MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvaddbr Structured version   Visualization version   GIF version

Theorem dvaddbr 24101
Description: The sum rule for derivatives at a point. For the (simpler but more limited) function version, see dvadd 24103. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.)
Hypotheses
Ref Expression
dvadd.f (𝜑𝐹:𝑋⟶ℂ)
dvadd.x (𝜑𝑋𝑆)
dvadd.g (𝜑𝐺:𝑌⟶ℂ)
dvadd.y (𝜑𝑌𝑆)
dvaddbr.s (𝜑𝑆 ⊆ ℂ)
dvadd.k (𝜑𝐾𝑉)
dvadd.l (𝜑𝐿𝑉)
dvadd.bf (𝜑𝐶(𝑆 D 𝐹)𝐾)
dvadd.bg (𝜑𝐶(𝑆 D 𝐺)𝐿)
dvadd.j 𝐽 = (TopOpen‘ℂfld)
Assertion
Ref Expression
dvaddbr (𝜑𝐶(𝑆 D (𝐹𝑓 + 𝐺))(𝐾 + 𝐿))

Proof of Theorem dvaddbr
Dummy variables 𝑦 𝑧 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvadd.bf . . . . . 6 (𝜑𝐶(𝑆 D 𝐹)𝐾)
2 eqid 2826 . . . . . . 7 (𝐽t 𝑆) = (𝐽t 𝑆)
3 dvadd.j . . . . . . 7 𝐽 = (TopOpen‘ℂfld)
4 eqid 2826 . . . . . . 7 (𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) = (𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)))
5 dvaddbr.s . . . . . . 7 (𝜑𝑆 ⊆ ℂ)
6 dvadd.f . . . . . . 7 (𝜑𝐹:𝑋⟶ℂ)
7 dvadd.x . . . . . . 7 (𝜑𝑋𝑆)
82, 3, 4, 5, 6, 7eldv 24062 . . . . . 6 (𝜑 → (𝐶(𝑆 D 𝐹)𝐾 ↔ (𝐶 ∈ ((int‘(𝐽t 𝑆))‘𝑋) ∧ 𝐾 ∈ ((𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) lim 𝐶))))
91, 8mpbid 224 . . . . 5 (𝜑 → (𝐶 ∈ ((int‘(𝐽t 𝑆))‘𝑋) ∧ 𝐾 ∈ ((𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) lim 𝐶)))
109simpld 490 . . . 4 (𝜑𝐶 ∈ ((int‘(𝐽t 𝑆))‘𝑋))
11 dvadd.bg . . . . . 6 (𝜑𝐶(𝑆 D 𝐺)𝐿)
12 eqid 2826 . . . . . . 7 (𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) = (𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))
13 dvadd.g . . . . . . 7 (𝜑𝐺:𝑌⟶ℂ)
14 dvadd.y . . . . . . 7 (𝜑𝑌𝑆)
152, 3, 12, 5, 13, 14eldv 24062 . . . . . 6 (𝜑 → (𝐶(𝑆 D 𝐺)𝐿 ↔ (𝐶 ∈ ((int‘(𝐽t 𝑆))‘𝑌) ∧ 𝐿 ∈ ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶))))
1611, 15mpbid 224 . . . . 5 (𝜑 → (𝐶 ∈ ((int‘(𝐽t 𝑆))‘𝑌) ∧ 𝐿 ∈ ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶)))
1716simpld 490 . . . 4 (𝜑𝐶 ∈ ((int‘(𝐽t 𝑆))‘𝑌))
1810, 17elind 4026 . . 3 (𝜑𝐶 ∈ (((int‘(𝐽t 𝑆))‘𝑋) ∩ ((int‘(𝐽t 𝑆))‘𝑌)))
193cnfldtopon 22957 . . . . . 6 𝐽 ∈ (TopOn‘ℂ)
20 resttopon 21337 . . . . . 6 ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐽t 𝑆) ∈ (TopOn‘𝑆))
2119, 5, 20sylancr 583 . . . . 5 (𝜑 → (𝐽t 𝑆) ∈ (TopOn‘𝑆))
22 topontop 21089 . . . . 5 ((𝐽t 𝑆) ∈ (TopOn‘𝑆) → (𝐽t 𝑆) ∈ Top)
2321, 22syl 17 . . . 4 (𝜑 → (𝐽t 𝑆) ∈ Top)
24 toponuni 21090 . . . . . 6 ((𝐽t 𝑆) ∈ (TopOn‘𝑆) → 𝑆 = (𝐽t 𝑆))
2521, 24syl 17 . . . . 5 (𝜑𝑆 = (𝐽t 𝑆))
267, 25sseqtrd 3867 . . . 4 (𝜑𝑋 (𝐽t 𝑆))
2714, 25sseqtrd 3867 . . . 4 (𝜑𝑌 (𝐽t 𝑆))
28 eqid 2826 . . . . 5 (𝐽t 𝑆) = (𝐽t 𝑆)
2928ntrin 21237 . . . 4 (((𝐽t 𝑆) ∈ Top ∧ 𝑋 (𝐽t 𝑆) ∧ 𝑌 (𝐽t 𝑆)) → ((int‘(𝐽t 𝑆))‘(𝑋𝑌)) = (((int‘(𝐽t 𝑆))‘𝑋) ∩ ((int‘(𝐽t 𝑆))‘𝑌)))
3023, 26, 27, 29syl3anc 1496 . . 3 (𝜑 → ((int‘(𝐽t 𝑆))‘(𝑋𝑌)) = (((int‘(𝐽t 𝑆))‘𝑋) ∩ ((int‘(𝐽t 𝑆))‘𝑌)))
3118, 30eleqtrrd 2910 . 2 (𝜑𝐶 ∈ ((int‘(𝐽t 𝑆))‘(𝑋𝑌)))
32 inss1 4058 . . . . . . 7 (𝑋𝑌) ⊆ 𝑋
33 ssdif 3973 . . . . . . 7 ((𝑋𝑌) ⊆ 𝑋 → ((𝑋𝑌) ∖ {𝐶}) ⊆ (𝑋 ∖ {𝐶}))
3432, 33mp1i 13 . . . . . 6 (𝜑 → ((𝑋𝑌) ∖ {𝐶}) ⊆ (𝑋 ∖ {𝐶}))
3534sselda 3828 . . . . 5 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝑧 ∈ (𝑋 ∖ {𝐶}))
367, 5sstrd 3838 . . . . . 6 (𝜑𝑋 ⊆ ℂ)
3728ntrss2 21233 . . . . . . . 8 (((𝐽t 𝑆) ∈ Top ∧ 𝑋 (𝐽t 𝑆)) → ((int‘(𝐽t 𝑆))‘𝑋) ⊆ 𝑋)
3823, 26, 37syl2anc 581 . . . . . . 7 (𝜑 → ((int‘(𝐽t 𝑆))‘𝑋) ⊆ 𝑋)
3938, 10sseldd 3829 . . . . . 6 (𝜑𝐶𝑋)
406, 36, 39dvlem 24060 . . . . 5 ((𝜑𝑧 ∈ (𝑋 ∖ {𝐶})) → (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) ∈ ℂ)
4135, 40syldan 587 . . . 4 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) ∈ ℂ)
42 inss2 4059 . . . . . . 7 (𝑋𝑌) ⊆ 𝑌
43 ssdif 3973 . . . . . . 7 ((𝑋𝑌) ⊆ 𝑌 → ((𝑋𝑌) ∖ {𝐶}) ⊆ (𝑌 ∖ {𝐶}))
4442, 43mp1i 13 . . . . . 6 (𝜑 → ((𝑋𝑌) ∖ {𝐶}) ⊆ (𝑌 ∖ {𝐶}))
4544sselda 3828 . . . . 5 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝑧 ∈ (𝑌 ∖ {𝐶}))
4614, 5sstrd 3838 . . . . . 6 (𝜑𝑌 ⊆ ℂ)
4728ntrss2 21233 . . . . . . . 8 (((𝐽t 𝑆) ∈ Top ∧ 𝑌 (𝐽t 𝑆)) → ((int‘(𝐽t 𝑆))‘𝑌) ⊆ 𝑌)
4823, 27, 47syl2anc 581 . . . . . . 7 (𝜑 → ((int‘(𝐽t 𝑆))‘𝑌) ⊆ 𝑌)
4948, 17sseldd 3829 . . . . . 6 (𝜑𝐶𝑌)
5013, 46, 49dvlem 24060 . . . . 5 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) ∈ ℂ)
5145, 50syldan 587 . . . 4 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) ∈ ℂ)
52 ssidd 3850 . . . 4 (𝜑 → ℂ ⊆ ℂ)
53 txtopon 21766 . . . . . 6 ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝐽 ∈ (TopOn‘ℂ)) → (𝐽 ×t 𝐽) ∈ (TopOn‘(ℂ × ℂ)))
5419, 19, 53mp2an 685 . . . . 5 (𝐽 ×t 𝐽) ∈ (TopOn‘(ℂ × ℂ))
5554toponrestid 21097 . . . 4 (𝐽 ×t 𝐽) = ((𝐽 ×t 𝐽) ↾t (ℂ × ℂ))
569simprd 491 . . . . 5 (𝜑𝐾 ∈ ((𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) lim 𝐶))
5740fmpttd 6635 . . . . . . 7 (𝜑 → (𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))):(𝑋 ∖ {𝐶})⟶ℂ)
5836ssdifssd 3976 . . . . . . 7 (𝜑 → (𝑋 ∖ {𝐶}) ⊆ ℂ)
59 eqid 2826 . . . . . . 7 (𝐽t ((𝑋 ∖ {𝐶}) ∪ {𝐶})) = (𝐽t ((𝑋 ∖ {𝐶}) ∪ {𝐶}))
6032, 7syl5ss 3839 . . . . . . . . . . . . . 14 (𝜑 → (𝑋𝑌) ⊆ 𝑆)
6160, 25sseqtrd 3867 . . . . . . . . . . . . 13 (𝜑 → (𝑋𝑌) ⊆ (𝐽t 𝑆))
62 difssd 3966 . . . . . . . . . . . . 13 (𝜑 → ( (𝐽t 𝑆) ∖ 𝑋) ⊆ (𝐽t 𝑆))
6361, 62unssd 4017 . . . . . . . . . . . 12 (𝜑 → ((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑋)) ⊆ (𝐽t 𝑆))
64 ssun1 4004 . . . . . . . . . . . . 13 (𝑋𝑌) ⊆ ((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑋))
6564a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝑋𝑌) ⊆ ((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑋)))
6628ntrss 21231 . . . . . . . . . . . 12 (((𝐽t 𝑆) ∈ Top ∧ ((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑋)) ⊆ (𝐽t 𝑆) ∧ (𝑋𝑌) ⊆ ((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑋))) → ((int‘(𝐽t 𝑆))‘(𝑋𝑌)) ⊆ ((int‘(𝐽t 𝑆))‘((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑋))))
6723, 63, 65, 66syl3anc 1496 . . . . . . . . . . 11 (𝜑 → ((int‘(𝐽t 𝑆))‘(𝑋𝑌)) ⊆ ((int‘(𝐽t 𝑆))‘((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑋))))
6867, 31sseldd 3829 . . . . . . . . . 10 (𝜑𝐶 ∈ ((int‘(𝐽t 𝑆))‘((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑋))))
6968, 39elind 4026 . . . . . . . . 9 (𝜑𝐶 ∈ (((int‘(𝐽t 𝑆))‘((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑋))) ∩ 𝑋))
7032a1i 11 . . . . . . . . . . 11 (𝜑 → (𝑋𝑌) ⊆ 𝑋)
71 eqid 2826 . . . . . . . . . . . 12 ((𝐽t 𝑆) ↾t 𝑋) = ((𝐽t 𝑆) ↾t 𝑋)
7228, 71restntr 21358 . . . . . . . . . . 11 (((𝐽t 𝑆) ∈ Top ∧ 𝑋 (𝐽t 𝑆) ∧ (𝑋𝑌) ⊆ 𝑋) → ((int‘((𝐽t 𝑆) ↾t 𝑋))‘(𝑋𝑌)) = (((int‘(𝐽t 𝑆))‘((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑋))) ∩ 𝑋))
7323, 26, 70, 72syl3anc 1496 . . . . . . . . . 10 (𝜑 → ((int‘((𝐽t 𝑆) ↾t 𝑋))‘(𝑋𝑌)) = (((int‘(𝐽t 𝑆))‘((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑋))) ∩ 𝑋))
743cnfldtop 22958 . . . . . . . . . . . . . 14 𝐽 ∈ Top
7574a1i 11 . . . . . . . . . . . . 13 (𝜑𝐽 ∈ Top)
76 cnex 10334 . . . . . . . . . . . . . 14 ℂ ∈ V
77 ssexg 5030 . . . . . . . . . . . . . 14 ((𝑆 ⊆ ℂ ∧ ℂ ∈ V) → 𝑆 ∈ V)
785, 76, 77sylancl 582 . . . . . . . . . . . . 13 (𝜑𝑆 ∈ V)
79 restabs 21341 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝑋𝑆𝑆 ∈ V) → ((𝐽t 𝑆) ↾t 𝑋) = (𝐽t 𝑋))
8075, 7, 78, 79syl3anc 1496 . . . . . . . . . . . 12 (𝜑 → ((𝐽t 𝑆) ↾t 𝑋) = (𝐽t 𝑋))
8180fveq2d 6438 . . . . . . . . . . 11 (𝜑 → (int‘((𝐽t 𝑆) ↾t 𝑋)) = (int‘(𝐽t 𝑋)))
8281fveq1d 6436 . . . . . . . . . 10 (𝜑 → ((int‘((𝐽t 𝑆) ↾t 𝑋))‘(𝑋𝑌)) = ((int‘(𝐽t 𝑋))‘(𝑋𝑌)))
8373, 82eqtr3d 2864 . . . . . . . . 9 (𝜑 → (((int‘(𝐽t 𝑆))‘((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑋))) ∩ 𝑋) = ((int‘(𝐽t 𝑋))‘(𝑋𝑌)))
8469, 83eleqtrd 2909 . . . . . . . 8 (𝜑𝐶 ∈ ((int‘(𝐽t 𝑋))‘(𝑋𝑌)))
85 undif1 4267 . . . . . . . . . . . 12 ((𝑋 ∖ {𝐶}) ∪ {𝐶}) = (𝑋 ∪ {𝐶})
8639snssd 4559 . . . . . . . . . . . . 13 (𝜑 → {𝐶} ⊆ 𝑋)
87 ssequn2 4014 . . . . . . . . . . . . 13 ({𝐶} ⊆ 𝑋 ↔ (𝑋 ∪ {𝐶}) = 𝑋)
8886, 87sylib 210 . . . . . . . . . . . 12 (𝜑 → (𝑋 ∪ {𝐶}) = 𝑋)
8985, 88syl5eq 2874 . . . . . . . . . . 11 (𝜑 → ((𝑋 ∖ {𝐶}) ∪ {𝐶}) = 𝑋)
9089oveq2d 6922 . . . . . . . . . 10 (𝜑 → (𝐽t ((𝑋 ∖ {𝐶}) ∪ {𝐶})) = (𝐽t 𝑋))
9190fveq2d 6438 . . . . . . . . 9 (𝜑 → (int‘(𝐽t ((𝑋 ∖ {𝐶}) ∪ {𝐶}))) = (int‘(𝐽t 𝑋)))
92 undif1 4267 . . . . . . . . . 10 (((𝑋𝑌) ∖ {𝐶}) ∪ {𝐶}) = ((𝑋𝑌) ∪ {𝐶})
9339, 49elind 4026 . . . . . . . . . . . 12 (𝜑𝐶 ∈ (𝑋𝑌))
9493snssd 4559 . . . . . . . . . . 11 (𝜑 → {𝐶} ⊆ (𝑋𝑌))
95 ssequn2 4014 . . . . . . . . . . 11 ({𝐶} ⊆ (𝑋𝑌) ↔ ((𝑋𝑌) ∪ {𝐶}) = (𝑋𝑌))
9694, 95sylib 210 . . . . . . . . . 10 (𝜑 → ((𝑋𝑌) ∪ {𝐶}) = (𝑋𝑌))
9792, 96syl5eq 2874 . . . . . . . . 9 (𝜑 → (((𝑋𝑌) ∖ {𝐶}) ∪ {𝐶}) = (𝑋𝑌))
9891, 97fveq12d 6441 . . . . . . . 8 (𝜑 → ((int‘(𝐽t ((𝑋 ∖ {𝐶}) ∪ {𝐶})))‘(((𝑋𝑌) ∖ {𝐶}) ∪ {𝐶})) = ((int‘(𝐽t 𝑋))‘(𝑋𝑌)))
9984, 98eleqtrrd 2910 . . . . . . 7 (𝜑𝐶 ∈ ((int‘(𝐽t ((𝑋 ∖ {𝐶}) ∪ {𝐶})))‘(((𝑋𝑌) ∖ {𝐶}) ∪ {𝐶})))
10057, 34, 58, 3, 59, 99limcres 24050 . . . . . 6 (𝜑 → (((𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) ↾ ((𝑋𝑌) ∖ {𝐶})) lim 𝐶) = ((𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) lim 𝐶))
10134resmptd 5690 . . . . . . 7 (𝜑 → ((𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) ↾ ((𝑋𝑌) ∖ {𝐶})) = (𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))))
102101oveq1d 6921 . . . . . 6 (𝜑 → (((𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) ↾ ((𝑋𝑌) ∖ {𝐶})) lim 𝐶) = ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) lim 𝐶))
103100, 102eqtr3d 2864 . . . . 5 (𝜑 → ((𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) lim 𝐶) = ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) lim 𝐶))
10456, 103eleqtrd 2909 . . . 4 (𝜑𝐾 ∈ ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶))) lim 𝐶))
10516simprd 491 . . . . 5 (𝜑𝐿 ∈ ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶))
10650fmpttd 6635 . . . . . . 7 (𝜑 → (𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))):(𝑌 ∖ {𝐶})⟶ℂ)
10746ssdifssd 3976 . . . . . . 7 (𝜑 → (𝑌 ∖ {𝐶}) ⊆ ℂ)
108 eqid 2826 . . . . . . 7 (𝐽t ((𝑌 ∖ {𝐶}) ∪ {𝐶})) = (𝐽t ((𝑌 ∖ {𝐶}) ∪ {𝐶}))
109 difssd 3966 . . . . . . . . . . . . 13 (𝜑 → ( (𝐽t 𝑆) ∖ 𝑌) ⊆ (𝐽t 𝑆))
11061, 109unssd 4017 . . . . . . . . . . . 12 (𝜑 → ((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑌)) ⊆ (𝐽t 𝑆))
111 ssun1 4004 . . . . . . . . . . . . 13 (𝑋𝑌) ⊆ ((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑌))
112111a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝑋𝑌) ⊆ ((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑌)))
11328ntrss 21231 . . . . . . . . . . . 12 (((𝐽t 𝑆) ∈ Top ∧ ((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑌)) ⊆ (𝐽t 𝑆) ∧ (𝑋𝑌) ⊆ ((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑌))) → ((int‘(𝐽t 𝑆))‘(𝑋𝑌)) ⊆ ((int‘(𝐽t 𝑆))‘((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑌))))
11423, 110, 112, 113syl3anc 1496 . . . . . . . . . . 11 (𝜑 → ((int‘(𝐽t 𝑆))‘(𝑋𝑌)) ⊆ ((int‘(𝐽t 𝑆))‘((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑌))))
115114, 31sseldd 3829 . . . . . . . . . 10 (𝜑𝐶 ∈ ((int‘(𝐽t 𝑆))‘((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑌))))
116115, 49elind 4026 . . . . . . . . 9 (𝜑𝐶 ∈ (((int‘(𝐽t 𝑆))‘((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑌))) ∩ 𝑌))
11742a1i 11 . . . . . . . . . . 11 (𝜑 → (𝑋𝑌) ⊆ 𝑌)
118 eqid 2826 . . . . . . . . . . . 12 ((𝐽t 𝑆) ↾t 𝑌) = ((𝐽t 𝑆) ↾t 𝑌)
11928, 118restntr 21358 . . . . . . . . . . 11 (((𝐽t 𝑆) ∈ Top ∧ 𝑌 (𝐽t 𝑆) ∧ (𝑋𝑌) ⊆ 𝑌) → ((int‘((𝐽t 𝑆) ↾t 𝑌))‘(𝑋𝑌)) = (((int‘(𝐽t 𝑆))‘((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑌))) ∩ 𝑌))
12023, 27, 117, 119syl3anc 1496 . . . . . . . . . 10 (𝜑 → ((int‘((𝐽t 𝑆) ↾t 𝑌))‘(𝑋𝑌)) = (((int‘(𝐽t 𝑆))‘((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑌))) ∩ 𝑌))
121 restabs 21341 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝑌𝑆𝑆 ∈ V) → ((𝐽t 𝑆) ↾t 𝑌) = (𝐽t 𝑌))
12275, 14, 78, 121syl3anc 1496 . . . . . . . . . . . 12 (𝜑 → ((𝐽t 𝑆) ↾t 𝑌) = (𝐽t 𝑌))
123122fveq2d 6438 . . . . . . . . . . 11 (𝜑 → (int‘((𝐽t 𝑆) ↾t 𝑌)) = (int‘(𝐽t 𝑌)))
124123fveq1d 6436 . . . . . . . . . 10 (𝜑 → ((int‘((𝐽t 𝑆) ↾t 𝑌))‘(𝑋𝑌)) = ((int‘(𝐽t 𝑌))‘(𝑋𝑌)))
125120, 124eqtr3d 2864 . . . . . . . . 9 (𝜑 → (((int‘(𝐽t 𝑆))‘((𝑋𝑌) ∪ ( (𝐽t 𝑆) ∖ 𝑌))) ∩ 𝑌) = ((int‘(𝐽t 𝑌))‘(𝑋𝑌)))
126116, 125eleqtrd 2909 . . . . . . . 8 (𝜑𝐶 ∈ ((int‘(𝐽t 𝑌))‘(𝑋𝑌)))
127 undif1 4267 . . . . . . . . . . . 12 ((𝑌 ∖ {𝐶}) ∪ {𝐶}) = (𝑌 ∪ {𝐶})
12849snssd 4559 . . . . . . . . . . . . 13 (𝜑 → {𝐶} ⊆ 𝑌)
129 ssequn2 4014 . . . . . . . . . . . . 13 ({𝐶} ⊆ 𝑌 ↔ (𝑌 ∪ {𝐶}) = 𝑌)
130128, 129sylib 210 . . . . . . . . . . . 12 (𝜑 → (𝑌 ∪ {𝐶}) = 𝑌)
131127, 130syl5eq 2874 . . . . . . . . . . 11 (𝜑 → ((𝑌 ∖ {𝐶}) ∪ {𝐶}) = 𝑌)
132131oveq2d 6922 . . . . . . . . . 10 (𝜑 → (𝐽t ((𝑌 ∖ {𝐶}) ∪ {𝐶})) = (𝐽t 𝑌))
133132fveq2d 6438 . . . . . . . . 9 (𝜑 → (int‘(𝐽t ((𝑌 ∖ {𝐶}) ∪ {𝐶}))) = (int‘(𝐽t 𝑌)))
134133, 97fveq12d 6441 . . . . . . . 8 (𝜑 → ((int‘(𝐽t ((𝑌 ∖ {𝐶}) ∪ {𝐶})))‘(((𝑋𝑌) ∖ {𝐶}) ∪ {𝐶})) = ((int‘(𝐽t 𝑌))‘(𝑋𝑌)))
135126, 134eleqtrrd 2910 . . . . . . 7 (𝜑𝐶 ∈ ((int‘(𝐽t ((𝑌 ∖ {𝐶}) ∪ {𝐶})))‘(((𝑋𝑌) ∖ {𝐶}) ∪ {𝐶})))
136106, 44, 107, 3, 108, 135limcres 24050 . . . . . 6 (𝜑 → (((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) ↾ ((𝑋𝑌) ∖ {𝐶})) lim 𝐶) = ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶))
13744resmptd 5690 . . . . . . 7 (𝜑 → ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) ↾ ((𝑋𝑌) ∖ {𝐶})) = (𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))))
138137oveq1d 6921 . . . . . 6 (𝜑 → (((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) ↾ ((𝑋𝑌) ∖ {𝐶})) lim 𝐶) = ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶))
139136, 138eqtr3d 2864 . . . . 5 (𝜑 → ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶) = ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶))
140105, 139eleqtrd 2909 . . . 4 (𝜑𝐿 ∈ ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶))
1413addcn 23039 . . . . 5 + ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
1425, 6, 7dvcl 24063 . . . . . . 7 ((𝜑𝐶(𝑆 D 𝐹)𝐾) → 𝐾 ∈ ℂ)
1431, 142mpdan 680 . . . . . 6 (𝜑𝐾 ∈ ℂ)
1445, 13, 14dvcl 24063 . . . . . . 7 ((𝜑𝐶(𝑆 D 𝐺)𝐿) → 𝐿 ∈ ℂ)
14511, 144mpdan 680 . . . . . 6 (𝜑𝐿 ∈ ℂ)
146 opelxpi 5380 . . . . . 6 ((𝐾 ∈ ℂ ∧ 𝐿 ∈ ℂ) → ⟨𝐾, 𝐿⟩ ∈ (ℂ × ℂ))
147143, 145, 146syl2anc 581 . . . . 5 (𝜑 → ⟨𝐾, 𝐿⟩ ∈ (ℂ × ℂ))
14854toponunii 21092 . . . . . 6 (ℂ × ℂ) = (𝐽 ×t 𝐽)
149148cncnpi 21454 . . . . 5 (( + ∈ ((𝐽 ×t 𝐽) Cn 𝐽) ∧ ⟨𝐾, 𝐿⟩ ∈ (ℂ × ℂ)) → + ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘⟨𝐾, 𝐿⟩))
150141, 147, 149sylancr 583 . . . 4 (𝜑 → + ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘⟨𝐾, 𝐿⟩))
15141, 51, 52, 52, 3, 55, 104, 140, 150limccnp2 24056 . . 3 (𝜑 → (𝐾 + 𝐿) ∈ ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ ((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) + (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))) lim 𝐶))
152 eldifi 3960 . . . . . . . . . . 11 (𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) → 𝑧 ∈ (𝑋𝑌))
153152adantl 475 . . . . . . . . . 10 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝑧 ∈ (𝑋𝑌))
1546ffnd 6280 . . . . . . . . . . . 12 (𝜑𝐹 Fn 𝑋)
155154adantr 474 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝐹 Fn 𝑋)
15613ffnd 6280 . . . . . . . . . . . 12 (𝜑𝐺 Fn 𝑌)
157156adantr 474 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝐺 Fn 𝑌)
158 ssexg 5030 . . . . . . . . . . . . 13 ((𝑋 ⊆ ℂ ∧ ℂ ∈ V) → 𝑋 ∈ V)
15936, 76, 158sylancl 582 . . . . . . . . . . . 12 (𝜑𝑋 ∈ V)
160159adantr 474 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝑋 ∈ V)
161 ssexg 5030 . . . . . . . . . . . . 13 ((𝑌 ⊆ ℂ ∧ ℂ ∈ V) → 𝑌 ∈ V)
16246, 76, 161sylancl 582 . . . . . . . . . . . 12 (𝜑𝑌 ∈ V)
163162adantr 474 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝑌 ∈ V)
164 eqid 2826 . . . . . . . . . . 11 (𝑋𝑌) = (𝑋𝑌)
165 eqidd 2827 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) ∧ 𝑧𝑋) → (𝐹𝑧) = (𝐹𝑧))
166 eqidd 2827 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) ∧ 𝑧𝑌) → (𝐺𝑧) = (𝐺𝑧))
167155, 157, 160, 163, 164, 165, 166ofval 7167 . . . . . . . . . 10 (((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) ∧ 𝑧 ∈ (𝑋𝑌)) → ((𝐹𝑓 + 𝐺)‘𝑧) = ((𝐹𝑧) + (𝐺𝑧)))
168153, 167mpdan 680 . . . . . . . . 9 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → ((𝐹𝑓 + 𝐺)‘𝑧) = ((𝐹𝑧) + (𝐺𝑧)))
169 eqidd 2827 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) ∧ 𝐶𝑋) → (𝐹𝐶) = (𝐹𝐶))
170 eqidd 2827 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) ∧ 𝐶𝑌) → (𝐺𝐶) = (𝐺𝐶))
171155, 157, 160, 163, 164, 169, 170ofval 7167 . . . . . . . . . 10 (((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) ∧ 𝐶 ∈ (𝑋𝑌)) → ((𝐹𝑓 + 𝐺)‘𝐶) = ((𝐹𝐶) + (𝐺𝐶)))
17293, 171mpidan 682 . . . . . . . . 9 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → ((𝐹𝑓 + 𝐺)‘𝐶) = ((𝐹𝐶) + (𝐺𝐶)))
173168, 172oveq12d 6924 . . . . . . . 8 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (((𝐹𝑓 + 𝐺)‘𝑧) − ((𝐹𝑓 + 𝐺)‘𝐶)) = (((𝐹𝑧) + (𝐺𝑧)) − ((𝐹𝐶) + (𝐺𝐶))))
174 difss 3965 . . . . . . . . . . . 12 ((𝑋𝑌) ∖ {𝐶}) ⊆ (𝑋𝑌)
175174, 32sstri 3837 . . . . . . . . . . 11 ((𝑋𝑌) ∖ {𝐶}) ⊆ 𝑋
176175sseli 3824 . . . . . . . . . 10 (𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) → 𝑧𝑋)
177 ffvelrn 6607 . . . . . . . . . 10 ((𝐹:𝑋⟶ℂ ∧ 𝑧𝑋) → (𝐹𝑧) ∈ ℂ)
1786, 176, 177syl2an 591 . . . . . . . . 9 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (𝐹𝑧) ∈ ℂ)
179174, 42sstri 3837 . . . . . . . . . . 11 ((𝑋𝑌) ∖ {𝐶}) ⊆ 𝑌
180179sseli 3824 . . . . . . . . . 10 (𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) → 𝑧𝑌)
181 ffvelrn 6607 . . . . . . . . . 10 ((𝐺:𝑌⟶ℂ ∧ 𝑧𝑌) → (𝐺𝑧) ∈ ℂ)
18213, 180, 181syl2an 591 . . . . . . . . 9 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (𝐺𝑧) ∈ ℂ)
1836, 39ffvelrnd 6610 . . . . . . . . . 10 (𝜑 → (𝐹𝐶) ∈ ℂ)
184183adantr 474 . . . . . . . . 9 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (𝐹𝐶) ∈ ℂ)
18513, 49ffvelrnd 6610 . . . . . . . . . 10 (𝜑 → (𝐺𝐶) ∈ ℂ)
186185adantr 474 . . . . . . . . 9 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (𝐺𝐶) ∈ ℂ)
187178, 182, 184, 186addsub4d 10761 . . . . . . . 8 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (((𝐹𝑧) + (𝐺𝑧)) − ((𝐹𝐶) + (𝐺𝐶))) = (((𝐹𝑧) − (𝐹𝐶)) + ((𝐺𝑧) − (𝐺𝐶))))
188173, 187eqtrd 2862 . . . . . . 7 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (((𝐹𝑓 + 𝐺)‘𝑧) − ((𝐹𝑓 + 𝐺)‘𝐶)) = (((𝐹𝑧) − (𝐹𝐶)) + ((𝐺𝑧) − (𝐺𝐶))))
189188oveq1d 6921 . . . . . 6 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → ((((𝐹𝑓 + 𝐺)‘𝑧) − ((𝐹𝑓 + 𝐺)‘𝐶)) / (𝑧𝐶)) = ((((𝐹𝑧) − (𝐹𝐶)) + ((𝐺𝑧) − (𝐺𝐶))) / (𝑧𝐶)))
190178, 184subcld 10714 . . . . . . 7 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → ((𝐹𝑧) − (𝐹𝐶)) ∈ ℂ)
191182, 186subcld 10714 . . . . . . 7 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → ((𝐺𝑧) − (𝐺𝐶)) ∈ ℂ)
192175, 36syl5ss 3839 . . . . . . . . 9 (𝜑 → ((𝑋𝑌) ∖ {𝐶}) ⊆ ℂ)
193192sselda 3828 . . . . . . . 8 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝑧 ∈ ℂ)
19436, 39sseldd 3829 . . . . . . . . 9 (𝜑𝐶 ∈ ℂ)
195194adantr 474 . . . . . . . 8 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝐶 ∈ ℂ)
196193, 195subcld 10714 . . . . . . 7 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (𝑧𝐶) ∈ ℂ)
197 eldifsni 4541 . . . . . . . . 9 (𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) → 𝑧𝐶)
198197adantl 475 . . . . . . . 8 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → 𝑧𝐶)
199193, 195, 198subne0d 10723 . . . . . . 7 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → (𝑧𝐶) ≠ 0)
200190, 191, 196, 199divdird 11166 . . . . . 6 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → ((((𝐹𝑧) − (𝐹𝐶)) + ((𝐺𝑧) − (𝐺𝐶))) / (𝑧𝐶)) = ((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) + (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))))
201189, 200eqtrd 2862 . . . . 5 ((𝜑𝑧 ∈ ((𝑋𝑌) ∖ {𝐶})) → ((((𝐹𝑓 + 𝐺)‘𝑧) − ((𝐹𝑓 + 𝐺)‘𝐶)) / (𝑧𝐶)) = ((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) + (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))))
202201mpteq2dva 4968 . . . 4 (𝜑 → (𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ ((((𝐹𝑓 + 𝐺)‘𝑧) − ((𝐹𝑓 + 𝐺)‘𝐶)) / (𝑧𝐶))) = (𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ ((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) + (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))))
203202oveq1d 6921 . . 3 (𝜑 → ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ ((((𝐹𝑓 + 𝐺)‘𝑧) − ((𝐹𝑓 + 𝐺)‘𝐶)) / (𝑧𝐶))) lim 𝐶) = ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ ((((𝐹𝑧) − (𝐹𝐶)) / (𝑧𝐶)) + (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))) lim 𝐶))
204151, 203eleqtrrd 2910 . 2 (𝜑 → (𝐾 + 𝐿) ∈ ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ ((((𝐹𝑓 + 𝐺)‘𝑧) − ((𝐹𝑓 + 𝐺)‘𝐶)) / (𝑧𝐶))) lim 𝐶))
205 eqid 2826 . . 3 (𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ ((((𝐹𝑓 + 𝐺)‘𝑧) − ((𝐹𝑓 + 𝐺)‘𝐶)) / (𝑧𝐶))) = (𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ ((((𝐹𝑓 + 𝐺)‘𝑧) − ((𝐹𝑓 + 𝐺)‘𝐶)) / (𝑧𝐶)))
206 addcl 10335 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
207206adantl 475 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ)
208207, 6, 13, 159, 162, 164off 7173 . . 3 (𝜑 → (𝐹𝑓 + 𝐺):(𝑋𝑌)⟶ℂ)
2092, 3, 205, 5, 208, 60eldv 24062 . 2 (𝜑 → (𝐶(𝑆 D (𝐹𝑓 + 𝐺))(𝐾 + 𝐿) ↔ (𝐶 ∈ ((int‘(𝐽t 𝑆))‘(𝑋𝑌)) ∧ (𝐾 + 𝐿) ∈ ((𝑧 ∈ ((𝑋𝑌) ∖ {𝐶}) ↦ ((((𝐹𝑓 + 𝐺)‘𝑧) − ((𝐹𝑓 + 𝐺)‘𝐶)) / (𝑧𝐶))) lim 𝐶))))
21031, 204, 209mpbir2and 706 1 (𝜑𝐶(𝑆 D (𝐹𝑓 + 𝐺))(𝐾 + 𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1658  wcel 2166  wne 3000  Vcvv 3415  cdif 3796  cun 3797  cin 3798  wss 3799  {csn 4398  cop 4404   cuni 4659   class class class wbr 4874  cmpt 4953   × cxp 5341  cres 5345   Fn wfn 6119  wf 6120  cfv 6124  (class class class)co 6906  𝑓 cof 7156  cc 10251   + caddc 10256  cmin 10586   / cdiv 11010  t crest 16435  TopOpenctopn 16436  fldccnfld 20107  Topctop 21069  TopOnctopon 21086  intcnt 21193   Cn ccn 21400   CnP ccnp 21401   ×t ctx 21735   lim climc 24026   D cdv 24027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-rep 4995  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210  ax-inf2 8816  ax-cnex 10309  ax-resscn 10310  ax-1cn 10311  ax-icn 10312  ax-addcl 10313  ax-addrcl 10314  ax-mulcl 10315  ax-mulrcl 10316  ax-mulcom 10317  ax-addass 10318  ax-mulass 10319  ax-distr 10320  ax-i2m1 10321  ax-1ne0 10322  ax-1rid 10323  ax-rnegex 10324  ax-rrecex 10325  ax-cnre 10326  ax-pre-lttri 10327  ax-pre-lttrn 10328  ax-pre-ltadd 10329  ax-pre-mulgt0 10330  ax-pre-sup 10331  ax-addf 10332
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-nel 3104  df-ral 3123  df-rex 3124  df-reu 3125  df-rmo 3126  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-pss 3815  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4660  df-int 4699  df-iun 4743  df-iin 4744  df-br 4875  df-opab 4937  df-mpt 4954  df-tr 4977  df-id 5251  df-eprel 5256  df-po 5264  df-so 5265  df-fr 5302  df-se 5303  df-we 5304  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-pred 5921  df-ord 5967  df-on 5968  df-lim 5969  df-suc 5970  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-isom 6133  df-riota 6867  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-of 7158  df-om 7328  df-1st 7429  df-2nd 7430  df-supp 7561  df-wrecs 7673  df-recs 7735  df-rdg 7773  df-1o 7827  df-2o 7828  df-oadd 7831  df-er 8010  df-map 8125  df-pm 8126  df-ixp 8177  df-en 8224  df-dom 8225  df-sdom 8226  df-fin 8227  df-fsupp 8546  df-fi 8587  df-sup 8618  df-inf 8619  df-oi 8685  df-card 9079  df-cda 9306  df-pnf 10394  df-mnf 10395  df-xr 10396  df-ltxr 10397  df-le 10398  df-sub 10588  df-neg 10589  df-div 11011  df-nn 11352  df-2 11415  df-3 11416  df-4 11417  df-5 11418  df-6 11419  df-7 11420  df-8 11421  df-9 11422  df-n0 11620  df-z 11706  df-dec 11823  df-uz 11970  df-q 12073  df-rp 12114  df-xneg 12233  df-xadd 12234  df-xmul 12235  df-icc 12471  df-fz 12621  df-fzo 12762  df-seq 13097  df-exp 13156  df-hash 13412  df-cj 14217  df-re 14218  df-im 14219  df-sqrt 14353  df-abs 14354  df-struct 16225  df-ndx 16226  df-slot 16227  df-base 16229  df-sets 16230  df-ress 16231  df-plusg 16319  df-mulr 16320  df-starv 16321  df-sca 16322  df-vsca 16323  df-ip 16324  df-tset 16325  df-ple 16326  df-ds 16328  df-unif 16329  df-hom 16330  df-cco 16331  df-rest 16437  df-topn 16438  df-0g 16456  df-gsum 16457  df-topgen 16458  df-pt 16459  df-prds 16462  df-xrs 16516  df-qtop 16521  df-imas 16522  df-xps 16524  df-mre 16600  df-mrc 16601  df-acs 16603  df-mgm 17596  df-sgrp 17638  df-mnd 17649  df-submnd 17690  df-mulg 17896  df-cntz 18101  df-cmn 18549  df-psmet 20099  df-xmet 20100  df-met 20101  df-bl 20102  df-mopn 20103  df-cnfld 20108  df-top 21070  df-topon 21087  df-topsp 21109  df-bases 21122  df-cld 21195  df-ntr 21196  df-cls 21197  df-cn 21403  df-cnp 21404  df-tx 21737  df-hmeo 21930  df-xms 22496  df-ms 22497  df-tms 22498  df-limc 24030  df-dv 24031
This theorem is referenced by:  dvadd  24103  dvaddf  24105
  Copyright terms: Public domain W3C validator