MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustuqtop5 Structured version   Visualization version   GIF version

Theorem ustuqtop5 23397
Description: Lemma for ustuqtop 23398. (Contributed by Thierry Arnoux, 11-Jan-2018.)
Hypothesis
Ref Expression
utopustuq.1 𝑁 = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))
Assertion
Ref Expression
ustuqtop5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → 𝑋 ∈ (𝑁𝑝))
Distinct variable groups:   𝑣,𝑝,𝑈   𝑋,𝑝,𝑣   𝑁,𝑝
Allowed substitution hint:   𝑁(𝑣)

Proof of Theorem ustuqtop5
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ustbasel 23358 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 × 𝑋) ∈ 𝑈)
2 snssi 4741 . . . . . . . . 9 (𝑝𝑋 → {𝑝} ⊆ 𝑋)
3 dfss 3905 . . . . . . . . 9 ({𝑝} ⊆ 𝑋 ↔ {𝑝} = ({𝑝} ∩ 𝑋))
42, 3sylib 217 . . . . . . . 8 (𝑝𝑋 → {𝑝} = ({𝑝} ∩ 𝑋))
5 incom 4135 . . . . . . . 8 ({𝑝} ∩ 𝑋) = (𝑋 ∩ {𝑝})
64, 5eqtr2di 2795 . . . . . . 7 (𝑝𝑋 → (𝑋 ∩ {𝑝}) = {𝑝})
7 snnzg 4710 . . . . . . 7 (𝑝𝑋 → {𝑝} ≠ ∅)
86, 7eqnetrd 3011 . . . . . 6 (𝑝𝑋 → (𝑋 ∩ {𝑝}) ≠ ∅)
98adantl 482 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → (𝑋 ∩ {𝑝}) ≠ ∅)
10 xpima2 6087 . . . . 5 ((𝑋 ∩ {𝑝}) ≠ ∅ → ((𝑋 × 𝑋) “ {𝑝}) = 𝑋)
119, 10syl 17 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → ((𝑋 × 𝑋) “ {𝑝}) = 𝑋)
1211eqcomd 2744 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → 𝑋 = ((𝑋 × 𝑋) “ {𝑝}))
13 imaeq1 5964 . . . 4 (𝑤 = (𝑋 × 𝑋) → (𝑤 “ {𝑝}) = ((𝑋 × 𝑋) “ {𝑝}))
1413rspceeqv 3575 . . 3 (((𝑋 × 𝑋) ∈ 𝑈𝑋 = ((𝑋 × 𝑋) “ {𝑝})) → ∃𝑤𝑈 𝑋 = (𝑤 “ {𝑝}))
151, 12, 14syl2an2r 682 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → ∃𝑤𝑈 𝑋 = (𝑤 “ {𝑝}))
16 elfvex 6807 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 ∈ V)
17 utopustuq.1 . . . 4 𝑁 = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))
1817ustuqtoplem 23391 . . 3 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑋 ∈ V) → (𝑋 ∈ (𝑁𝑝) ↔ ∃𝑤𝑈 𝑋 = (𝑤 “ {𝑝})))
1916, 18mpidan 686 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → (𝑋 ∈ (𝑁𝑝) ↔ ∃𝑤𝑈 𝑋 = (𝑤 “ {𝑝})))
2015, 19mpbird 256 1 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → 𝑋 ∈ (𝑁𝑝))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wrex 3065  Vcvv 3432  cin 3886  wss 3887  c0 4256  {csn 4561  cmpt 5157   × cxp 5587  ran crn 5590  cima 5592  cfv 6433  UnifOncust 23351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ust 23352
This theorem is referenced by:  ustuqtop  23398  utopsnneiplem  23399
  Copyright terms: Public domain W3C validator