| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ustuqtop5 | Structured version Visualization version GIF version | ||
| Description: Lemma for ustuqtop 24132. (Contributed by Thierry Arnoux, 11-Jan-2018.) |
| Ref | Expression |
|---|---|
| utopustuq.1 | ⊢ 𝑁 = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) |
| Ref | Expression |
|---|---|
| ustuqtop5 | ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → 𝑋 ∈ (𝑁‘𝑝)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ustbasel 24092 | . . 3 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 × 𝑋) ∈ 𝑈) | |
| 2 | snssi 4759 | . . . . . . . . 9 ⊢ (𝑝 ∈ 𝑋 → {𝑝} ⊆ 𝑋) | |
| 3 | dfss 3922 | . . . . . . . . 9 ⊢ ({𝑝} ⊆ 𝑋 ↔ {𝑝} = ({𝑝} ∩ 𝑋)) | |
| 4 | 2, 3 | sylib 218 | . . . . . . . 8 ⊢ (𝑝 ∈ 𝑋 → {𝑝} = ({𝑝} ∩ 𝑋)) |
| 5 | incom 4160 | . . . . . . . 8 ⊢ ({𝑝} ∩ 𝑋) = (𝑋 ∩ {𝑝}) | |
| 6 | 4, 5 | eqtr2di 2781 | . . . . . . 7 ⊢ (𝑝 ∈ 𝑋 → (𝑋 ∩ {𝑝}) = {𝑝}) |
| 7 | snnzg 4726 | . . . . . . 7 ⊢ (𝑝 ∈ 𝑋 → {𝑝} ≠ ∅) | |
| 8 | 6, 7 | eqnetrd 2992 | . . . . . 6 ⊢ (𝑝 ∈ 𝑋 → (𝑋 ∩ {𝑝}) ≠ ∅) |
| 9 | 8 | adantl 481 | . . . . 5 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → (𝑋 ∩ {𝑝}) ≠ ∅) |
| 10 | xpima2 6133 | . . . . 5 ⊢ ((𝑋 ∩ {𝑝}) ≠ ∅ → ((𝑋 × 𝑋) “ {𝑝}) = 𝑋) | |
| 11 | 9, 10 | syl 17 | . . . 4 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → ((𝑋 × 𝑋) “ {𝑝}) = 𝑋) |
| 12 | 11 | eqcomd 2735 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → 𝑋 = ((𝑋 × 𝑋) “ {𝑝})) |
| 13 | imaeq1 6006 | . . . 4 ⊢ (𝑤 = (𝑋 × 𝑋) → (𝑤 “ {𝑝}) = ((𝑋 × 𝑋) “ {𝑝})) | |
| 14 | 13 | rspceeqv 3600 | . . 3 ⊢ (((𝑋 × 𝑋) ∈ 𝑈 ∧ 𝑋 = ((𝑋 × 𝑋) “ {𝑝})) → ∃𝑤 ∈ 𝑈 𝑋 = (𝑤 “ {𝑝})) |
| 15 | 1, 12, 14 | syl2an2r 685 | . 2 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → ∃𝑤 ∈ 𝑈 𝑋 = (𝑤 “ {𝑝})) |
| 16 | elfvex 6858 | . . 3 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 ∈ V) | |
| 17 | utopustuq.1 | . . . 4 ⊢ 𝑁 = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) | |
| 18 | 17 | ustuqtoplem 24125 | . . 3 ⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑋 ∈ V) → (𝑋 ∈ (𝑁‘𝑝) ↔ ∃𝑤 ∈ 𝑈 𝑋 = (𝑤 “ {𝑝}))) |
| 19 | 16, 18 | mpidan 689 | . 2 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → (𝑋 ∈ (𝑁‘𝑝) ↔ ∃𝑤 ∈ 𝑈 𝑋 = (𝑤 “ {𝑝}))) |
| 20 | 15, 19 | mpbird 257 | 1 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → 𝑋 ∈ (𝑁‘𝑝)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 Vcvv 3436 ∩ cin 3902 ⊆ wss 3903 ∅c0 4284 {csn 4577 ↦ cmpt 5173 × cxp 5617 ran crn 5620 “ cima 5622 ‘cfv 6482 UnifOncust 24085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ust 24086 |
| This theorem is referenced by: ustuqtop 24132 utopsnneiplem 24133 |
| Copyright terms: Public domain | W3C validator |