Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ustuqtop5 | Structured version Visualization version GIF version |
Description: Lemma for ustuqtop 23306. (Contributed by Thierry Arnoux, 11-Jan-2018.) |
Ref | Expression |
---|---|
utopustuq.1 | ⊢ 𝑁 = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) |
Ref | Expression |
---|---|
ustuqtop5 | ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → 𝑋 ∈ (𝑁‘𝑝)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ustbasel 23266 | . . 3 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 × 𝑋) ∈ 𝑈) | |
2 | snssi 4738 | . . . . . . . . 9 ⊢ (𝑝 ∈ 𝑋 → {𝑝} ⊆ 𝑋) | |
3 | dfss 3901 | . . . . . . . . 9 ⊢ ({𝑝} ⊆ 𝑋 ↔ {𝑝} = ({𝑝} ∩ 𝑋)) | |
4 | 2, 3 | sylib 217 | . . . . . . . 8 ⊢ (𝑝 ∈ 𝑋 → {𝑝} = ({𝑝} ∩ 𝑋)) |
5 | incom 4131 | . . . . . . . 8 ⊢ ({𝑝} ∩ 𝑋) = (𝑋 ∩ {𝑝}) | |
6 | 4, 5 | eqtr2di 2796 | . . . . . . 7 ⊢ (𝑝 ∈ 𝑋 → (𝑋 ∩ {𝑝}) = {𝑝}) |
7 | snnzg 4707 | . . . . . . 7 ⊢ (𝑝 ∈ 𝑋 → {𝑝} ≠ ∅) | |
8 | 6, 7 | eqnetrd 3010 | . . . . . 6 ⊢ (𝑝 ∈ 𝑋 → (𝑋 ∩ {𝑝}) ≠ ∅) |
9 | 8 | adantl 481 | . . . . 5 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → (𝑋 ∩ {𝑝}) ≠ ∅) |
10 | xpima2 6076 | . . . . 5 ⊢ ((𝑋 ∩ {𝑝}) ≠ ∅ → ((𝑋 × 𝑋) “ {𝑝}) = 𝑋) | |
11 | 9, 10 | syl 17 | . . . 4 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → ((𝑋 × 𝑋) “ {𝑝}) = 𝑋) |
12 | 11 | eqcomd 2744 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → 𝑋 = ((𝑋 × 𝑋) “ {𝑝})) |
13 | imaeq1 5953 | . . . 4 ⊢ (𝑤 = (𝑋 × 𝑋) → (𝑤 “ {𝑝}) = ((𝑋 × 𝑋) “ {𝑝})) | |
14 | 13 | rspceeqv 3567 | . . 3 ⊢ (((𝑋 × 𝑋) ∈ 𝑈 ∧ 𝑋 = ((𝑋 × 𝑋) “ {𝑝})) → ∃𝑤 ∈ 𝑈 𝑋 = (𝑤 “ {𝑝})) |
15 | 1, 12, 14 | syl2an2r 681 | . 2 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → ∃𝑤 ∈ 𝑈 𝑋 = (𝑤 “ {𝑝})) |
16 | elfvex 6789 | . . 3 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 ∈ V) | |
17 | utopustuq.1 | . . . 4 ⊢ 𝑁 = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) | |
18 | 17 | ustuqtoplem 23299 | . . 3 ⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑋 ∈ V) → (𝑋 ∈ (𝑁‘𝑝) ↔ ∃𝑤 ∈ 𝑈 𝑋 = (𝑤 “ {𝑝}))) |
19 | 16, 18 | mpidan 685 | . 2 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → (𝑋 ∈ (𝑁‘𝑝) ↔ ∃𝑤 ∈ 𝑈 𝑋 = (𝑤 “ {𝑝}))) |
20 | 15, 19 | mpbird 256 | 1 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → 𝑋 ∈ (𝑁‘𝑝)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∃wrex 3064 Vcvv 3422 ∩ cin 3882 ⊆ wss 3883 ∅c0 4253 {csn 4558 ↦ cmpt 5153 × cxp 5578 ran crn 5581 “ cima 5583 ‘cfv 6418 UnifOncust 23259 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ust 23260 |
This theorem is referenced by: ustuqtop 23306 utopsnneiplem 23307 |
Copyright terms: Public domain | W3C validator |