![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ustuqtop5 | Structured version Visualization version GIF version |
Description: Lemma for ustuqtop 24195. (Contributed by Thierry Arnoux, 11-Jan-2018.) |
Ref | Expression |
---|---|
utopustuq.1 | ⊢ 𝑁 = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) |
Ref | Expression |
---|---|
ustuqtop5 | ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → 𝑋 ∈ (𝑁‘𝑝)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ustbasel 24155 | . . 3 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 × 𝑋) ∈ 𝑈) | |
2 | snssi 4813 | . . . . . . . . 9 ⊢ (𝑝 ∈ 𝑋 → {𝑝} ⊆ 𝑋) | |
3 | dfss 3963 | . . . . . . . . 9 ⊢ ({𝑝} ⊆ 𝑋 ↔ {𝑝} = ({𝑝} ∩ 𝑋)) | |
4 | 2, 3 | sylib 217 | . . . . . . . 8 ⊢ (𝑝 ∈ 𝑋 → {𝑝} = ({𝑝} ∩ 𝑋)) |
5 | incom 4199 | . . . . . . . 8 ⊢ ({𝑝} ∩ 𝑋) = (𝑋 ∩ {𝑝}) | |
6 | 4, 5 | eqtr2di 2782 | . . . . . . 7 ⊢ (𝑝 ∈ 𝑋 → (𝑋 ∩ {𝑝}) = {𝑝}) |
7 | snnzg 4780 | . . . . . . 7 ⊢ (𝑝 ∈ 𝑋 → {𝑝} ≠ ∅) | |
8 | 6, 7 | eqnetrd 2997 | . . . . . 6 ⊢ (𝑝 ∈ 𝑋 → (𝑋 ∩ {𝑝}) ≠ ∅) |
9 | 8 | adantl 480 | . . . . 5 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → (𝑋 ∩ {𝑝}) ≠ ∅) |
10 | xpima2 6190 | . . . . 5 ⊢ ((𝑋 ∩ {𝑝}) ≠ ∅ → ((𝑋 × 𝑋) “ {𝑝}) = 𝑋) | |
11 | 9, 10 | syl 17 | . . . 4 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → ((𝑋 × 𝑋) “ {𝑝}) = 𝑋) |
12 | 11 | eqcomd 2731 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → 𝑋 = ((𝑋 × 𝑋) “ {𝑝})) |
13 | imaeq1 6059 | . . . 4 ⊢ (𝑤 = (𝑋 × 𝑋) → (𝑤 “ {𝑝}) = ((𝑋 × 𝑋) “ {𝑝})) | |
14 | 13 | rspceeqv 3628 | . . 3 ⊢ (((𝑋 × 𝑋) ∈ 𝑈 ∧ 𝑋 = ((𝑋 × 𝑋) “ {𝑝})) → ∃𝑤 ∈ 𝑈 𝑋 = (𝑤 “ {𝑝})) |
15 | 1, 12, 14 | syl2an2r 683 | . 2 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → ∃𝑤 ∈ 𝑈 𝑋 = (𝑤 “ {𝑝})) |
16 | elfvex 6934 | . . 3 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 ∈ V) | |
17 | utopustuq.1 | . . . 4 ⊢ 𝑁 = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) | |
18 | 17 | ustuqtoplem 24188 | . . 3 ⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑋 ∈ V) → (𝑋 ∈ (𝑁‘𝑝) ↔ ∃𝑤 ∈ 𝑈 𝑋 = (𝑤 “ {𝑝}))) |
19 | 16, 18 | mpidan 687 | . 2 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → (𝑋 ∈ (𝑁‘𝑝) ↔ ∃𝑤 ∈ 𝑈 𝑋 = (𝑤 “ {𝑝}))) |
20 | 15, 19 | mpbird 256 | 1 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → 𝑋 ∈ (𝑁‘𝑝)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ≠ wne 2929 ∃wrex 3059 Vcvv 3461 ∩ cin 3943 ⊆ wss 3944 ∅c0 4322 {csn 4630 ↦ cmpt 5232 × cxp 5676 ran crn 5679 “ cima 5681 ‘cfv 6549 UnifOncust 24148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-ust 24149 |
This theorem is referenced by: ustuqtop 24195 utopsnneiplem 24196 |
Copyright terms: Public domain | W3C validator |