Step | Hyp | Ref
| Expression |
1 | | ustbasel 23932 |
. . 3
β’ (π β (UnifOnβπ) β (π Γ π) β π) |
2 | | snssi 4811 |
. . . . . . . . 9
β’ (π β π β {π} β π) |
3 | | dfss 3966 |
. . . . . . . . 9
β’ ({π} β π β {π} = ({π} β© π)) |
4 | 2, 3 | sylib 217 |
. . . . . . . 8
β’ (π β π β {π} = ({π} β© π)) |
5 | | incom 4201 |
. . . . . . . 8
β’ ({π} β© π) = (π β© {π}) |
6 | 4, 5 | eqtr2di 2788 |
. . . . . . 7
β’ (π β π β (π β© {π}) = {π}) |
7 | | snnzg 4778 |
. . . . . . 7
β’ (π β π β {π} β β
) |
8 | 6, 7 | eqnetrd 3007 |
. . . . . 6
β’ (π β π β (π β© {π}) β β
) |
9 | 8 | adantl 481 |
. . . . 5
β’ ((π β (UnifOnβπ) β§ π β π) β (π β© {π}) β β
) |
10 | | xpima2 6183 |
. . . . 5
β’ ((π β© {π}) β β
β ((π Γ π) β {π}) = π) |
11 | 9, 10 | syl 17 |
. . . 4
β’ ((π β (UnifOnβπ) β§ π β π) β ((π Γ π) β {π}) = π) |
12 | 11 | eqcomd 2737 |
. . 3
β’ ((π β (UnifOnβπ) β§ π β π) β π = ((π Γ π) β {π})) |
13 | | imaeq1 6054 |
. . . 4
β’ (π€ = (π Γ π) β (π€ β {π}) = ((π Γ π) β {π})) |
14 | 13 | rspceeqv 3633 |
. . 3
β’ (((π Γ π) β π β§ π = ((π Γ π) β {π})) β βπ€ β π π = (π€ β {π})) |
15 | 1, 12, 14 | syl2an2r 682 |
. 2
β’ ((π β (UnifOnβπ) β§ π β π) β βπ€ β π π = (π€ β {π})) |
16 | | elfvex 6929 |
. . 3
β’ (π β (UnifOnβπ) β π β V) |
17 | | utopustuq.1 |
. . . 4
β’ π = (π β π β¦ ran (π£ β π β¦ (π£ β {π}))) |
18 | 17 | ustuqtoplem 23965 |
. . 3
β’ (((π β (UnifOnβπ) β§ π β π) β§ π β V) β (π β (πβπ) β βπ€ β π π = (π€ β {π}))) |
19 | 16, 18 | mpidan 686 |
. 2
β’ ((π β (UnifOnβπ) β§ π β π) β (π β (πβπ) β βπ€ β π π = (π€ β {π}))) |
20 | 15, 19 | mpbird 257 |
1
β’ ((π β (UnifOnβπ) β§ π β π) β π β (πβπ)) |