MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustuqtop5 Structured version   Visualization version   GIF version

Theorem ustuqtop5 24275
Description: Lemma for ustuqtop 24276. (Contributed by Thierry Arnoux, 11-Jan-2018.)
Hypothesis
Ref Expression
utopustuq.1 𝑁 = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))
Assertion
Ref Expression
ustuqtop5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → 𝑋 ∈ (𝑁𝑝))
Distinct variable groups:   𝑣,𝑝,𝑈   𝑋,𝑝,𝑣   𝑁,𝑝
Allowed substitution hint:   𝑁(𝑣)

Proof of Theorem ustuqtop5
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ustbasel 24236 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 × 𝑋) ∈ 𝑈)
2 snssi 4833 . . . . . . . . 9 (𝑝𝑋 → {𝑝} ⊆ 𝑋)
3 dfss 3995 . . . . . . . . 9 ({𝑝} ⊆ 𝑋 ↔ {𝑝} = ({𝑝} ∩ 𝑋))
42, 3sylib 218 . . . . . . . 8 (𝑝𝑋 → {𝑝} = ({𝑝} ∩ 𝑋))
5 incom 4230 . . . . . . . 8 ({𝑝} ∩ 𝑋) = (𝑋 ∩ {𝑝})
64, 5eqtr2di 2797 . . . . . . 7 (𝑝𝑋 → (𝑋 ∩ {𝑝}) = {𝑝})
7 snnzg 4799 . . . . . . 7 (𝑝𝑋 → {𝑝} ≠ ∅)
86, 7eqnetrd 3014 . . . . . 6 (𝑝𝑋 → (𝑋 ∩ {𝑝}) ≠ ∅)
98adantl 481 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → (𝑋 ∩ {𝑝}) ≠ ∅)
10 xpima2 6215 . . . . 5 ((𝑋 ∩ {𝑝}) ≠ ∅ → ((𝑋 × 𝑋) “ {𝑝}) = 𝑋)
119, 10syl 17 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → ((𝑋 × 𝑋) “ {𝑝}) = 𝑋)
1211eqcomd 2746 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → 𝑋 = ((𝑋 × 𝑋) “ {𝑝}))
13 imaeq1 6084 . . . 4 (𝑤 = (𝑋 × 𝑋) → (𝑤 “ {𝑝}) = ((𝑋 × 𝑋) “ {𝑝}))
1413rspceeqv 3658 . . 3 (((𝑋 × 𝑋) ∈ 𝑈𝑋 = ((𝑋 × 𝑋) “ {𝑝})) → ∃𝑤𝑈 𝑋 = (𝑤 “ {𝑝}))
151, 12, 14syl2an2r 684 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → ∃𝑤𝑈 𝑋 = (𝑤 “ {𝑝}))
16 elfvex 6958 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 ∈ V)
17 utopustuq.1 . . . 4 𝑁 = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))
1817ustuqtoplem 24269 . . 3 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑋 ∈ V) → (𝑋 ∈ (𝑁𝑝) ↔ ∃𝑤𝑈 𝑋 = (𝑤 “ {𝑝})))
1916, 18mpidan 688 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → (𝑋 ∈ (𝑁𝑝) ↔ ∃𝑤𝑈 𝑋 = (𝑤 “ {𝑝})))
2015, 19mpbird 257 1 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → 𝑋 ∈ (𝑁𝑝))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  wrex 3076  Vcvv 3488  cin 3975  wss 3976  c0 4352  {csn 4648  cmpt 5249   × cxp 5698  ran crn 5701  cima 5703  cfv 6573  UnifOncust 24229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ust 24230
This theorem is referenced by:  ustuqtop  24276  utopsnneiplem  24277
  Copyright terms: Public domain W3C validator