Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  naddcnfid1 Structured version   Visualization version   GIF version

Theorem naddcnfid1 43484
Description: Identity law for component-wise ordinal addition of Cantor normal forms. (Contributed by RP, 3-Jan-2025.)
Assertion
Ref Expression
naddcnfid1 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) → (𝐹f +o (𝑋 × {∅})) = 𝐹)

Proof of Theorem naddcnfid1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 peano1 7825 . . . 4 ∅ ∈ ω
2 fconst6g 6717 . . . 4 (∅ ∈ ω → (𝑋 × {∅}):𝑋⟶ω)
31, 2mp1i 13 . . 3 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑋 × {∅}):𝑋⟶ω)
4 simpl 482 . . . 4 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → 𝑋 ∈ On)
51a1i 11 . . . 4 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ∅ ∈ ω)
64, 5fczfsuppd 9277 . . 3 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑋 × {∅}) finSupp ∅)
7 simpr 484 . . . . 5 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → 𝑆 = dom (ω CNF 𝑋))
87eleq2d 2819 . . . 4 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ((𝑋 × {∅}) ∈ 𝑆 ↔ (𝑋 × {∅}) ∈ dom (ω CNF 𝑋)))
9 eqid 2733 . . . . 5 dom (ω CNF 𝑋) = dom (ω CNF 𝑋)
10 omelon 9543 . . . . . 6 ω ∈ On
1110a1i 11 . . . . 5 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ω ∈ On)
129, 11, 4cantnfs 9563 . . . 4 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ((𝑋 × {∅}) ∈ dom (ω CNF 𝑋) ↔ ((𝑋 × {∅}):𝑋⟶ω ∧ (𝑋 × {∅}) finSupp ∅)))
138, 12bitrd 279 . . 3 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ((𝑋 × {∅}) ∈ 𝑆 ↔ ((𝑋 × {∅}):𝑋⟶ω ∧ (𝑋 × {∅}) finSupp ∅)))
143, 6, 13mpbir2and 713 . 2 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑋 × {∅}) ∈ 𝑆)
157eleq2d 2819 . . . . . . . 8 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐹𝑆𝐹 ∈ dom (ω CNF 𝑋)))
169, 11, 4cantnfs 9563 . . . . . . . 8 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐹 ∈ dom (ω CNF 𝑋) ↔ (𝐹:𝑋⟶ω ∧ 𝐹 finSupp ∅)))
1715, 16bitrd 279 . . . . . . 7 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐹𝑆 ↔ (𝐹:𝑋⟶ω ∧ 𝐹 finSupp ∅)))
1817simprbda 498 . . . . . 6 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) → 𝐹:𝑋⟶ω)
1918ffnd 6657 . . . . 5 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) → 𝐹 Fn 𝑋)
2019adantr 480 . . . 4 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) → 𝐹 Fn 𝑋)
212ffnd 6657 . . . . 5 (∅ ∈ ω → (𝑋 × {∅}) Fn 𝑋)
221, 21mp1i 13 . . . 4 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) → (𝑋 × {∅}) Fn 𝑋)
23 simplll 774 . . . 4 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) → 𝑋 ∈ On)
24 inidm 4176 . . . 4 (𝑋𝑋) = 𝑋
2520, 22, 23, 23, 24offn 7629 . . 3 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) → (𝐹f +o (𝑋 × {∅})) Fn 𝑋)
2620adantr 480 . . . . 5 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) ∧ 𝑥𝑋) → 𝐹 Fn 𝑋)
271, 21mp1i 13 . . . . 5 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) ∧ 𝑥𝑋) → (𝑋 × {∅}) Fn 𝑋)
28 simp-4l 782 . . . . 5 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) ∧ 𝑥𝑋) → 𝑋 ∈ On)
29 simpr 484 . . . . 5 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) ∧ 𝑥𝑋) → 𝑥𝑋)
30 fnfvof 7633 . . . . 5 (((𝐹 Fn 𝑋 ∧ (𝑋 × {∅}) Fn 𝑋) ∧ (𝑋 ∈ On ∧ 𝑥𝑋)) → ((𝐹f +o (𝑋 × {∅}))‘𝑥) = ((𝐹𝑥) +o ((𝑋 × {∅})‘𝑥)))
3126, 27, 28, 29, 30syl22anc 838 . . . 4 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) ∧ 𝑥𝑋) → ((𝐹f +o (𝑋 × {∅}))‘𝑥) = ((𝐹𝑥) +o ((𝑋 × {∅})‘𝑥)))
32 fvconst2g 7142 . . . . . 6 ((∅ ∈ ω ∧ 𝑥𝑋) → ((𝑋 × {∅})‘𝑥) = ∅)
331, 29, 32sylancr 587 . . . . 5 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) ∧ 𝑥𝑋) → ((𝑋 × {∅})‘𝑥) = ∅)
3433oveq2d 7368 . . . 4 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) ∧ 𝑥𝑋) → ((𝐹𝑥) +o ((𝑋 × {∅})‘𝑥)) = ((𝐹𝑥) +o ∅))
3518adantr 480 . . . . . 6 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) → 𝐹:𝑋⟶ω)
3635ffvelcdmda 7023 . . . . 5 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) ∧ 𝑥𝑋) → (𝐹𝑥) ∈ ω)
37 nna0 8525 . . . . 5 ((𝐹𝑥) ∈ ω → ((𝐹𝑥) +o ∅) = (𝐹𝑥))
3836, 37syl 17 . . . 4 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) ∧ 𝑥𝑋) → ((𝐹𝑥) +o ∅) = (𝐹𝑥))
3931, 34, 383eqtrd 2772 . . 3 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) ∧ 𝑥𝑋) → ((𝐹f +o (𝑋 × {∅}))‘𝑥) = (𝐹𝑥))
4025, 20, 39eqfnfvd 6973 . 2 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) → (𝐹f +o (𝑋 × {∅})) = 𝐹)
4114, 40mpidan 689 1 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) → (𝐹f +o (𝑋 × {∅})) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  c0 4282  {csn 4575   class class class wbr 5093   × cxp 5617  dom cdm 5619  Oncon0 6311   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7352  f cof 7614  ωcom 7802   +o coa 8388   finSupp cfsupp 9252   CNF ccnf 9558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-seqom 8373  df-oadd 8395  df-map 8758  df-en 8876  df-fin 8879  df-fsupp 9253  df-cnf 9559
This theorem is referenced by:  naddcnfid2  43485
  Copyright terms: Public domain W3C validator