| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ustuqtop5 | Structured version Visualization version GIF version | ||
| Description: Lemma for ustuqtop 24134. (Contributed by Thierry Arnoux, 11-Jan-2018.) |
| Ref | Expression |
|---|---|
| utopustuq.1 | ⊢ 𝑁 = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) |
| Ref | Expression |
|---|---|
| ustuqtop5 | ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → 𝑋 ∈ (𝑁‘𝑝)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ustbasel 24094 | . . 3 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 × 𝑋) ∈ 𝑈) | |
| 2 | snssi 4772 | . . . . . . . . 9 ⊢ (𝑝 ∈ 𝑋 → {𝑝} ⊆ 𝑋) | |
| 3 | dfss 3933 | . . . . . . . . 9 ⊢ ({𝑝} ⊆ 𝑋 ↔ {𝑝} = ({𝑝} ∩ 𝑋)) | |
| 4 | 2, 3 | sylib 218 | . . . . . . . 8 ⊢ (𝑝 ∈ 𝑋 → {𝑝} = ({𝑝} ∩ 𝑋)) |
| 5 | incom 4172 | . . . . . . . 8 ⊢ ({𝑝} ∩ 𝑋) = (𝑋 ∩ {𝑝}) | |
| 6 | 4, 5 | eqtr2di 2781 | . . . . . . 7 ⊢ (𝑝 ∈ 𝑋 → (𝑋 ∩ {𝑝}) = {𝑝}) |
| 7 | snnzg 4738 | . . . . . . 7 ⊢ (𝑝 ∈ 𝑋 → {𝑝} ≠ ∅) | |
| 8 | 6, 7 | eqnetrd 2992 | . . . . . 6 ⊢ (𝑝 ∈ 𝑋 → (𝑋 ∩ {𝑝}) ≠ ∅) |
| 9 | 8 | adantl 481 | . . . . 5 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → (𝑋 ∩ {𝑝}) ≠ ∅) |
| 10 | xpima2 6157 | . . . . 5 ⊢ ((𝑋 ∩ {𝑝}) ≠ ∅ → ((𝑋 × 𝑋) “ {𝑝}) = 𝑋) | |
| 11 | 9, 10 | syl 17 | . . . 4 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → ((𝑋 × 𝑋) “ {𝑝}) = 𝑋) |
| 12 | 11 | eqcomd 2735 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → 𝑋 = ((𝑋 × 𝑋) “ {𝑝})) |
| 13 | imaeq1 6026 | . . . 4 ⊢ (𝑤 = (𝑋 × 𝑋) → (𝑤 “ {𝑝}) = ((𝑋 × 𝑋) “ {𝑝})) | |
| 14 | 13 | rspceeqv 3611 | . . 3 ⊢ (((𝑋 × 𝑋) ∈ 𝑈 ∧ 𝑋 = ((𝑋 × 𝑋) “ {𝑝})) → ∃𝑤 ∈ 𝑈 𝑋 = (𝑤 “ {𝑝})) |
| 15 | 1, 12, 14 | syl2an2r 685 | . 2 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → ∃𝑤 ∈ 𝑈 𝑋 = (𝑤 “ {𝑝})) |
| 16 | elfvex 6896 | . . 3 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 ∈ V) | |
| 17 | utopustuq.1 | . . . 4 ⊢ 𝑁 = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) | |
| 18 | 17 | ustuqtoplem 24127 | . . 3 ⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑋 ∈ V) → (𝑋 ∈ (𝑁‘𝑝) ↔ ∃𝑤 ∈ 𝑈 𝑋 = (𝑤 “ {𝑝}))) |
| 19 | 16, 18 | mpidan 689 | . 2 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → (𝑋 ∈ (𝑁‘𝑝) ↔ ∃𝑤 ∈ 𝑈 𝑋 = (𝑤 “ {𝑝}))) |
| 20 | 15, 19 | mpbird 257 | 1 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → 𝑋 ∈ (𝑁‘𝑝)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 Vcvv 3447 ∩ cin 3913 ⊆ wss 3914 ∅c0 4296 {csn 4589 ↦ cmpt 5188 × cxp 5636 ran crn 5639 “ cima 5641 ‘cfv 6511 UnifOncust 24087 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ust 24088 |
| This theorem is referenced by: ustuqtop 24134 utopsnneiplem 24135 |
| Copyright terms: Public domain | W3C validator |