MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustuqtop5 Structured version   Visualization version   GIF version

Theorem ustuqtop5 24160
Description: Lemma for ustuqtop 24161. (Contributed by Thierry Arnoux, 11-Jan-2018.)
Hypothesis
Ref Expression
utopustuq.1 𝑁 = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))
Assertion
Ref Expression
ustuqtop5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → 𝑋 ∈ (𝑁𝑝))
Distinct variable groups:   𝑣,𝑝,𝑈   𝑋,𝑝,𝑣   𝑁,𝑝
Allowed substitution hint:   𝑁(𝑣)

Proof of Theorem ustuqtop5
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ustbasel 24122 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 × 𝑋) ∈ 𝑈)
2 snssi 4757 . . . . . . . . 9 (𝑝𝑋 → {𝑝} ⊆ 𝑋)
3 dfss 3916 . . . . . . . . 9 ({𝑝} ⊆ 𝑋 ↔ {𝑝} = ({𝑝} ∩ 𝑋))
42, 3sylib 218 . . . . . . . 8 (𝑝𝑋 → {𝑝} = ({𝑝} ∩ 𝑋))
5 incom 4156 . . . . . . . 8 ({𝑝} ∩ 𝑋) = (𝑋 ∩ {𝑝})
64, 5eqtr2di 2783 . . . . . . 7 (𝑝𝑋 → (𝑋 ∩ {𝑝}) = {𝑝})
7 snnzg 4724 . . . . . . 7 (𝑝𝑋 → {𝑝} ≠ ∅)
86, 7eqnetrd 2995 . . . . . 6 (𝑝𝑋 → (𝑋 ∩ {𝑝}) ≠ ∅)
98adantl 481 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → (𝑋 ∩ {𝑝}) ≠ ∅)
10 xpima2 6131 . . . . 5 ((𝑋 ∩ {𝑝}) ≠ ∅ → ((𝑋 × 𝑋) “ {𝑝}) = 𝑋)
119, 10syl 17 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → ((𝑋 × 𝑋) “ {𝑝}) = 𝑋)
1211eqcomd 2737 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → 𝑋 = ((𝑋 × 𝑋) “ {𝑝}))
13 imaeq1 6003 . . . 4 (𝑤 = (𝑋 × 𝑋) → (𝑤 “ {𝑝}) = ((𝑋 × 𝑋) “ {𝑝}))
1413rspceeqv 3595 . . 3 (((𝑋 × 𝑋) ∈ 𝑈𝑋 = ((𝑋 × 𝑋) “ {𝑝})) → ∃𝑤𝑈 𝑋 = (𝑤 “ {𝑝}))
151, 12, 14syl2an2r 685 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → ∃𝑤𝑈 𝑋 = (𝑤 “ {𝑝}))
16 elfvex 6857 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 ∈ V)
17 utopustuq.1 . . . 4 𝑁 = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))
1817ustuqtoplem 24154 . . 3 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑋 ∈ V) → (𝑋 ∈ (𝑁𝑝) ↔ ∃𝑤𝑈 𝑋 = (𝑤 “ {𝑝})))
1916, 18mpidan 689 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → (𝑋 ∈ (𝑁𝑝) ↔ ∃𝑤𝑈 𝑋 = (𝑤 “ {𝑝})))
2015, 19mpbird 257 1 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → 𝑋 ∈ (𝑁𝑝))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wrex 3056  Vcvv 3436  cin 3896  wss 3897  c0 4280  {csn 4573  cmpt 5170   × cxp 5612  ran crn 5615  cima 5617  cfv 6481  UnifOncust 24115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ust 24116
This theorem is referenced by:  ustuqtop  24161  utopsnneiplem  24162
  Copyright terms: Public domain W3C validator