| Step | Hyp | Ref
| Expression |
| 1 | | peano1 7911 |
. . . 4
⊢ ∅
∈ ω |
| 2 | | fconst6g 6796 |
. . . 4
⊢ (∅
∈ ω → (𝑋
× {∅}):𝑋⟶ω) |
| 3 | 1, 2 | mp1i 13 |
. . 3
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑋 × {∅}):𝑋⟶ω) |
| 4 | | simpl 482 |
. . . 4
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → 𝑋 ∈ On) |
| 5 | 1 | a1i 11 |
. . . 4
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ∅ ∈
ω) |
| 6 | 4, 5 | fczfsuppd 9427 |
. . 3
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑋 × {∅}) finSupp
∅) |
| 7 | | simpr 484 |
. . . . 5
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → 𝑆 = dom (ω CNF 𝑋)) |
| 8 | 7 | eleq2d 2826 |
. . . 4
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ((𝑋 × {∅}) ∈ 𝑆 ↔ (𝑋 × {∅}) ∈ dom (ω CNF
𝑋))) |
| 9 | | eqid 2736 |
. . . . 5
⊢ dom
(ω CNF 𝑋) = dom
(ω CNF 𝑋) |
| 10 | | omelon 9687 |
. . . . . 6
⊢ ω
∈ On |
| 11 | 10 | a1i 11 |
. . . . 5
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ω ∈
On) |
| 12 | 9, 11, 4 | cantnfs 9707 |
. . . 4
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ((𝑋 × {∅}) ∈ dom (ω CNF
𝑋) ↔ ((𝑋 × {∅}):𝑋⟶ω ∧ (𝑋 × {∅}) finSupp
∅))) |
| 13 | 8, 12 | bitrd 279 |
. . 3
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ((𝑋 × {∅}) ∈ 𝑆 ↔ ((𝑋 × {∅}):𝑋⟶ω ∧ (𝑋 × {∅}) finSupp
∅))) |
| 14 | 3, 6, 13 | mpbir2and 713 |
. 2
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑋 × {∅}) ∈ 𝑆) |
| 15 | 7 | eleq2d 2826 |
. . . . . . . 8
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐹 ∈ 𝑆 ↔ 𝐹 ∈ dom (ω CNF 𝑋))) |
| 16 | 9, 11, 4 | cantnfs 9707 |
. . . . . . . 8
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐹 ∈ dom (ω CNF 𝑋) ↔ (𝐹:𝑋⟶ω ∧ 𝐹 finSupp ∅))) |
| 17 | 15, 16 | bitrd 279 |
. . . . . . 7
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐹 ∈ 𝑆 ↔ (𝐹:𝑋⟶ω ∧ 𝐹 finSupp ∅))) |
| 18 | 17 | simprbda 498 |
. . . . . 6
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹 ∈ 𝑆) → 𝐹:𝑋⟶ω) |
| 19 | 18 | ffnd 6736 |
. . . . 5
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹 ∈ 𝑆) → 𝐹 Fn 𝑋) |
| 20 | 19 | adantr 480 |
. . . 4
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹 ∈ 𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) → 𝐹 Fn 𝑋) |
| 21 | 2 | ffnd 6736 |
. . . . 5
⊢ (∅
∈ ω → (𝑋
× {∅}) Fn 𝑋) |
| 22 | 1, 21 | mp1i 13 |
. . . 4
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹 ∈ 𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) → (𝑋 × {∅}) Fn 𝑋) |
| 23 | | simplll 774 |
. . . 4
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹 ∈ 𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) → 𝑋 ∈ On) |
| 24 | | inidm 4226 |
. . . 4
⊢ (𝑋 ∩ 𝑋) = 𝑋 |
| 25 | 20, 22, 23, 23, 24 | offn 7711 |
. . 3
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹 ∈ 𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) → (𝐹 ∘f +o (𝑋 × {∅})) Fn 𝑋) |
| 26 | 20 | adantr 480 |
. . . . 5
⊢
(((((𝑋 ∈ On
∧ 𝑆 = dom (ω CNF
𝑋)) ∧ 𝐹 ∈ 𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) ∧ 𝑥 ∈ 𝑋) → 𝐹 Fn 𝑋) |
| 27 | 1, 21 | mp1i 13 |
. . . . 5
⊢
(((((𝑋 ∈ On
∧ 𝑆 = dom (ω CNF
𝑋)) ∧ 𝐹 ∈ 𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) ∧ 𝑥 ∈ 𝑋) → (𝑋 × {∅}) Fn 𝑋) |
| 28 | | simp-4l 782 |
. . . . 5
⊢
(((((𝑋 ∈ On
∧ 𝑆 = dom (ω CNF
𝑋)) ∧ 𝐹 ∈ 𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) ∧ 𝑥 ∈ 𝑋) → 𝑋 ∈ On) |
| 29 | | simpr 484 |
. . . . 5
⊢
(((((𝑋 ∈ On
∧ 𝑆 = dom (ω CNF
𝑋)) ∧ 𝐹 ∈ 𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
| 30 | | fnfvof 7715 |
. . . . 5
⊢ (((𝐹 Fn 𝑋 ∧ (𝑋 × {∅}) Fn 𝑋) ∧ (𝑋 ∈ On ∧ 𝑥 ∈ 𝑋)) → ((𝐹 ∘f +o (𝑋 × {∅}))‘𝑥) = ((𝐹‘𝑥) +o ((𝑋 × {∅})‘𝑥))) |
| 31 | 26, 27, 28, 29, 30 | syl22anc 838 |
. . . 4
⊢
(((((𝑋 ∈ On
∧ 𝑆 = dom (ω CNF
𝑋)) ∧ 𝐹 ∈ 𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) ∧ 𝑥 ∈ 𝑋) → ((𝐹 ∘f +o (𝑋 × {∅}))‘𝑥) = ((𝐹‘𝑥) +o ((𝑋 × {∅})‘𝑥))) |
| 32 | | fvconst2g 7223 |
. . . . . 6
⊢ ((∅
∈ ω ∧ 𝑥
∈ 𝑋) → ((𝑋 × {∅})‘𝑥) = ∅) |
| 33 | 1, 29, 32 | sylancr 587 |
. . . . 5
⊢
(((((𝑋 ∈ On
∧ 𝑆 = dom (ω CNF
𝑋)) ∧ 𝐹 ∈ 𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) ∧ 𝑥 ∈ 𝑋) → ((𝑋 × {∅})‘𝑥) = ∅) |
| 34 | 33 | oveq2d 7448 |
. . . 4
⊢
(((((𝑋 ∈ On
∧ 𝑆 = dom (ω CNF
𝑋)) ∧ 𝐹 ∈ 𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) ∧ 𝑥 ∈ 𝑋) → ((𝐹‘𝑥) +o ((𝑋 × {∅})‘𝑥)) = ((𝐹‘𝑥) +o ∅)) |
| 35 | 18 | adantr 480 |
. . . . . 6
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹 ∈ 𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) → 𝐹:𝑋⟶ω) |
| 36 | 35 | ffvelcdmda 7103 |
. . . . 5
⊢
(((((𝑋 ∈ On
∧ 𝑆 = dom (ω CNF
𝑋)) ∧ 𝐹 ∈ 𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) ∧ 𝑥 ∈ 𝑋) → (𝐹‘𝑥) ∈ ω) |
| 37 | | nna0 8643 |
. . . . 5
⊢ ((𝐹‘𝑥) ∈ ω → ((𝐹‘𝑥) +o ∅) = (𝐹‘𝑥)) |
| 38 | 36, 37 | syl 17 |
. . . 4
⊢
(((((𝑋 ∈ On
∧ 𝑆 = dom (ω CNF
𝑋)) ∧ 𝐹 ∈ 𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) ∧ 𝑥 ∈ 𝑋) → ((𝐹‘𝑥) +o ∅) = (𝐹‘𝑥)) |
| 39 | 31, 34, 38 | 3eqtrd 2780 |
. . 3
⊢
(((((𝑋 ∈ On
∧ 𝑆 = dom (ω CNF
𝑋)) ∧ 𝐹 ∈ 𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) ∧ 𝑥 ∈ 𝑋) → ((𝐹 ∘f +o (𝑋 × {∅}))‘𝑥) = (𝐹‘𝑥)) |
| 40 | 25, 20, 39 | eqfnfvd 7053 |
. 2
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹 ∈ 𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) → (𝐹 ∘f +o (𝑋 × {∅})) = 𝐹) |
| 41 | 14, 40 | mpidan 689 |
1
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹 ∈ 𝑆) → (𝐹 ∘f +o (𝑋 × {∅})) = 𝐹) |