MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvaddbr Structured version   Visualization version   GIF version

Theorem dvaddbr 24450
Description: The sum rule for derivatives at a point. For the (simpler but more limited) function version, see dvadd 24452. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
dvadd.f (𝜑𝐹:𝑋⟶ℂ)
dvadd.x (𝜑𝑋𝑆)
dvadd.g (𝜑𝐺:𝑌⟶ℂ)
dvadd.y (𝜑𝑌𝑆)
dvaddbr.s (𝜑𝑆 ⊆ ℂ)
dvadd.k (𝜑𝐾𝑉)
dvadd.l (𝜑𝐿𝑉)
dvadd.bf (𝜑𝐶(𝑆 D 𝐹)𝐾)
dvadd.bg (𝜑𝐶(𝑆 D 𝐺)𝐿)
dvadd.j 𝐽 = (TopOpen‘ℂfld)
Assertion
Ref Expression
dvaddbr (𝜑𝐶(𝑆 D (𝐹f + 𝐺))(𝐾 + 𝐿))

Proof of Theorem dvaddbr
Dummy variables 𝑦 𝑧 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvadd.bf . . . . . 6 (𝜑𝐶(𝑆 D 𝐹)𝐾)
2 eqid 2826 . . . . . . 7 (𝐽t 𝑆) = (𝐽t 𝑆)
3 dvadd.j . . . . . . 7 𝐽 = (TopOpen‘ℂfld)
4 eqid 2826 . . . . . . 7 (𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) = (𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)))
5 dvaddbr.s . . . . . . 7 (𝜑𝑆 ⊆ ℂ)
6 dvadd.f . . . . . . 7 (𝜑𝐹:𝑋⟶ℂ)
7 dvadd.x . . . . . . 7 (𝜑𝑋𝑆)
82, 3, 4, 5, 6, 7eldv 24411 . . . . . 6 (𝜑 → (𝐶(𝑆 D 𝐹)𝐾 ↔ (𝐶 ∈ ((int‘(𝐽t 𝑆))‘𝑋) ∧ 𝐾 ∈ ((𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) lim 𝐶))))
91, 8mpbid 233 . . . . 5 (𝜑 → (𝐶 ∈ ((int‘(𝐽t 𝑆))‘𝑋) ∧ 𝐾 ∈ ((𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) lim 𝐶)))
109simpld 495 . . . 4 (𝜑𝐶 ∈ ((int‘(𝐽t 𝑆))‘𝑋))
11 dvadd.bg . . . . . 6 (𝜑𝐶(𝑆 D 𝐺)𝐿)
12 eqid 2826 . . . . . . 7 (𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) = (𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))
13 dvadd.g . . . . . . 7 (𝜑𝐺:𝑌⟶ℂ)
14 dvadd.y . . . . . . 7 (𝜑𝑌𝑆)
152, 3, 12, 5, 13, 14eldv 24411 . . . . . 6 (𝜑 → (𝐶(𝑆 D 𝐺)𝐿 ↔ (𝐶 ∈ ((int‘(𝐽t 𝑆))‘𝑌) ∧ 𝐿 ∈ ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶))))
1611, 15mpbid 233 . . . . 5 (𝜑 → (𝐶 ∈ ((int‘(𝐽t 𝑆))‘𝑌) ∧ 𝐿 ∈ ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶)))
1716simpld 495 . . . 4 (𝜑𝐶 ∈ ((int‘(𝐽t 𝑆))‘𝑌))
1810, 17elind 4175 . . 3 (𝜑𝐶 ∈ (((int‘(𝐽t 𝑆))‘𝑋) ∩ ((int‘(𝐽t 𝑆))‘𝑌)))
193cnfldtopon 23306 . . . . . 6 𝐽 ∈ (TopOn‘ℂ)
20 resttopon 21685 . . . . . 6 ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐽t 𝑆) ∈ (TopOn‘𝑆))
2119, 5, 20sylancr 587 . . . . 5 (𝜑 → (𝐽t 𝑆) ∈ (TopOn‘𝑆))
22 topontop 21437 . . . . 5 ((𝐽t 𝑆) ∈ (TopOn‘𝑆) → (𝐽t 𝑆) ∈ Top)
2321, 22syl 17 . . . 4 (𝜑 → (𝐽t 𝑆) ∈ Top)
24 toponuni 21438 . . . . . 6 ((𝐽t 𝑆) ∈ (TopOn‘𝑆) → 𝑆 = (𝐽t 𝑆))
2521, 24syl 17 . . . . 5 (𝜑𝑆 = (𝐽t 𝑆))
267, 25sseqtrd 4011 . . . 4 (𝜑𝑋 (𝐽t 𝑆))
2714, 25sseqtrd 4011 . . . 4 (𝜑𝑌 (𝐽t 𝑆))
28 eqid 2826 . . . . 5 (𝐽t 𝑆) = (𝐽t 𝑆)
2928ntrin 21585 . . . 4 (((𝐽t 𝑆) ∈ Top ∧ 𝑋 (𝐽t 𝑆) ∧ 𝑌 (𝐽t 𝑆)) → ((int‘(𝐽t 𝑆))‘(𝑋𝑌)) = (((int‘(𝐽t 𝑆))‘𝑋) ∩ ((int‘(𝐽t 𝑆))‘𝑌)))
3023, 26, 27, 29syl3anc 1365 . . 3 (𝜑 → ((int‘(𝐽t 𝑆))‘(𝑋𝑌)) = (((int‘(𝐽t 𝑆))‘𝑋) ∩ ((int‘(𝐽t 𝑆))‘𝑌)))
3118, 30eleqtrrd 2921 . 2 (𝜑𝐶 ∈ ((int‘(𝐽t 𝑆))‘(𝑋𝑌)))
32 inss1 4209 . . . . . . 7 (𝑋𝑌) ⊆ 𝑋
33 ssdif 4120 . . . . . . 7 ((𝑋𝑌) ⊆ 𝑋 → ((𝑋𝑌) ∖ {𝐶}) ⊆ (𝑋 ∖ {𝐶}))
3432, 33mp1i 13 . . . . . 6 (𝜑 → ((𝑋𝑌) ∖ {𝐶}) ⊆ (𝑋 ∖ {𝐶}))
3534sselda 3971 . . . . 5 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝑧 ∈ (𝑋 ∖ {𝐶}))
367, 5sstrd 3981 . . . . . 6 (𝜑𝑋 ⊆ ℂ)
3728ntrss2 21581 . . . . . . . 8 (((𝐽t 𝑆) ∈ Top ∧ 𝑋 (𝐽t 𝑆)) → ((int‘(𝐽t 𝑆))‘𝑋) ⊆ 𝑋)
3823, 26, 37syl2anc 584 . . . . . . 7 (𝜑 → ((int‘(𝐽t 𝑆))‘𝑋) ⊆ 𝑋)
3938, 10sseldd 3972 . . . . . 6 (𝜑𝐶𝑋)
406, 36, 39dvlem 24409 . . . . 5 ((𝜑𝑧 ∈ (𝑋 ∖ {𝐶})) → (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) ∈ ℂ)
4135, 40syldan 591 . . . 4 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) ∈ ℂ)
42 inss2 4210 . . . . . . 7 (𝑋𝑌) ⊆ 𝑌
43 ssdif 4120 . . . . . . 7 ((𝑋𝑌) ⊆ 𝑌 → ((𝑋𝑌) ∖ {𝐶}) ⊆ (𝑌 ∖ {𝐶}))
4442, 43mp1i 13 . . . . . 6 (𝜑 → ((𝑋𝑌) ∖ {𝐶}) ⊆ (𝑌 ∖ {𝐶}))
4544sselda 3971 . . . . 5 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝑧 ∈ (𝑌 ∖ {𝐶}))
4614, 5sstrd 3981 . . . . . 6 (𝜑𝑌 ⊆ ℂ)
4728ntrss2 21581 . . . . . . . 8 (((𝐽t 𝑆) ∈ Top ∧ 𝑌 (𝐽t 𝑆)) → ((int‘(𝐽t 𝑆))‘𝑌) ⊆ 𝑌)
4823, 27, 47syl2anc 584 . . . . . . 7 (𝜑 → ((int‘(𝐽t 𝑆))‘𝑌) ⊆ 𝑌)
4948, 17sseldd 3972 . . . . . 6 (𝜑𝐶𝑌)
5013, 46, 49dvlem 24409 . . . . 5 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) ∈ ℂ)
5145, 50syldan 591 . . . 4 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) ∈ ℂ)
52 ssidd 3994 . . . 4 (𝜑 → ℂ ⊆ ℂ)
53 txtopon 22115 . . . . . 6 ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝐽 ∈ (TopOn‘ℂ)) → (𝐽 ×t 𝐽) ∈ (TopOn‘(ℂ × ℂ)))
5419, 19, 53mp2an 688 . . . . 5 (𝐽 ×t 𝐽) ∈ (TopOn‘(ℂ × ℂ))
5554toponrestid 21445 . . . 4 (𝐽 ×t 𝐽) = ((𝐽 ×t 𝐽) ↾t (ℂ × ℂ))
569simprd 496 . . . . 5 (𝜑𝐾 ∈ ((𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) lim 𝐶))
5740fmpttd 6875 . . . . . . 7 (𝜑 → (𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))):(𝑋 ∖ {𝐶})⟶ℂ)
5836ssdifssd 4123 . . . . . . 7 (𝜑 → (𝑋 ∖ {𝐶}) ⊆ ℂ)
59 eqid 2826 . . . . . . 7 (𝐽t ((𝑋 ∖ {𝐶}) ∪ {𝐶})) = (𝐽t ((𝑋 ∖ {𝐶}) ∪ {𝐶}))
6032, 7sstrid 3982 . . . . . . . . . . . . . 14 (𝜑 → (𝑋𝑌) ⊆ 𝑆)
6160, 25sseqtrd 4011 . . . . . . . . . . . . 13 (𝜑 → (𝑋𝑌) ⊆ (𝐽t 𝑆))
62 difssd 4113 . . . . . . . . . . . . 13 (𝜑 → ( (𝐽t 𝑆) ∖ 𝑋) ⊆ (𝐽t 𝑆))
6361, 62unssd 4166 . . . . . . . . . . . 12 (𝜑 → ((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑋)) ⊆ (𝐽t 𝑆))
64 ssun1 4152 . . . . . . . . . . . . 13 (𝑋𝑌) ⊆ ((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑋))
6564a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝑋𝑌) ⊆ ((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑋)))
6628ntrss 21579 . . . . . . . . . . . 12 (((𝐽t 𝑆) ∈ Top ∧ ((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑋)) ⊆ (𝐽t 𝑆) ∧ (𝑋𝑌) ⊆ ((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑋))) → ((int‘(𝐽t 𝑆))‘(𝑋𝑌)) ⊆ ((int‘(𝐽t 𝑆))‘((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑋))))
6723, 63, 65, 66syl3anc 1365 . . . . . . . . . . 11 (𝜑 → ((int‘(𝐽t 𝑆))‘(𝑋𝑌)) ⊆ ((int‘(𝐽t 𝑆))‘((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑋))))
6867, 31sseldd 3972 . . . . . . . . . 10 (𝜑𝐶 ∈ ((int‘(𝐽t 𝑆))‘((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑋))))
6968, 39elind 4175 . . . . . . . . 9 (𝜑𝐶 ∈ (((int‘(𝐽t 𝑆))‘((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑋))) ∩ 𝑋))
7032a1i 11 . . . . . . . . . . 11 (𝜑 → (𝑋𝑌) ⊆ 𝑋)
71 eqid 2826 . . . . . . . . . . . 12 ((𝐽t 𝑆) ↾t 𝑋) = ((𝐽t 𝑆) ↾t 𝑋)
7228, 71restntr 21706 . . . . . . . . . . 11 (((𝐽t 𝑆) ∈ Top ∧ 𝑋 (𝐽t 𝑆) ∧ (𝑋𝑌) ⊆ 𝑋) → ((int‘((𝐽t 𝑆) ↾t 𝑋))‘(𝑋𝑌)) = (((int‘(𝐽t 𝑆))‘((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑋))) ∩ 𝑋))
7323, 26, 70, 72syl3anc 1365 . . . . . . . . . 10 (𝜑 → ((int‘((𝐽t 𝑆) ↾t 𝑋))‘(𝑋𝑌)) = (((int‘(𝐽t 𝑆))‘((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑋))) ∩ 𝑋))
743cnfldtop 23307 . . . . . . . . . . . . . 14 𝐽 ∈ Top
7574a1i 11 . . . . . . . . . . . . 13 (𝜑𝐽 ∈ Top)
76 cnex 10607 . . . . . . . . . . . . . 14 ℂ ∈ V
77 ssexg 5224 . . . . . . . . . . . . . 14 ((𝑆 ⊆ ℂ ∧ ℂ ∈ V) → 𝑆 ∈ V)
785, 76, 77sylancl 586 . . . . . . . . . . . . 13 (𝜑𝑆 ∈ V)
79 restabs 21689 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝑋𝑆𝑆 ∈ V) → ((𝐽t 𝑆) ↾t 𝑋) = (𝐽t 𝑋))
8075, 7, 78, 79syl3anc 1365 . . . . . . . . . . . 12 (𝜑 → ((𝐽t 𝑆) ↾t 𝑋) = (𝐽t 𝑋))
8180fveq2d 6671 . . . . . . . . . . 11 (𝜑 → (int‘((𝐽t 𝑆) ↾t 𝑋)) = (int‘(𝐽t 𝑋)))
8281fveq1d 6669 . . . . . . . . . 10 (𝜑 → ((int‘((𝐽t 𝑆) ↾t 𝑋))‘(𝑋𝑌)) = ((int‘(𝐽t 𝑋))‘(𝑋𝑌)))
8373, 82eqtr3d 2863 . . . . . . . . 9 (𝜑 → (((int‘(𝐽t 𝑆))‘((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑋))) ∩ 𝑋) = ((int‘(𝐽t 𝑋))‘(𝑋𝑌)))
8469, 83eleqtrd 2920 . . . . . . . 8 (𝜑𝐶 ∈ ((int‘(𝐽t 𝑋))‘(𝑋𝑌)))
85 undif1 4427 . . . . . . . . . . . 12 ((𝑋 ∖ {𝐶}) ∪ {𝐶}) = (𝑋 ∪ {𝐶})
8639snssd 4741 . . . . . . . . . . . . 13 (𝜑 → {𝐶} ⊆ 𝑋)
87 ssequn2 4163 . . . . . . . . . . . . 13 ({𝐶} ⊆ 𝑋 ↔ (𝑋 ∪ {𝐶}) = 𝑋)
8886, 87sylib 219 . . . . . . . . . . . 12 (𝜑 → (𝑋 ∪ {𝐶}) = 𝑋)
8985, 88syl5eq 2873 . . . . . . . . . . 11 (𝜑 → ((𝑋 ∖ {𝐶}) ∪ {𝐶}) = 𝑋)
9089oveq2d 7164 . . . . . . . . . 10 (𝜑 → (𝐽t ((𝑋 ∖ {𝐶}) ∪ {𝐶})) = (𝐽t 𝑋))
9190fveq2d 6671 . . . . . . . . 9 (𝜑 → (int‘(𝐽t ((𝑋 ∖ {𝐶}) ∪ {𝐶}))) = (int‘(𝐽t 𝑋)))
92 undif1 4427 . . . . . . . . . 10 (((𝑋𝑌) ∖ {𝐶}) ∪ {𝐶}) = ((𝑋𝑌) ∪ {𝐶})
9339, 49elind 4175 . . . . . . . . . . . 12 (𝜑𝐶 ∈ (𝑋𝑌))
9493snssd 4741 . . . . . . . . . . 11 (𝜑 → {𝐶} ⊆ (𝑋𝑌))
95 ssequn2 4163 . . . . . . . . . . 11 ({𝐶} ⊆ (𝑋𝑌) ↔ ((𝑋𝑌) ∪ {𝐶}) = (𝑋𝑌))
9694, 95sylib 219 . . . . . . . . . 10 (𝜑 → ((𝑋𝑌) ∪ {𝐶}) = (𝑋𝑌))
9792, 96syl5eq 2873 . . . . . . . . 9 (𝜑 → (((𝑋𝑌) ∖ {𝐶}) ∪ {𝐶}) = (𝑋𝑌))
9891, 97fveq12d 6674 . . . . . . . 8 (𝜑 → ((int‘(𝐽t ((𝑋 ∖ {𝐶}) ∪ {𝐶})))‘(((𝑋𝑌) ∖ {𝐶}) ∪ {𝐶})) = ((int‘(𝐽t 𝑋))‘(𝑋𝑌)))
9984, 98eleqtrrd 2921 . . . . . . 7 (𝜑𝐶 ∈ ((int‘(𝐽t ((𝑋 ∖ {𝐶}) ∪ {𝐶})))‘(((𝑋𝑌) ∖ {𝐶}) ∪ {𝐶})))
10057, 34, 58, 3, 59, 99limcres 24399 . . . . . 6 (𝜑 → (((𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) ↾ ((𝑋𝑌) ∖ {𝐶})) lim 𝐶) = ((𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) lim 𝐶))
10134resmptd 5907 . . . . . . 7 (𝜑 → ((𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) ↾ ((𝑋𝑌) ∖ {𝐶})) = (𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))))
102101oveq1d 7163 . . . . . 6 (𝜑 → (((𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) ↾ ((𝑋𝑌) ∖ {𝐶})) lim 𝐶) = ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) lim 𝐶))
103100, 102eqtr3d 2863 . . . . 5 (𝜑 → ((𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) lim 𝐶) = ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) lim 𝐶))
10456, 103eleqtrd 2920 . . . 4 (𝜑𝐾 ∈ ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) lim 𝐶))
10516simprd 496 . . . . 5 (𝜑𝐿 ∈ ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶))
10650fmpttd 6875 . . . . . . 7 (𝜑 → (𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))):(𝑌 ∖ {𝐶})⟶ℂ)
10746ssdifssd 4123 . . . . . . 7 (𝜑 → (𝑌 ∖ {𝐶}) ⊆ ℂ)
108 eqid 2826 . . . . . . 7 (𝐽t ((𝑌 ∖ {𝐶}) ∪ {𝐶})) = (𝐽t ((𝑌 ∖ {𝐶}) ∪ {𝐶}))
109 difssd 4113 . . . . . . . . . . . . 13 (𝜑 → ( (𝐽t 𝑆) ∖ 𝑌) ⊆ (𝐽t 𝑆))
11061, 109unssd 4166 . . . . . . . . . . . 12 (𝜑 → ((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑌)) ⊆ (𝐽t 𝑆))
111 ssun1 4152 . . . . . . . . . . . . 13 (𝑋𝑌) ⊆ ((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑌))
112111a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝑋𝑌) ⊆ ((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑌)))
11328ntrss 21579 . . . . . . . . . . . 12 (((𝐽t 𝑆) ∈ Top ∧ ((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑌)) ⊆ (𝐽t 𝑆) ∧ (𝑋𝑌) ⊆ ((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑌))) → ((int‘(𝐽t 𝑆))‘(𝑋𝑌)) ⊆ ((int‘(𝐽t 𝑆))‘((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑌))))
11423, 110, 112, 113syl3anc 1365 . . . . . . . . . . 11 (𝜑 → ((int‘(𝐽t 𝑆))‘(𝑋𝑌)) ⊆ ((int‘(𝐽t 𝑆))‘((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑌))))
115114, 31sseldd 3972 . . . . . . . . . 10 (𝜑𝐶 ∈ ((int‘(𝐽t 𝑆))‘((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑌))))
116115, 49elind 4175 . . . . . . . . 9 (𝜑𝐶 ∈ (((int‘(𝐽t 𝑆))‘((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑌))) ∩ 𝑌))
11742a1i 11 . . . . . . . . . . 11 (𝜑 → (𝑋𝑌) ⊆ 𝑌)
118 eqid 2826 . . . . . . . . . . . 12 ((𝐽t 𝑆) ↾t 𝑌) = ((𝐽t 𝑆) ↾t 𝑌)
11928, 118restntr 21706 . . . . . . . . . . 11 (((𝐽t 𝑆) ∈ Top ∧ 𝑌 (𝐽t 𝑆) ∧ (𝑋𝑌) ⊆ 𝑌) → ((int‘((𝐽t 𝑆) ↾t 𝑌))‘(𝑋𝑌)) = (((int‘(𝐽t 𝑆))‘((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑌))) ∩ 𝑌))
12023, 27, 117, 119syl3anc 1365 . . . . . . . . . 10 (𝜑 → ((int‘((𝐽t 𝑆) ↾t 𝑌))‘(𝑋𝑌)) = (((int‘(𝐽t 𝑆))‘((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑌))) ∩ 𝑌))
121 restabs 21689 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝑌𝑆𝑆 ∈ V) → ((𝐽t 𝑆) ↾t 𝑌) = (𝐽t 𝑌))
12275, 14, 78, 121syl3anc 1365 . . . . . . . . . . . 12 (𝜑 → ((𝐽t 𝑆) ↾t 𝑌) = (𝐽t 𝑌))
123122fveq2d 6671 . . . . . . . . . . 11 (𝜑 → (int‘((𝐽t 𝑆) ↾t 𝑌)) = (int‘(𝐽t 𝑌)))
124123fveq1d 6669 . . . . . . . . . 10 (𝜑 → ((int‘((𝐽t 𝑆) ↾t 𝑌))‘(𝑋𝑌)) = ((int‘(𝐽t 𝑌))‘(𝑋𝑌)))
125120, 124eqtr3d 2863 . . . . . . . . 9 (𝜑 → (((int‘(𝐽t 𝑆))‘((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑌))) ∩ 𝑌) = ((int‘(𝐽t 𝑌))‘(𝑋𝑌)))
126116, 125eleqtrd 2920 . . . . . . . 8 (𝜑𝐶 ∈ ((int‘(𝐽t 𝑌))‘(𝑋𝑌)))
127 undif1 4427 . . . . . . . . . . . 12 ((𝑌 ∖ {𝐶}) ∪ {𝐶}) = (𝑌 ∪ {𝐶})
12849snssd 4741 . . . . . . . . . . . . 13 (𝜑 → {𝐶} ⊆ 𝑌)
129 ssequn2 4163 . . . . . . . . . . . . 13 ({𝐶} ⊆ 𝑌 ↔ (𝑌 ∪ {𝐶}) = 𝑌)
130128, 129sylib 219 . . . . . . . . . . . 12 (𝜑 → (𝑌 ∪ {𝐶}) = 𝑌)
131127, 130syl5eq 2873 . . . . . . . . . . 11 (𝜑 → ((𝑌 ∖ {𝐶}) ∪ {𝐶}) = 𝑌)
132131oveq2d 7164 . . . . . . . . . 10 (𝜑 → (𝐽t ((𝑌 ∖ {𝐶}) ∪ {𝐶})) = (𝐽t 𝑌))
133132fveq2d 6671 . . . . . . . . 9 (𝜑 → (int‘(𝐽t ((𝑌 ∖ {𝐶}) ∪ {𝐶}))) = (int‘(𝐽t 𝑌)))
134133, 97fveq12d 6674 . . . . . . . 8 (𝜑 → ((int‘(𝐽t ((𝑌 ∖ {𝐶}) ∪ {𝐶})))‘(((𝑋𝑌) ∖ {𝐶}) ∪ {𝐶})) = ((int‘(𝐽t 𝑌))‘(𝑋𝑌)))
135126, 134eleqtrrd 2921 . . . . . . 7 (𝜑𝐶 ∈ ((int‘(𝐽t ((𝑌 ∖ {𝐶}) ∪ {𝐶})))‘(((𝑋𝑌) ∖ {𝐶}) ∪ {𝐶})))
136106, 44, 107, 3, 108, 135limcres 24399 . . . . . 6 (𝜑 → (((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) ↾ ((𝑋𝑌) ∖ {𝐶})) lim 𝐶) = ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶))
13744resmptd 5907 . . . . . . 7 (𝜑 → ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) ↾ ((𝑋𝑌) ∖ {𝐶})) = (𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))))
138137oveq1d 7163 . . . . . 6 (𝜑 → (((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) ↾ ((𝑋𝑌) ∖ {𝐶})) lim 𝐶) = ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶))
139136, 138eqtr3d 2863 . . . . 5 (𝜑 → ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶) = ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶))
140105, 139eleqtrd 2920 . . . 4 (𝜑𝐿 ∈ ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶))
1413addcn 23388 . . . . 5 + ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
1425, 6, 7dvcl 24412 . . . . . . 7 ((𝜑𝐶(𝑆 D 𝐹)𝐾) → 𝐾 ∈ ℂ)
1431, 142mpdan 683 . . . . . 6 (𝜑𝐾 ∈ ℂ)
1445, 13, 14dvcl 24412 . . . . . . 7 ((𝜑𝐶(𝑆 D 𝐺)𝐿) → 𝐿 ∈ ℂ)
14511, 144mpdan 683 . . . . . 6 (𝜑𝐿 ∈ ℂ)
146143, 145opelxpd 5592 . . . . 5 (𝜑 → ⟨𝐾, 𝐿⟩ ∈ (ℂ × ℂ))
14754toponunii 21440 . . . . . 6 (ℂ × ℂ) = (𝐽 ×t 𝐽)
148147cncnpi 21802 . . . . 5 (( + ∈ ((𝐽 ×t 𝐽) Cn 𝐽) ∧ ⟨𝐾, 𝐿⟩ ∈ (ℂ × ℂ)) → + ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘⟨𝐾, 𝐿⟩))
149141, 146, 148sylancr 587 . . . 4 (𝜑 → + ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘⟨𝐾, 𝐿⟩))
15041, 51, 52, 52, 3, 55, 104, 140, 149limccnp2 24405 . . 3 (𝜑 → (𝐾 + 𝐿) ∈ ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ ((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) + (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))) lim 𝐶))
151 eldifi 4107 . . . . . . . . . . 11 (𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) → 𝑧 ∈ (𝑋𝑌))
152151adantl 482 . . . . . . . . . 10 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝑧 ∈ (𝑋𝑌))
1536ffnd 6512 . . . . . . . . . . . 12 (𝜑𝐹 Fn 𝑋)
154153adantr 481 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝐹 Fn 𝑋)
15513ffnd 6512 . . . . . . . . . . . 12 (𝜑𝐺 Fn 𝑌)
156155adantr 481 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝐺 Fn 𝑌)
157 ssexg 5224 . . . . . . . . . . . . 13 ((𝑋 ⊆ ℂ ∧ ℂ ∈ V) → 𝑋 ∈ V)
15836, 76, 157sylancl 586 . . . . . . . . . . . 12 (𝜑𝑋 ∈ V)
159158adantr 481 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝑋 ∈ V)
160 ssexg 5224 . . . . . . . . . . . . 13 ((𝑌 ⊆ ℂ ∧ ℂ ∈ V) → 𝑌 ∈ V)
16146, 76, 160sylancl 586 . . . . . . . . . . . 12 (𝜑𝑌 ∈ V)
162161adantr 481 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝑌 ∈ V)
163 eqid 2826 . . . . . . . . . . 11 (𝑋𝑌) = (𝑋𝑌)
164 eqidd 2827 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) ∧ 𝑧𝑋) → (𝐹𝑧) = (𝐹𝑧))
165 eqidd 2827 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) ∧ 𝑧𝑌) → (𝐺𝑧) = (𝐺𝑧))
166154, 156, 159, 162, 163, 164, 165ofval 7408 . . . . . . . . . 10 (((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) ∧ 𝑧 ∈ (𝑋𝑌)) → ((𝐹f + 𝐺)‘𝑧) = ((𝐹𝑧) + (𝐺𝑧)))
167152, 166mpdan 683 . . . . . . . . 9 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → ((𝐹f + 𝐺)‘𝑧) = ((𝐹𝑧) + (𝐺𝑧)))
168 eqidd 2827 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) ∧ 𝐶𝑋) → (𝐹𝐶) = (𝐹𝐶))
169 eqidd 2827 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) ∧ 𝐶𝑌) → (𝐺𝐶) = (𝐺𝐶))
170154, 156, 159, 162, 163, 168, 169ofval 7408 . . . . . . . . . 10 (((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) ∧ 𝐶 ∈ (𝑋𝑌)) → ((𝐹f + 𝐺)‘𝐶) = ((𝐹𝐶) + (𝐺𝐶)))
17193, 170mpidan 685 . . . . . . . . 9 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → ((𝐹f + 𝐺)‘𝐶) = ((𝐹𝐶) + (𝐺𝐶)))
172167, 171oveq12d 7166 . . . . . . . 8 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (((𝐹f + 𝐺)‘𝑧) − ((𝐹f + 𝐺)‘𝐶)) = (((𝐹𝑧) + (𝐺𝑧)) − ((𝐹𝐶) + (𝐺𝐶))))
173 difss 4112 . . . . . . . . . . . 12 ((𝑋𝑌) ∖ {𝐶}) ⊆ (𝑋𝑌)
174173, 32sstri 3980 . . . . . . . . . . 11 ((𝑋𝑌) ∖ {𝐶}) ⊆ 𝑋
175174sseli 3967 . . . . . . . . . 10 (𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) → 𝑧𝑋)
176 ffvelrn 6845 . . . . . . . . . 10 ((𝐹:𝑋⟶ℂ ∧ 𝑧𝑋) → (𝐹𝑧) ∈ ℂ)
1776, 175, 176syl2an 595 . . . . . . . . 9 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (𝐹𝑧) ∈ ℂ)
178173, 42sstri 3980 . . . . . . . . . . 11 ((𝑋𝑌) ∖ {𝐶}) ⊆ 𝑌
179178sseli 3967 . . . . . . . . . 10 (𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) → 𝑧𝑌)
180 ffvelrn 6845 . . . . . . . . . 10 ((𝐺:𝑌⟶ℂ ∧ 𝑧𝑌) → (𝐺𝑧) ∈ ℂ)
18113, 179, 180syl2an 595 . . . . . . . . 9 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (𝐺𝑧) ∈ ℂ)
1826, 39ffvelrnd 6848 . . . . . . . . . 10 (𝜑 → (𝐹𝐶) ∈ ℂ)
183182adantr 481 . . . . . . . . 9 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (𝐹𝐶) ∈ ℂ)
18413, 49ffvelrnd 6848 . . . . . . . . . 10 (𝜑 → (𝐺𝐶) ∈ ℂ)
185184adantr 481 . . . . . . . . 9 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (𝐺𝐶) ∈ ℂ)
186177, 181, 183, 185addsub4d 11033 . . . . . . . 8 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (((𝐹𝑧) + (𝐺𝑧)) − ((𝐹𝐶) + (𝐺𝐶))) = (((𝐹𝑧) − (𝐹𝐶)) + ((𝐺𝑧) − (𝐺𝐶))))
187172, 186eqtrd 2861 . . . . . . 7 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (((𝐹f + 𝐺)‘𝑧) − ((𝐹f + 𝐺)‘𝐶)) = (((𝐹𝑧) − (𝐹𝐶)) + ((𝐺𝑧) − (𝐺𝐶))))
188187oveq1d 7163 . . . . . 6 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → ((((𝐹f + 𝐺)‘𝑧) − ((𝐹f + 𝐺)‘𝐶)) / (𝑧𝐶)) = ((((𝐹𝑧) − (𝐹𝐶)) + ((𝐺𝑧) − (𝐺𝐶))) / (𝑧𝐶)))
189177, 183subcld 10986 . . . . . . 7 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → ((𝐹𝑧) − (𝐹𝐶)) ∈ ℂ)
190181, 185subcld 10986 . . . . . . 7 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → ((𝐺𝑧) − (𝐺𝐶)) ∈ ℂ)
191174, 36sstrid 3982 . . . . . . . . 9 (𝜑 → ((𝑋𝑌) ∖ {𝐶}) ⊆ ℂ)
192191sselda 3971 . . . . . . . 8 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝑧 ∈ ℂ)
19336, 39sseldd 3972 . . . . . . . . 9 (𝜑𝐶 ∈ ℂ)
194193adantr 481 . . . . . . . 8 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝐶 ∈ ℂ)
195192, 194subcld 10986 . . . . . . 7 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (𝑧𝐶) ∈ ℂ)
196 eldifsni 4721 . . . . . . . . 9 (𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) → 𝑧𝐶)
197196adantl 482 . . . . . . . 8 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝑧𝐶)
198192, 194, 197subne0d 10995 . . . . . . 7 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (𝑧𝐶) ≠ 0)
199189, 190, 195, 198divdird 11443 . . . . . 6 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → ((((𝐹𝑧) − (𝐹𝐶)) + ((𝐺𝑧) − (𝐺𝐶))) / (𝑧𝐶)) = ((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) + (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))))
200188, 199eqtrd 2861 . . . . 5 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → ((((𝐹f + 𝐺)‘𝑧) − ((𝐹f + 𝐺)‘𝐶)) / (𝑧𝐶)) = ((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) + (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))))
201200mpteq2dva 5158 . . . 4 (𝜑 → (𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ ((((𝐹f + 𝐺)‘𝑧) − ((𝐹f + 𝐺)‘𝐶)) / (𝑧𝐶))) = (𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ ((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) + (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))))
202201oveq1d 7163 . . 3 (𝜑 → ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ ((((𝐹f + 𝐺)‘𝑧) − ((𝐹f + 𝐺)‘𝐶)) / (𝑧𝐶))) lim 𝐶) = ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ ((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) + (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))) lim 𝐶))
203150, 202eleqtrrd 2921 . 2 (𝜑 → (𝐾 + 𝐿) ∈ ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ ((((𝐹f + 𝐺)‘𝑧) − ((𝐹f + 𝐺)‘𝐶)) / (𝑧𝐶))) lim 𝐶))
204 eqid 2826 . . 3 (𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ ((((𝐹f + 𝐺)‘𝑧) − ((𝐹f + 𝐺)‘𝐶)) / (𝑧𝐶))) = (𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ ((((𝐹f + 𝐺)‘𝑧) − ((𝐹f + 𝐺)‘𝐶)) / (𝑧𝐶)))
205 addcl 10608 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
206205adantl 482 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ)
207206, 6, 13, 158, 161, 163off 7414 . . 3 (𝜑 → (𝐹f + 𝐺):(𝑋𝑌)⟶ℂ)
2082, 3, 204, 5, 207, 60eldv 24411 . 2 (𝜑 → (𝐶(𝑆 D (𝐹f + 𝐺))(𝐾 + 𝐿) ↔ (𝐶 ∈ ((int‘(𝐽t 𝑆))‘(𝑋𝑌)) ∧ (𝐾 + 𝐿) ∈ ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ ((((𝐹f + 𝐺)‘𝑧) − ((𝐹f + 𝐺)‘𝐶)) / (𝑧𝐶))) lim 𝐶))))
20931, 203, 208mpbir2and 709 1 (𝜑𝐶(𝑆 D (𝐹f + 𝐺))(𝐾 + 𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1530  wcel 2107  wne 3021  Vcvv 3500  cdif 3937  cun 3938  cin 3939  wss 3940  {csn 4564  cop 4570   cuni 4837   class class class wbr 5063  cmpt 5143   × cxp 5552  cres 5556   Fn wfn 6347  wf 6348  cfv 6352  (class class class)co 7148  f cof 7397  cc 10524   + caddc 10529  cmin 10859   / cdiv 11286  t crest 16684  TopOpenctopn 16685  fldccnfld 20461  Topctop 21417  TopOnctopon 21434  intcnt 21541   Cn ccn 21748   CnP ccnp 21749   ×t ctx 22084   lim climc 24375   D cdv 24376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-iin 4920  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-isom 6361  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7399  df-om 7569  df-1st 7680  df-2nd 7681  df-supp 7822  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-2o 8094  df-oadd 8097  df-er 8279  df-map 8398  df-pm 8399  df-ixp 8451  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-fsupp 8823  df-fi 8864  df-sup 8895  df-inf 8896  df-oi 8963  df-card 9357  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11628  df-2 11689  df-3 11690  df-4 11691  df-5 11692  df-6 11693  df-7 11694  df-8 11695  df-9 11696  df-n0 11887  df-z 11971  df-dec 12088  df-uz 12233  df-q 12338  df-rp 12380  df-xneg 12497  df-xadd 12498  df-xmul 12499  df-icc 12735  df-fz 12883  df-fzo 13024  df-seq 13360  df-exp 13420  df-hash 13681  df-cj 14448  df-re 14449  df-im 14450  df-sqrt 14584  df-abs 14585  df-struct 16475  df-ndx 16476  df-slot 16477  df-base 16479  df-sets 16480  df-ress 16481  df-plusg 16568  df-mulr 16569  df-starv 16570  df-sca 16571  df-vsca 16572  df-ip 16573  df-tset 16574  df-ple 16575  df-ds 16577  df-unif 16578  df-hom 16579  df-cco 16580  df-rest 16686  df-topn 16687  df-0g 16705  df-gsum 16706  df-topgen 16707  df-pt 16708  df-prds 16711  df-xrs 16765  df-qtop 16770  df-imas 16771  df-xps 16773  df-mre 16847  df-mrc 16848  df-acs 16850  df-mgm 17842  df-sgrp 17890  df-mnd 17901  df-submnd 17945  df-mulg 18155  df-cntz 18377  df-cmn 18828  df-psmet 20453  df-xmet 20454  df-met 20455  df-bl 20456  df-mopn 20457  df-cnfld 20462  df-top 21418  df-topon 21435  df-topsp 21457  df-bases 21470  df-cld 21543  df-ntr 21544  df-cls 21545  df-cn 21751  df-cnp 21752  df-tx 22086  df-hmeo 22279  df-xms 22845  df-ms 22846  df-tms 22847  df-limc 24379  df-dv 24380
This theorem is referenced by:  dvadd  24452  dvaddf  24454
  Copyright terms: Public domain W3C validator