝐴 ≠ ∅) → ({ 0 } 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wrex 3064  wss 3883  c0 4253  {csn 4558  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  0gc0g 17067  Grpcgrp 18492  LSSumclsm 19154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-lsm 19156
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator