Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grplsm0l Structured version   Visualization version   GIF version

Theorem grplsm0l 31116
Description: Sumset with the identity singleton is the original set. (Contributed by Thierry Arnoux, 27-Jul-2024.)
Hypotheses
Ref Expression
grplsm0l.b 𝐵 = (Base‘𝐺)
grplsm0l.p = (LSSum‘𝐺)
grplsm0l.0 0 = (0g𝐺)
Assertion
Ref Expression
grplsm0l ((𝐺 ∈ Grp ∧ 𝐴𝐵𝐴 ≠ ∅) → ({ 0 } 𝐴) = 𝐴)

Proof of Theorem grplsm0l
Dummy variables 𝑥 𝑎 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grplsm0l.b . . . . . . 7 𝐵 = (Base‘𝐺)
2 grplsm0l.0 . . . . . . 7 0 = (0g𝐺)
31, 2grpidcl 18203 . . . . . 6 (𝐺 ∈ Grp → 0𝐵)
43snssd 4702 . . . . 5 (𝐺 ∈ Grp → { 0 } ⊆ 𝐵)
5 eqid 2758 . . . . . . . 8 (+g𝐺) = (+g𝐺)
6 grplsm0l.p . . . . . . . 8 = (LSSum‘𝐺)
71, 5, 6lsmelvalx 18837 . . . . . . 7 ((𝐺 ∈ Grp ∧ { 0 } ⊆ 𝐵𝐴𝐵) → (𝑥 ∈ ({ 0 } 𝐴) ↔ ∃𝑜 ∈ { 0 }∃𝑎𝐴 𝑥 = (𝑜(+g𝐺)𝑎)))
873expa 1115 . . . . . 6 (((𝐺 ∈ Grp ∧ { 0 } ⊆ 𝐵) ∧ 𝐴𝐵) → (𝑥 ∈ ({ 0 } 𝐴) ↔ ∃𝑜 ∈ { 0 }∃𝑎𝐴 𝑥 = (𝑜(+g𝐺)𝑎)))
98an32s 651 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝐵) ∧ { 0 } ⊆ 𝐵) → (𝑥 ∈ ({ 0 } 𝐴) ↔ ∃𝑜 ∈ { 0 }∃𝑎𝐴 𝑥 = (𝑜(+g𝐺)𝑎)))
104, 9mpidan 688 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝐵) → (𝑥 ∈ ({ 0 } 𝐴) ↔ ∃𝑜 ∈ { 0 }∃𝑎𝐴 𝑥 = (𝑜(+g𝐺)𝑎)))
11103adant3 1129 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝐵𝐴 ≠ ∅) → (𝑥 ∈ ({ 0 } 𝐴) ↔ ∃𝑜 ∈ { 0 }∃𝑎𝐴 𝑥 = (𝑜(+g𝐺)𝑎)))
12 simpl1 1188 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝐵𝐴 ≠ ∅) ∧ 𝑎𝐴) → 𝐺 ∈ Grp)
13 simp2 1134 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐴𝐵𝐴 ≠ ∅) → 𝐴𝐵)
1413sselda 3894 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝐵𝐴 ≠ ∅) ∧ 𝑎𝐴) → 𝑎𝐵)
151, 5, 2grplid 18205 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑎𝐵) → ( 0 (+g𝐺)𝑎) = 𝑎)
1612, 14, 15syl2anc 587 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝐵𝐴 ≠ ∅) ∧ 𝑎𝐴) → ( 0 (+g𝐺)𝑎) = 𝑎)
1716eqeq2d 2769 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝐵𝐴 ≠ ∅) ∧ 𝑎𝐴) → (𝑥 = ( 0 (+g𝐺)𝑎) ↔ 𝑥 = 𝑎))
18 equcom 2025 . . . . . 6 (𝑥 = 𝑎𝑎 = 𝑥)
1917, 18bitrdi 290 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝐵𝐴 ≠ ∅) ∧ 𝑎𝐴) → (𝑥 = ( 0 (+g𝐺)𝑎) ↔ 𝑎 = 𝑥))
2019rexbidva 3220 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝐵𝐴 ≠ ∅) → (∃𝑎𝐴 𝑥 = ( 0 (+g𝐺)𝑎) ↔ ∃𝑎𝐴 𝑎 = 𝑥))
212fvexi 6676 . . . . 5 0 ∈ V
22 oveq1 7162 . . . . . . 7 (𝑜 = 0 → (𝑜(+g𝐺)𝑎) = ( 0 (+g𝐺)𝑎))
2322eqeq2d 2769 . . . . . 6 (𝑜 = 0 → (𝑥 = (𝑜(+g𝐺)𝑎) ↔ 𝑥 = ( 0 (+g𝐺)𝑎)))
2423rexbidv 3221 . . . . 5 (𝑜 = 0 → (∃𝑎𝐴 𝑥 = (𝑜(+g𝐺)𝑎) ↔ ∃𝑎𝐴 𝑥 = ( 0 (+g𝐺)𝑎)))
2521, 24rexsn 4580 . . . 4 (∃𝑜 ∈ { 0 }∃𝑎𝐴 𝑥 = (𝑜(+g𝐺)𝑎) ↔ ∃𝑎𝐴 𝑥 = ( 0 (+g𝐺)𝑎))
26 risset 3191 . . . 4 (𝑥𝐴 ↔ ∃𝑎𝐴 𝑎 = 𝑥)
2720, 25, 263bitr4g 317 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝐵𝐴 ≠ ∅) → (∃𝑜 ∈ { 0 }∃𝑎𝐴 𝑥 = (𝑜(+g𝐺)𝑎) ↔ 𝑥𝐴))
2811, 27bitrd 282 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝐵𝐴 ≠ ∅) → (𝑥 ∈ ({ 0 } 𝐴) ↔ 𝑥𝐴))
2928eqrdv 2756 1 ((𝐺 ∈ Grp ∧ 𝐴𝐵𝐴 ≠ ∅) → ({ 0 } 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2951  wrex 3071  wss 3860  c0 4227  {csn 4525  cfv 6339  (class class class)co 7155  Basecbs 16546  +gcplusg 16628  0gc0g 16776  Grpcgrp 18174  LSSumclsm 18831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-iun 4888  df-br 5036  df-opab 5098  df-mpt 5116  df-id 5433  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-1st 7698  df-2nd 7699  df-0g 16778  df-mgm 17923  df-sgrp 17972  df-mnd 17983  df-grp 18177  df-lsm 18833
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator