Step | Hyp | Ref
| Expression |
1 | | dvadd.bf |
. . . . . 6
⊢ (𝜑 → 𝐶(𝑆 D 𝐹)𝐾) |
2 | | eqid 2758 |
. . . . . . 7
⊢ (𝐽 ↾t 𝑆) = (𝐽 ↾t 𝑆) |
3 | | dvadd.j |
. . . . . . 7
⊢ 𝐽 =
(TopOpen‘ℂfld) |
4 | | eqid 2758 |
. . . . . . 7
⊢ (𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶))) = (𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶))) |
5 | | dvaddbr.s |
. . . . . . 7
⊢ (𝜑 → 𝑆 ⊆ ℂ) |
6 | | dvadd.f |
. . . . . . 7
⊢ (𝜑 → 𝐹:𝑋⟶ℂ) |
7 | | dvadd.x |
. . . . . . 7
⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
8 | 2, 3, 4, 5, 6, 7 | eldv 24597 |
. . . . . 6
⊢ (𝜑 → (𝐶(𝑆 D 𝐹)𝐾 ↔ (𝐶 ∈ ((int‘(𝐽 ↾t 𝑆))‘𝑋) ∧ 𝐾 ∈ ((𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶)))) |
9 | 1, 8 | mpbid 235 |
. . . . 5
⊢ (𝜑 → (𝐶 ∈ ((int‘(𝐽 ↾t 𝑆))‘𝑋) ∧ 𝐾 ∈ ((𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶))) |
10 | 9 | simpld 498 |
. . . 4
⊢ (𝜑 → 𝐶 ∈ ((int‘(𝐽 ↾t 𝑆))‘𝑋)) |
11 | | dvadd.bg |
. . . . . 6
⊢ (𝜑 → 𝐶(𝑆 D 𝐺)𝐿) |
12 | | eqid 2758 |
. . . . . . 7
⊢ (𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) = (𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) |
13 | | dvadd.g |
. . . . . . 7
⊢ (𝜑 → 𝐺:𝑌⟶ℂ) |
14 | | dvadd.y |
. . . . . . 7
⊢ (𝜑 → 𝑌 ⊆ 𝑆) |
15 | 2, 3, 12, 5, 13, 14 | eldv 24597 |
. . . . . 6
⊢ (𝜑 → (𝐶(𝑆 D 𝐺)𝐿 ↔ (𝐶 ∈ ((int‘(𝐽 ↾t 𝑆))‘𝑌) ∧ 𝐿 ∈ ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶)))) |
16 | 11, 15 | mpbid 235 |
. . . . 5
⊢ (𝜑 → (𝐶 ∈ ((int‘(𝐽 ↾t 𝑆))‘𝑌) ∧ 𝐿 ∈ ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶))) |
17 | 16 | simpld 498 |
. . . 4
⊢ (𝜑 → 𝐶 ∈ ((int‘(𝐽 ↾t 𝑆))‘𝑌)) |
18 | 10, 17 | elind 4099 |
. . 3
⊢ (𝜑 → 𝐶 ∈ (((int‘(𝐽 ↾t 𝑆))‘𝑋) ∩ ((int‘(𝐽 ↾t 𝑆))‘𝑌))) |
19 | 3 | cnfldtopon 23484 |
. . . . . 6
⊢ 𝐽 ∈
(TopOn‘ℂ) |
20 | | resttopon 21861 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘ℂ)
∧ 𝑆 ⊆ ℂ)
→ (𝐽
↾t 𝑆)
∈ (TopOn‘𝑆)) |
21 | 19, 5, 20 | sylancr 590 |
. . . . 5
⊢ (𝜑 → (𝐽 ↾t 𝑆) ∈ (TopOn‘𝑆)) |
22 | | topontop 21613 |
. . . . 5
⊢ ((𝐽 ↾t 𝑆) ∈ (TopOn‘𝑆) → (𝐽 ↾t 𝑆) ∈ Top) |
23 | 21, 22 | syl 17 |
. . . 4
⊢ (𝜑 → (𝐽 ↾t 𝑆) ∈ Top) |
24 | | toponuni 21614 |
. . . . . 6
⊢ ((𝐽 ↾t 𝑆) ∈ (TopOn‘𝑆) → 𝑆 = ∪ (𝐽 ↾t 𝑆)) |
25 | 21, 24 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑆 = ∪ (𝐽 ↾t 𝑆)) |
26 | 7, 25 | sseqtrd 3932 |
. . . 4
⊢ (𝜑 → 𝑋 ⊆ ∪ (𝐽 ↾t 𝑆)) |
27 | 14, 25 | sseqtrd 3932 |
. . . 4
⊢ (𝜑 → 𝑌 ⊆ ∪ (𝐽 ↾t 𝑆)) |
28 | | eqid 2758 |
. . . . 5
⊢ ∪ (𝐽
↾t 𝑆) =
∪ (𝐽 ↾t 𝑆) |
29 | 28 | ntrin 21761 |
. . . 4
⊢ (((𝐽 ↾t 𝑆) ∈ Top ∧ 𝑋 ⊆ ∪ (𝐽
↾t 𝑆)
∧ 𝑌 ⊆ ∪ (𝐽
↾t 𝑆))
→ ((int‘(𝐽
↾t 𝑆))‘(𝑋 ∩ 𝑌)) = (((int‘(𝐽 ↾t 𝑆))‘𝑋) ∩ ((int‘(𝐽 ↾t 𝑆))‘𝑌))) |
30 | 23, 26, 27, 29 | syl3anc 1368 |
. . 3
⊢ (𝜑 → ((int‘(𝐽 ↾t 𝑆))‘(𝑋 ∩ 𝑌)) = (((int‘(𝐽 ↾t 𝑆))‘𝑋) ∩ ((int‘(𝐽 ↾t 𝑆))‘𝑌))) |
31 | 18, 30 | eleqtrrd 2855 |
. 2
⊢ (𝜑 → 𝐶 ∈ ((int‘(𝐽 ↾t 𝑆))‘(𝑋 ∩ 𝑌))) |
32 | | inss1 4133 |
. . . . . . 7
⊢ (𝑋 ∩ 𝑌) ⊆ 𝑋 |
33 | | ssdif 4045 |
. . . . . . 7
⊢ ((𝑋 ∩ 𝑌) ⊆ 𝑋 → ((𝑋 ∩ 𝑌) ∖ {𝐶}) ⊆ (𝑋 ∖ {𝐶})) |
34 | 32, 33 | mp1i 13 |
. . . . . 6
⊢ (𝜑 → ((𝑋 ∩ 𝑌) ∖ {𝐶}) ⊆ (𝑋 ∖ {𝐶})) |
35 | 34 | sselda 3892 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → 𝑧 ∈ (𝑋 ∖ {𝐶})) |
36 | 7, 5 | sstrd 3902 |
. . . . . 6
⊢ (𝜑 → 𝑋 ⊆ ℂ) |
37 | 28 | ntrss2 21757 |
. . . . . . . 8
⊢ (((𝐽 ↾t 𝑆) ∈ Top ∧ 𝑋 ⊆ ∪ (𝐽
↾t 𝑆))
→ ((int‘(𝐽
↾t 𝑆))‘𝑋) ⊆ 𝑋) |
38 | 23, 26, 37 | syl2anc 587 |
. . . . . . 7
⊢ (𝜑 → ((int‘(𝐽 ↾t 𝑆))‘𝑋) ⊆ 𝑋) |
39 | 38, 10 | sseldd 3893 |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ 𝑋) |
40 | 6, 36, 39 | dvlem 24595 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑋 ∖ {𝐶})) → (((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶)) ∈ ℂ) |
41 | 35, 40 | syldan 594 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → (((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶)) ∈ ℂ) |
42 | | inss2 4134 |
. . . . . . 7
⊢ (𝑋 ∩ 𝑌) ⊆ 𝑌 |
43 | | ssdif 4045 |
. . . . . . 7
⊢ ((𝑋 ∩ 𝑌) ⊆ 𝑌 → ((𝑋 ∩ 𝑌) ∖ {𝐶}) ⊆ (𝑌 ∖ {𝐶})) |
44 | 42, 43 | mp1i 13 |
. . . . . 6
⊢ (𝜑 → ((𝑋 ∩ 𝑌) ∖ {𝐶}) ⊆ (𝑌 ∖ {𝐶})) |
45 | 44 | sselda 3892 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → 𝑧 ∈ (𝑌 ∖ {𝐶})) |
46 | 14, 5 | sstrd 3902 |
. . . . . 6
⊢ (𝜑 → 𝑌 ⊆ ℂ) |
47 | 28 | ntrss2 21757 |
. . . . . . . 8
⊢ (((𝐽 ↾t 𝑆) ∈ Top ∧ 𝑌 ⊆ ∪ (𝐽
↾t 𝑆))
→ ((int‘(𝐽
↾t 𝑆))‘𝑌) ⊆ 𝑌) |
48 | 23, 27, 47 | syl2anc 587 |
. . . . . . 7
⊢ (𝜑 → ((int‘(𝐽 ↾t 𝑆))‘𝑌) ⊆ 𝑌) |
49 | 48, 17 | sseldd 3893 |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ 𝑌) |
50 | 13, 46, 49 | dvlem 24595 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑌 ∖ {𝐶})) → (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶)) ∈ ℂ) |
51 | 45, 50 | syldan 594 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶)) ∈ ℂ) |
52 | | ssidd 3915 |
. . . 4
⊢ (𝜑 → ℂ ⊆
ℂ) |
53 | | txtopon 22291 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘ℂ)
∧ 𝐽 ∈
(TopOn‘ℂ)) → (𝐽 ×t 𝐽) ∈ (TopOn‘(ℂ ×
ℂ))) |
54 | 19, 19, 53 | mp2an 691 |
. . . . 5
⊢ (𝐽 ×t 𝐽) ∈ (TopOn‘(ℂ
× ℂ)) |
55 | 54 | toponrestid 21621 |
. . . 4
⊢ (𝐽 ×t 𝐽) = ((𝐽 ×t 𝐽) ↾t (ℂ ×
ℂ)) |
56 | 9 | simprd 499 |
. . . . 5
⊢ (𝜑 → 𝐾 ∈ ((𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶)) |
57 | 40 | fmpttd 6870 |
. . . . . . 7
⊢ (𝜑 → (𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶))):(𝑋 ∖ {𝐶})⟶ℂ) |
58 | 36 | ssdifssd 4048 |
. . . . . . 7
⊢ (𝜑 → (𝑋 ∖ {𝐶}) ⊆ ℂ) |
59 | | eqid 2758 |
. . . . . . 7
⊢ (𝐽 ↾t ((𝑋 ∖ {𝐶}) ∪ {𝐶})) = (𝐽 ↾t ((𝑋 ∖ {𝐶}) ∪ {𝐶})) |
60 | 32, 7 | sstrid 3903 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑋 ∩ 𝑌) ⊆ 𝑆) |
61 | 60, 25 | sseqtrd 3932 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑋 ∩ 𝑌) ⊆ ∪
(𝐽 ↾t
𝑆)) |
62 | | difssd 4038 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (∪ (𝐽
↾t 𝑆)
∖ 𝑋) ⊆ ∪ (𝐽
↾t 𝑆)) |
63 | 61, 62 | unssd 4091 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑋 ∩ 𝑌) ∪ (∪ (𝐽 ↾t 𝑆) ∖ 𝑋)) ⊆ ∪
(𝐽 ↾t
𝑆)) |
64 | | ssun1 4077 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∩ 𝑌) ⊆ ((𝑋 ∩ 𝑌) ∪ (∪ (𝐽 ↾t 𝑆) ∖ 𝑋)) |
65 | 64 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑋 ∩ 𝑌) ⊆ ((𝑋 ∩ 𝑌) ∪ (∪ (𝐽 ↾t 𝑆) ∖ 𝑋))) |
66 | 28 | ntrss 21755 |
. . . . . . . . . . . 12
⊢ (((𝐽 ↾t 𝑆) ∈ Top ∧ ((𝑋 ∩ 𝑌) ∪ (∪ (𝐽 ↾t 𝑆) ∖ 𝑋)) ⊆ ∪
(𝐽 ↾t
𝑆) ∧ (𝑋 ∩ 𝑌) ⊆ ((𝑋 ∩ 𝑌) ∪ (∪ (𝐽 ↾t 𝑆) ∖ 𝑋))) → ((int‘(𝐽 ↾t 𝑆))‘(𝑋 ∩ 𝑌)) ⊆ ((int‘(𝐽 ↾t 𝑆))‘((𝑋 ∩ 𝑌) ∪ (∪ (𝐽 ↾t 𝑆) ∖ 𝑋)))) |
67 | 23, 63, 65, 66 | syl3anc 1368 |
. . . . . . . . . . 11
⊢ (𝜑 → ((int‘(𝐽 ↾t 𝑆))‘(𝑋 ∩ 𝑌)) ⊆ ((int‘(𝐽 ↾t 𝑆))‘((𝑋 ∩ 𝑌) ∪ (∪ (𝐽 ↾t 𝑆) ∖ 𝑋)))) |
68 | 67, 31 | sseldd 3893 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 ∈ ((int‘(𝐽 ↾t 𝑆))‘((𝑋 ∩ 𝑌) ∪ (∪ (𝐽 ↾t 𝑆) ∖ 𝑋)))) |
69 | 68, 39 | elind 4099 |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ∈ (((int‘(𝐽 ↾t 𝑆))‘((𝑋 ∩ 𝑌) ∪ (∪ (𝐽 ↾t 𝑆) ∖ 𝑋))) ∩ 𝑋)) |
70 | 32 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑋 ∩ 𝑌) ⊆ 𝑋) |
71 | | eqid 2758 |
. . . . . . . . . . . 12
⊢ ((𝐽 ↾t 𝑆) ↾t 𝑋) = ((𝐽 ↾t 𝑆) ↾t 𝑋) |
72 | 28, 71 | restntr 21882 |
. . . . . . . . . . 11
⊢ (((𝐽 ↾t 𝑆) ∈ Top ∧ 𝑋 ⊆ ∪ (𝐽
↾t 𝑆)
∧ (𝑋 ∩ 𝑌) ⊆ 𝑋) → ((int‘((𝐽 ↾t 𝑆) ↾t 𝑋))‘(𝑋 ∩ 𝑌)) = (((int‘(𝐽 ↾t 𝑆))‘((𝑋 ∩ 𝑌) ∪ (∪ (𝐽 ↾t 𝑆) ∖ 𝑋))) ∩ 𝑋)) |
73 | 23, 26, 70, 72 | syl3anc 1368 |
. . . . . . . . . 10
⊢ (𝜑 → ((int‘((𝐽 ↾t 𝑆) ↾t 𝑋))‘(𝑋 ∩ 𝑌)) = (((int‘(𝐽 ↾t 𝑆))‘((𝑋 ∩ 𝑌) ∪ (∪ (𝐽 ↾t 𝑆) ∖ 𝑋))) ∩ 𝑋)) |
74 | 3 | cnfldtop 23485 |
. . . . . . . . . . . . . 14
⊢ 𝐽 ∈ Top |
75 | 74 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐽 ∈ Top) |
76 | | cnex 10656 |
. . . . . . . . . . . . . 14
⊢ ℂ
∈ V |
77 | | ssexg 5193 |
. . . . . . . . . . . . . 14
⊢ ((𝑆 ⊆ ℂ ∧ ℂ
∈ V) → 𝑆 ∈
V) |
78 | 5, 76, 77 | sylancl 589 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑆 ∈ V) |
79 | | restabs 21865 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ Top ∧ 𝑋 ⊆ 𝑆 ∧ 𝑆 ∈ V) → ((𝐽 ↾t 𝑆) ↾t 𝑋) = (𝐽 ↾t 𝑋)) |
80 | 75, 7, 78, 79 | syl3anc 1368 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐽 ↾t 𝑆) ↾t 𝑋) = (𝐽 ↾t 𝑋)) |
81 | 80 | fveq2d 6662 |
. . . . . . . . . . 11
⊢ (𝜑 → (int‘((𝐽 ↾t 𝑆) ↾t 𝑋)) = (int‘(𝐽 ↾t 𝑋))) |
82 | 81 | fveq1d 6660 |
. . . . . . . . . 10
⊢ (𝜑 → ((int‘((𝐽 ↾t 𝑆) ↾t 𝑋))‘(𝑋 ∩ 𝑌)) = ((int‘(𝐽 ↾t 𝑋))‘(𝑋 ∩ 𝑌))) |
83 | 73, 82 | eqtr3d 2795 |
. . . . . . . . 9
⊢ (𝜑 → (((int‘(𝐽 ↾t 𝑆))‘((𝑋 ∩ 𝑌) ∪ (∪ (𝐽 ↾t 𝑆) ∖ 𝑋))) ∩ 𝑋) = ((int‘(𝐽 ↾t 𝑋))‘(𝑋 ∩ 𝑌))) |
84 | 69, 83 | eleqtrd 2854 |
. . . . . . . 8
⊢ (𝜑 → 𝐶 ∈ ((int‘(𝐽 ↾t 𝑋))‘(𝑋 ∩ 𝑌))) |
85 | | undif1 4372 |
. . . . . . . . . . . 12
⊢ ((𝑋 ∖ {𝐶}) ∪ {𝐶}) = (𝑋 ∪ {𝐶}) |
86 | 39 | snssd 4699 |
. . . . . . . . . . . . 13
⊢ (𝜑 → {𝐶} ⊆ 𝑋) |
87 | | ssequn2 4088 |
. . . . . . . . . . . . 13
⊢ ({𝐶} ⊆ 𝑋 ↔ (𝑋 ∪ {𝐶}) = 𝑋) |
88 | 86, 87 | sylib 221 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑋 ∪ {𝐶}) = 𝑋) |
89 | 85, 88 | syl5eq 2805 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑋 ∖ {𝐶}) ∪ {𝐶}) = 𝑋) |
90 | 89 | oveq2d 7166 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐽 ↾t ((𝑋 ∖ {𝐶}) ∪ {𝐶})) = (𝐽 ↾t 𝑋)) |
91 | 90 | fveq2d 6662 |
. . . . . . . . 9
⊢ (𝜑 → (int‘(𝐽 ↾t ((𝑋 ∖ {𝐶}) ∪ {𝐶}))) = (int‘(𝐽 ↾t 𝑋))) |
92 | | undif1 4372 |
. . . . . . . . . 10
⊢ (((𝑋 ∩ 𝑌) ∖ {𝐶}) ∪ {𝐶}) = ((𝑋 ∩ 𝑌) ∪ {𝐶}) |
93 | 39, 49 | elind 4099 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐶 ∈ (𝑋 ∩ 𝑌)) |
94 | 93 | snssd 4699 |
. . . . . . . . . . 11
⊢ (𝜑 → {𝐶} ⊆ (𝑋 ∩ 𝑌)) |
95 | | ssequn2 4088 |
. . . . . . . . . . 11
⊢ ({𝐶} ⊆ (𝑋 ∩ 𝑌) ↔ ((𝑋 ∩ 𝑌) ∪ {𝐶}) = (𝑋 ∩ 𝑌)) |
96 | 94, 95 | sylib 221 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑋 ∩ 𝑌) ∪ {𝐶}) = (𝑋 ∩ 𝑌)) |
97 | 92, 96 | syl5eq 2805 |
. . . . . . . . 9
⊢ (𝜑 → (((𝑋 ∩ 𝑌) ∖ {𝐶}) ∪ {𝐶}) = (𝑋 ∩ 𝑌)) |
98 | 91, 97 | fveq12d 6665 |
. . . . . . . 8
⊢ (𝜑 → ((int‘(𝐽 ↾t ((𝑋 ∖ {𝐶}) ∪ {𝐶})))‘(((𝑋 ∩ 𝑌) ∖ {𝐶}) ∪ {𝐶})) = ((int‘(𝐽 ↾t 𝑋))‘(𝑋 ∩ 𝑌))) |
99 | 84, 98 | eleqtrrd 2855 |
. . . . . . 7
⊢ (𝜑 → 𝐶 ∈ ((int‘(𝐽 ↾t ((𝑋 ∖ {𝐶}) ∪ {𝐶})))‘(((𝑋 ∩ 𝑌) ∖ {𝐶}) ∪ {𝐶}))) |
100 | 57, 34, 58, 3, 59, 99 | limcres 24585 |
. . . . . 6
⊢ (𝜑 → (((𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶))) ↾ ((𝑋 ∩ 𝑌) ∖ {𝐶})) limℂ 𝐶) = ((𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶)) |
101 | 34 | resmptd 5880 |
. . . . . . 7
⊢ (𝜑 → ((𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶))) ↾ ((𝑋 ∩ 𝑌) ∖ {𝐶})) = (𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶)))) |
102 | 101 | oveq1d 7165 |
. . . . . 6
⊢ (𝜑 → (((𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶))) ↾ ((𝑋 ∩ 𝑌) ∖ {𝐶})) limℂ 𝐶) = ((𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶)) |
103 | 100, 102 | eqtr3d 2795 |
. . . . 5
⊢ (𝜑 → ((𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶) = ((𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶)) |
104 | 56, 103 | eleqtrd 2854 |
. . . 4
⊢ (𝜑 → 𝐾 ∈ ((𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶)) |
105 | 16 | simprd 499 |
. . . . 5
⊢ (𝜑 → 𝐿 ∈ ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶)) |
106 | 50 | fmpttd 6870 |
. . . . . . 7
⊢ (𝜑 → (𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))):(𝑌 ∖ {𝐶})⟶ℂ) |
107 | 46 | ssdifssd 4048 |
. . . . . . 7
⊢ (𝜑 → (𝑌 ∖ {𝐶}) ⊆ ℂ) |
108 | | eqid 2758 |
. . . . . . 7
⊢ (𝐽 ↾t ((𝑌 ∖ {𝐶}) ∪ {𝐶})) = (𝐽 ↾t ((𝑌 ∖ {𝐶}) ∪ {𝐶})) |
109 | | difssd 4038 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (∪ (𝐽
↾t 𝑆)
∖ 𝑌) ⊆ ∪ (𝐽
↾t 𝑆)) |
110 | 61, 109 | unssd 4091 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑋 ∩ 𝑌) ∪ (∪ (𝐽 ↾t 𝑆) ∖ 𝑌)) ⊆ ∪
(𝐽 ↾t
𝑆)) |
111 | | ssun1 4077 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∩ 𝑌) ⊆ ((𝑋 ∩ 𝑌) ∪ (∪ (𝐽 ↾t 𝑆) ∖ 𝑌)) |
112 | 111 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑋 ∩ 𝑌) ⊆ ((𝑋 ∩ 𝑌) ∪ (∪ (𝐽 ↾t 𝑆) ∖ 𝑌))) |
113 | 28 | ntrss 21755 |
. . . . . . . . . . . 12
⊢ (((𝐽 ↾t 𝑆) ∈ Top ∧ ((𝑋 ∩ 𝑌) ∪ (∪ (𝐽 ↾t 𝑆) ∖ 𝑌)) ⊆ ∪
(𝐽 ↾t
𝑆) ∧ (𝑋 ∩ 𝑌) ⊆ ((𝑋 ∩ 𝑌) ∪ (∪ (𝐽 ↾t 𝑆) ∖ 𝑌))) → ((int‘(𝐽 ↾t 𝑆))‘(𝑋 ∩ 𝑌)) ⊆ ((int‘(𝐽 ↾t 𝑆))‘((𝑋 ∩ 𝑌) ∪ (∪ (𝐽 ↾t 𝑆) ∖ 𝑌)))) |
114 | 23, 110, 112, 113 | syl3anc 1368 |
. . . . . . . . . . 11
⊢ (𝜑 → ((int‘(𝐽 ↾t 𝑆))‘(𝑋 ∩ 𝑌)) ⊆ ((int‘(𝐽 ↾t 𝑆))‘((𝑋 ∩ 𝑌) ∪ (∪ (𝐽 ↾t 𝑆) ∖ 𝑌)))) |
115 | 114, 31 | sseldd 3893 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 ∈ ((int‘(𝐽 ↾t 𝑆))‘((𝑋 ∩ 𝑌) ∪ (∪ (𝐽 ↾t 𝑆) ∖ 𝑌)))) |
116 | 115, 49 | elind 4099 |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ∈ (((int‘(𝐽 ↾t 𝑆))‘((𝑋 ∩ 𝑌) ∪ (∪ (𝐽 ↾t 𝑆) ∖ 𝑌))) ∩ 𝑌)) |
117 | 42 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑋 ∩ 𝑌) ⊆ 𝑌) |
118 | | eqid 2758 |
. . . . . . . . . . . 12
⊢ ((𝐽 ↾t 𝑆) ↾t 𝑌) = ((𝐽 ↾t 𝑆) ↾t 𝑌) |
119 | 28, 118 | restntr 21882 |
. . . . . . . . . . 11
⊢ (((𝐽 ↾t 𝑆) ∈ Top ∧ 𝑌 ⊆ ∪ (𝐽
↾t 𝑆)
∧ (𝑋 ∩ 𝑌) ⊆ 𝑌) → ((int‘((𝐽 ↾t 𝑆) ↾t 𝑌))‘(𝑋 ∩ 𝑌)) = (((int‘(𝐽 ↾t 𝑆))‘((𝑋 ∩ 𝑌) ∪ (∪ (𝐽 ↾t 𝑆) ∖ 𝑌))) ∩ 𝑌)) |
120 | 23, 27, 117, 119 | syl3anc 1368 |
. . . . . . . . . 10
⊢ (𝜑 → ((int‘((𝐽 ↾t 𝑆) ↾t 𝑌))‘(𝑋 ∩ 𝑌)) = (((int‘(𝐽 ↾t 𝑆))‘((𝑋 ∩ 𝑌) ∪ (∪ (𝐽 ↾t 𝑆) ∖ 𝑌))) ∩ 𝑌)) |
121 | | restabs 21865 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑆 ∧ 𝑆 ∈ V) → ((𝐽 ↾t 𝑆) ↾t 𝑌) = (𝐽 ↾t 𝑌)) |
122 | 75, 14, 78, 121 | syl3anc 1368 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐽 ↾t 𝑆) ↾t 𝑌) = (𝐽 ↾t 𝑌)) |
123 | 122 | fveq2d 6662 |
. . . . . . . . . . 11
⊢ (𝜑 → (int‘((𝐽 ↾t 𝑆) ↾t 𝑌)) = (int‘(𝐽 ↾t 𝑌))) |
124 | 123 | fveq1d 6660 |
. . . . . . . . . 10
⊢ (𝜑 → ((int‘((𝐽 ↾t 𝑆) ↾t 𝑌))‘(𝑋 ∩ 𝑌)) = ((int‘(𝐽 ↾t 𝑌))‘(𝑋 ∩ 𝑌))) |
125 | 120, 124 | eqtr3d 2795 |
. . . . . . . . 9
⊢ (𝜑 → (((int‘(𝐽 ↾t 𝑆))‘((𝑋 ∩ 𝑌) ∪ (∪ (𝐽 ↾t 𝑆) ∖ 𝑌))) ∩ 𝑌) = ((int‘(𝐽 ↾t 𝑌))‘(𝑋 ∩ 𝑌))) |
126 | 116, 125 | eleqtrd 2854 |
. . . . . . . 8
⊢ (𝜑 → 𝐶 ∈ ((int‘(𝐽 ↾t 𝑌))‘(𝑋 ∩ 𝑌))) |
127 | | undif1 4372 |
. . . . . . . . . . . 12
⊢ ((𝑌 ∖ {𝐶}) ∪ {𝐶}) = (𝑌 ∪ {𝐶}) |
128 | 49 | snssd 4699 |
. . . . . . . . . . . . 13
⊢ (𝜑 → {𝐶} ⊆ 𝑌) |
129 | | ssequn2 4088 |
. . . . . . . . . . . . 13
⊢ ({𝐶} ⊆ 𝑌 ↔ (𝑌 ∪ {𝐶}) = 𝑌) |
130 | 128, 129 | sylib 221 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑌 ∪ {𝐶}) = 𝑌) |
131 | 127, 130 | syl5eq 2805 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑌 ∖ {𝐶}) ∪ {𝐶}) = 𝑌) |
132 | 131 | oveq2d 7166 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐽 ↾t ((𝑌 ∖ {𝐶}) ∪ {𝐶})) = (𝐽 ↾t 𝑌)) |
133 | 132 | fveq2d 6662 |
. . . . . . . . 9
⊢ (𝜑 → (int‘(𝐽 ↾t ((𝑌 ∖ {𝐶}) ∪ {𝐶}))) = (int‘(𝐽 ↾t 𝑌))) |
134 | 133, 97 | fveq12d 6665 |
. . . . . . . 8
⊢ (𝜑 → ((int‘(𝐽 ↾t ((𝑌 ∖ {𝐶}) ∪ {𝐶})))‘(((𝑋 ∩ 𝑌) ∖ {𝐶}) ∪ {𝐶})) = ((int‘(𝐽 ↾t 𝑌))‘(𝑋 ∩ 𝑌))) |
135 | 126, 134 | eleqtrrd 2855 |
. . . . . . 7
⊢ (𝜑 → 𝐶 ∈ ((int‘(𝐽 ↾t ((𝑌 ∖ {𝐶}) ∪ {𝐶})))‘(((𝑋 ∩ 𝑌) ∖ {𝐶}) ∪ {𝐶}))) |
136 | 106, 44, 107, 3, 108, 135 | limcres 24585 |
. . . . . 6
⊢ (𝜑 → (((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) ↾ ((𝑋 ∩ 𝑌) ∖ {𝐶})) limℂ 𝐶) = ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶)) |
137 | 44 | resmptd 5880 |
. . . . . . 7
⊢ (𝜑 → ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) ↾ ((𝑋 ∩ 𝑌) ∖ {𝐶})) = (𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶}) ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶)))) |
138 | 137 | oveq1d 7165 |
. . . . . 6
⊢ (𝜑 → (((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) ↾ ((𝑋 ∩ 𝑌) ∖ {𝐶})) limℂ 𝐶) = ((𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶}) ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶)) |
139 | 136, 138 | eqtr3d 2795 |
. . . . 5
⊢ (𝜑 → ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶) = ((𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶}) ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶)) |
140 | 105, 139 | eleqtrd 2854 |
. . . 4
⊢ (𝜑 → 𝐿 ∈ ((𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶}) ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶)) |
141 | 3 | addcn 23566 |
. . . . 5
⊢ + ∈
((𝐽 ×t
𝐽) Cn 𝐽) |
142 | 5, 6, 7 | dvcl 24598 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐶(𝑆 D 𝐹)𝐾) → 𝐾 ∈ ℂ) |
143 | 1, 142 | mpdan 686 |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ ℂ) |
144 | 5, 13, 14 | dvcl 24598 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐶(𝑆 D 𝐺)𝐿) → 𝐿 ∈ ℂ) |
145 | 11, 144 | mpdan 686 |
. . . . . 6
⊢ (𝜑 → 𝐿 ∈ ℂ) |
146 | 143, 145 | opelxpd 5562 |
. . . . 5
⊢ (𝜑 → 〈𝐾, 𝐿〉 ∈ (ℂ ×
ℂ)) |
147 | 54 | toponunii 21616 |
. . . . . 6
⊢ (ℂ
× ℂ) = ∪ (𝐽 ×t 𝐽) |
148 | 147 | cncnpi 21978 |
. . . . 5
⊢ (( +
∈ ((𝐽
×t 𝐽) Cn
𝐽) ∧ 〈𝐾, 𝐿〉 ∈ (ℂ × ℂ))
→ + ∈ (((𝐽
×t 𝐽) CnP
𝐽)‘〈𝐾, 𝐿〉)) |
149 | 141, 146,
148 | sylancr 590 |
. . . 4
⊢ (𝜑 → + ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘〈𝐾, 𝐿〉)) |
150 | 41, 51, 52, 52, 3, 55, 104, 140, 149 | limccnp2 24591 |
. . 3
⊢ (𝜑 → (𝐾 + 𝐿) ∈ ((𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶}) ↦ ((((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶)) + (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶)))) limℂ 𝐶)) |
151 | | eldifi 4032 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶}) → 𝑧 ∈ (𝑋 ∩ 𝑌)) |
152 | 151 | adantl 485 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → 𝑧 ∈ (𝑋 ∩ 𝑌)) |
153 | 6 | ffnd 6499 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹 Fn 𝑋) |
154 | 153 | adantr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → 𝐹 Fn 𝑋) |
155 | 13 | ffnd 6499 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐺 Fn 𝑌) |
156 | 155 | adantr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → 𝐺 Fn 𝑌) |
157 | | ssexg 5193 |
. . . . . . . . . . . . 13
⊢ ((𝑋 ⊆ ℂ ∧ ℂ
∈ V) → 𝑋 ∈
V) |
158 | 36, 76, 157 | sylancl 589 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑋 ∈ V) |
159 | 158 | adantr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → 𝑋 ∈ V) |
160 | | ssexg 5193 |
. . . . . . . . . . . . 13
⊢ ((𝑌 ⊆ ℂ ∧ ℂ
∈ V) → 𝑌 ∈
V) |
161 | 46, 76, 160 | sylancl 589 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑌 ∈ V) |
162 | 161 | adantr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → 𝑌 ∈ V) |
163 | | eqid 2758 |
. . . . . . . . . . 11
⊢ (𝑋 ∩ 𝑌) = (𝑋 ∩ 𝑌) |
164 | | eqidd 2759 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) ∧ 𝑧 ∈ 𝑋) → (𝐹‘𝑧) = (𝐹‘𝑧)) |
165 | | eqidd 2759 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) ∧ 𝑧 ∈ 𝑌) → (𝐺‘𝑧) = (𝐺‘𝑧)) |
166 | 154, 156,
159, 162, 163, 164, 165 | ofval 7415 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) ∧ 𝑧 ∈ (𝑋 ∩ 𝑌)) → ((𝐹 ∘f + 𝐺)‘𝑧) = ((𝐹‘𝑧) + (𝐺‘𝑧))) |
167 | 152, 166 | mpdan 686 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → ((𝐹 ∘f + 𝐺)‘𝑧) = ((𝐹‘𝑧) + (𝐺‘𝑧))) |
168 | | eqidd 2759 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) ∧ 𝐶 ∈ 𝑋) → (𝐹‘𝐶) = (𝐹‘𝐶)) |
169 | | eqidd 2759 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) ∧ 𝐶 ∈ 𝑌) → (𝐺‘𝐶) = (𝐺‘𝐶)) |
170 | 154, 156,
159, 162, 163, 168, 169 | ofval 7415 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) ∧ 𝐶 ∈ (𝑋 ∩ 𝑌)) → ((𝐹 ∘f + 𝐺)‘𝐶) = ((𝐹‘𝐶) + (𝐺‘𝐶))) |
171 | 93, 170 | mpidan 688 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → ((𝐹 ∘f + 𝐺)‘𝐶) = ((𝐹‘𝐶) + (𝐺‘𝐶))) |
172 | 167, 171 | oveq12d 7168 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → (((𝐹 ∘f + 𝐺)‘𝑧) − ((𝐹 ∘f + 𝐺)‘𝐶)) = (((𝐹‘𝑧) + (𝐺‘𝑧)) − ((𝐹‘𝐶) + (𝐺‘𝐶)))) |
173 | | difss 4037 |
. . . . . . . . . . . 12
⊢ ((𝑋 ∩ 𝑌) ∖ {𝐶}) ⊆ (𝑋 ∩ 𝑌) |
174 | 173, 32 | sstri 3901 |
. . . . . . . . . . 11
⊢ ((𝑋 ∩ 𝑌) ∖ {𝐶}) ⊆ 𝑋 |
175 | 174 | sseli 3888 |
. . . . . . . . . 10
⊢ (𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶}) → 𝑧 ∈ 𝑋) |
176 | | ffvelrn 6840 |
. . . . . . . . . 10
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑧 ∈ 𝑋) → (𝐹‘𝑧) ∈ ℂ) |
177 | 6, 175, 176 | syl2an 598 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → (𝐹‘𝑧) ∈ ℂ) |
178 | 173, 42 | sstri 3901 |
. . . . . . . . . . 11
⊢ ((𝑋 ∩ 𝑌) ∖ {𝐶}) ⊆ 𝑌 |
179 | 178 | sseli 3888 |
. . . . . . . . . 10
⊢ (𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶}) → 𝑧 ∈ 𝑌) |
180 | | ffvelrn 6840 |
. . . . . . . . . 10
⊢ ((𝐺:𝑌⟶ℂ ∧ 𝑧 ∈ 𝑌) → (𝐺‘𝑧) ∈ ℂ) |
181 | 13, 179, 180 | syl2an 598 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → (𝐺‘𝑧) ∈ ℂ) |
182 | 6, 39 | ffvelrnd 6843 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐹‘𝐶) ∈ ℂ) |
183 | 182 | adantr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → (𝐹‘𝐶) ∈ ℂ) |
184 | 13, 49 | ffvelrnd 6843 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐺‘𝐶) ∈ ℂ) |
185 | 184 | adantr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → (𝐺‘𝐶) ∈ ℂ) |
186 | 177, 181,
183, 185 | addsub4d 11082 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → (((𝐹‘𝑧) + (𝐺‘𝑧)) − ((𝐹‘𝐶) + (𝐺‘𝐶))) = (((𝐹‘𝑧) − (𝐹‘𝐶)) + ((𝐺‘𝑧) − (𝐺‘𝐶)))) |
187 | 172, 186 | eqtrd 2793 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → (((𝐹 ∘f + 𝐺)‘𝑧) − ((𝐹 ∘f + 𝐺)‘𝐶)) = (((𝐹‘𝑧) − (𝐹‘𝐶)) + ((𝐺‘𝑧) − (𝐺‘𝐶)))) |
188 | 187 | oveq1d 7165 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → ((((𝐹 ∘f + 𝐺)‘𝑧) − ((𝐹 ∘f + 𝐺)‘𝐶)) / (𝑧 − 𝐶)) = ((((𝐹‘𝑧) − (𝐹‘𝐶)) + ((𝐺‘𝑧) − (𝐺‘𝐶))) / (𝑧 − 𝐶))) |
189 | 177, 183 | subcld 11035 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → ((𝐹‘𝑧) − (𝐹‘𝐶)) ∈ ℂ) |
190 | 181, 185 | subcld 11035 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → ((𝐺‘𝑧) − (𝐺‘𝐶)) ∈ ℂ) |
191 | 174, 36 | sstrid 3903 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑋 ∩ 𝑌) ∖ {𝐶}) ⊆ ℂ) |
192 | 191 | sselda 3892 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → 𝑧 ∈ ℂ) |
193 | 36, 39 | sseldd 3893 |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ∈ ℂ) |
194 | 193 | adantr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → 𝐶 ∈ ℂ) |
195 | 192, 194 | subcld 11035 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → (𝑧 − 𝐶) ∈ ℂ) |
196 | | eldifsni 4680 |
. . . . . . . . 9
⊢ (𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶}) → 𝑧 ≠ 𝐶) |
197 | 196 | adantl 485 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → 𝑧 ≠ 𝐶) |
198 | 192, 194,
197 | subne0d 11044 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → (𝑧 − 𝐶) ≠ 0) |
199 | 189, 190,
195, 198 | divdird 11492 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → ((((𝐹‘𝑧) − (𝐹‘𝐶)) + ((𝐺‘𝑧) − (𝐺‘𝐶))) / (𝑧 − 𝐶)) = ((((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶)) + (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶)))) |
200 | 188, 199 | eqtrd 2793 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → ((((𝐹 ∘f + 𝐺)‘𝑧) − ((𝐹 ∘f + 𝐺)‘𝐶)) / (𝑧 − 𝐶)) = ((((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶)) + (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶)))) |
201 | 200 | mpteq2dva 5127 |
. . . 4
⊢ (𝜑 → (𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶}) ↦ ((((𝐹 ∘f + 𝐺)‘𝑧) − ((𝐹 ∘f + 𝐺)‘𝐶)) / (𝑧 − 𝐶))) = (𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶}) ↦ ((((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶)) + (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))))) |
202 | 201 | oveq1d 7165 |
. . 3
⊢ (𝜑 → ((𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶}) ↦ ((((𝐹 ∘f + 𝐺)‘𝑧) − ((𝐹 ∘f + 𝐺)‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶) = ((𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶}) ↦ ((((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶)) + (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶)))) limℂ 𝐶)) |
203 | 150, 202 | eleqtrrd 2855 |
. 2
⊢ (𝜑 → (𝐾 + 𝐿) ∈ ((𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶}) ↦ ((((𝐹 ∘f + 𝐺)‘𝑧) − ((𝐹 ∘f + 𝐺)‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶)) |
204 | | eqid 2758 |
. . 3
⊢ (𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶}) ↦ ((((𝐹 ∘f + 𝐺)‘𝑧) − ((𝐹 ∘f + 𝐺)‘𝐶)) / (𝑧 − 𝐶))) = (𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶}) ↦ ((((𝐹 ∘f + 𝐺)‘𝑧) − ((𝐹 ∘f + 𝐺)‘𝐶)) / (𝑧 − 𝐶))) |
205 | | addcl 10657 |
. . . . 5
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ) |
206 | 205 | adantl 485 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ) |
207 | 206, 6, 13, 158, 161, 163 | off 7422 |
. . 3
⊢ (𝜑 → (𝐹 ∘f + 𝐺):(𝑋 ∩ 𝑌)⟶ℂ) |
208 | 2, 3, 204, 5, 207, 60 | eldv 24597 |
. 2
⊢ (𝜑 → (𝐶(𝑆 D (𝐹 ∘f + 𝐺))(𝐾 + 𝐿) ↔ (𝐶 ∈ ((int‘(𝐽 ↾t 𝑆))‘(𝑋 ∩ 𝑌)) ∧ (𝐾 + 𝐿) ∈ ((𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶}) ↦ ((((𝐹 ∘f + 𝐺)‘𝑧) − ((𝐹 ∘f + 𝐺)‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶)))) |
209 | 31, 203, 208 | mpbir2and 712 |
1
⊢ (𝜑 → 𝐶(𝑆 D (𝐹 ∘f + 𝐺))(𝐾 + 𝐿)) |