Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grplsm0l Structured version   Visualization version   GIF version

Theorem grplsm0l 33396
Description: Sumset with the identity singleton is the original set. (Contributed by Thierry Arnoux, 27-Jul-2024.)
Hypotheses
Ref Expression
grplsm0l.b 𝐵 = (Base‘𝐺)
grplsm0l.p = (LSSum‘𝐺)
grplsm0l.0 0 = (0g𝐺)
Assertion
Ref Expression
grplsm0l ((𝐺 ∈ Grp ∧ 𝐴𝐵𝐴 ≠ ∅) → ({ 0 } 𝐴) = 𝐴)

Proof of Theorem grplsm0l
Dummy variables 𝑥 𝑎 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grplsm0l.b . . . . . . 7 𝐵 = (Base‘𝐺)
2 grplsm0l.0 . . . . . . 7 0 = (0g𝐺)
31, 2grpidcl 19005 . . . . . 6 (𝐺 ∈ Grp → 0𝐵)
43snssd 4834 . . . . 5 (𝐺 ∈ Grp → { 0 } ⊆ 𝐵)
5 eqid 2740 . . . . . . . 8 (+g𝐺) = (+g𝐺)
6 grplsm0l.p . . . . . . . 8 = (LSSum‘𝐺)
71, 5, 6lsmelvalx 19682 . . . . . . 7 ((𝐺 ∈ Grp ∧ { 0 } ⊆ 𝐵𝐴𝐵) → (𝑥 ∈ ({ 0 } 𝐴) ↔ ∃𝑜 ∈ { 0 }∃𝑎𝐴 𝑥 = (𝑜(+g𝐺)𝑎)))
873expa 1118 . . . . . 6 (((𝐺 ∈ Grp ∧ { 0 } ⊆ 𝐵) ∧ 𝐴𝐵) → (𝑥 ∈ ({ 0 } 𝐴) ↔ ∃𝑜 ∈ { 0 }∃𝑎𝐴 𝑥 = (𝑜(+g𝐺)𝑎)))
98an32s 651 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝐵) ∧ { 0 } ⊆ 𝐵) → (𝑥 ∈ ({ 0 } 𝐴) ↔ ∃𝑜 ∈ { 0 }∃𝑎𝐴 𝑥 = (𝑜(+g𝐺)𝑎)))
104, 9mpidan 688 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝐵) → (𝑥 ∈ ({ 0 } 𝐴) ↔ ∃𝑜 ∈ { 0 }∃𝑎𝐴 𝑥 = (𝑜(+g𝐺)𝑎)))
11103adant3 1132 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝐵𝐴 ≠ ∅) → (𝑥 ∈ ({ 0 } 𝐴) ↔ ∃𝑜 ∈ { 0 }∃𝑎𝐴 𝑥 = (𝑜(+g𝐺)𝑎)))
12 simpl1 1191 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝐵𝐴 ≠ ∅) ∧ 𝑎𝐴) → 𝐺 ∈ Grp)
13 simp2 1137 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐴𝐵𝐴 ≠ ∅) → 𝐴𝐵)
1413sselda 4008 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝐵𝐴 ≠ ∅) ∧ 𝑎𝐴) → 𝑎𝐵)
151, 5, 2grplid 19007 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑎𝐵) → ( 0 (+g𝐺)𝑎) = 𝑎)
1612, 14, 15syl2anc 583 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝐵𝐴 ≠ ∅) ∧ 𝑎𝐴) → ( 0 (+g𝐺)𝑎) = 𝑎)
1716eqeq2d 2751 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝐵𝐴 ≠ ∅) ∧ 𝑎𝐴) → (𝑥 = ( 0 (+g𝐺)𝑎) ↔ 𝑥 = 𝑎))
18 equcom 2017 . . . . . 6 (𝑥 = 𝑎𝑎 = 𝑥)
1917, 18bitrdi 287 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝐵𝐴 ≠ ∅) ∧ 𝑎𝐴) → (𝑥 = ( 0 (+g𝐺)𝑎) ↔ 𝑎 = 𝑥))
2019rexbidva 3183 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝐵𝐴 ≠ ∅) → (∃𝑎𝐴 𝑥 = ( 0 (+g𝐺)𝑎) ↔ ∃𝑎𝐴 𝑎 = 𝑥))
212fvexi 6934 . . . . 5 0 ∈ V
22 oveq1 7455 . . . . . . 7 (𝑜 = 0 → (𝑜(+g𝐺)𝑎) = ( 0 (+g𝐺)𝑎))
2322eqeq2d 2751 . . . . . 6 (𝑜 = 0 → (𝑥 = (𝑜(+g𝐺)𝑎) ↔ 𝑥 = ( 0 (+g𝐺)𝑎)))
2423rexbidv 3185 . . . . 5 (𝑜 = 0 → (∃𝑎𝐴 𝑥 = (𝑜(+g𝐺)𝑎) ↔ ∃𝑎𝐴 𝑥 = ( 0 (+g𝐺)𝑎)))
2521, 24rexsn 4706 . . . 4 (∃𝑜 ∈ { 0 }∃𝑎𝐴 𝑥 = (𝑜(+g𝐺)𝑎) ↔ ∃𝑎𝐴 𝑥 = ( 0 (+g𝐺)𝑎))
26 risset 3239 . . . 4 (𝑥𝐴 ↔ ∃𝑎𝐴 𝑎 = 𝑥)
2720, 25, 263bitr4g 314 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝐵𝐴 ≠ ∅) → (∃𝑜 ∈ { 0 }∃𝑎𝐴 𝑥 = (𝑜(+g𝐺)𝑎) ↔ 𝑥𝐴))
2811, 27bitrd 279 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝐵𝐴 ≠ ∅) → (𝑥 ∈ ({ 0 } 𝐴) ↔ 𝑥𝐴))
2928eqrdv 2738 1 ((𝐺 ∈ Grp ∧ 𝐴𝐵𝐴 ≠ ∅) → ({ 0 } 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wrex 3076  wss 3976  c0 4352  {csn 4648  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  0gc0g 17499  Grpcgrp 18973  LSSumclsm 19676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-lsm 19678
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator