Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  naddcnfid1 Structured version   Visualization version   GIF version

Theorem naddcnfid1 43385
Description: Identity law for component-wise ordinal addition of Cantor normal forms. (Contributed by RP, 3-Jan-2025.)
Assertion
Ref Expression
naddcnfid1 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) → (𝐹f +o (𝑋 × {∅})) = 𝐹)

Proof of Theorem naddcnfid1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 peano1 7911 . . . 4 ∅ ∈ ω
2 fconst6g 6796 . . . 4 (∅ ∈ ω → (𝑋 × {∅}):𝑋⟶ω)
31, 2mp1i 13 . . 3 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑋 × {∅}):𝑋⟶ω)
4 simpl 482 . . . 4 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → 𝑋 ∈ On)
51a1i 11 . . . 4 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ∅ ∈ ω)
64, 5fczfsuppd 9427 . . 3 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑋 × {∅}) finSupp ∅)
7 simpr 484 . . . . 5 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → 𝑆 = dom (ω CNF 𝑋))
87eleq2d 2826 . . . 4 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ((𝑋 × {∅}) ∈ 𝑆 ↔ (𝑋 × {∅}) ∈ dom (ω CNF 𝑋)))
9 eqid 2736 . . . . 5 dom (ω CNF 𝑋) = dom (ω CNF 𝑋)
10 omelon 9687 . . . . . 6 ω ∈ On
1110a1i 11 . . . . 5 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ω ∈ On)
129, 11, 4cantnfs 9707 . . . 4 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ((𝑋 × {∅}) ∈ dom (ω CNF 𝑋) ↔ ((𝑋 × {∅}):𝑋⟶ω ∧ (𝑋 × {∅}) finSupp ∅)))
138, 12bitrd 279 . . 3 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ((𝑋 × {∅}) ∈ 𝑆 ↔ ((𝑋 × {∅}):𝑋⟶ω ∧ (𝑋 × {∅}) finSupp ∅)))
143, 6, 13mpbir2and 713 . 2 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑋 × {∅}) ∈ 𝑆)
157eleq2d 2826 . . . . . . . 8 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐹𝑆𝐹 ∈ dom (ω CNF 𝑋)))
169, 11, 4cantnfs 9707 . . . . . . . 8 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐹 ∈ dom (ω CNF 𝑋) ↔ (𝐹:𝑋⟶ω ∧ 𝐹 finSupp ∅)))
1715, 16bitrd 279 . . . . . . 7 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐹𝑆 ↔ (𝐹:𝑋⟶ω ∧ 𝐹 finSupp ∅)))
1817simprbda 498 . . . . . 6 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) → 𝐹:𝑋⟶ω)
1918ffnd 6736 . . . . 5 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) → 𝐹 Fn 𝑋)
2019adantr 480 . . . 4 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) → 𝐹 Fn 𝑋)
212ffnd 6736 . . . . 5 (∅ ∈ ω → (𝑋 × {∅}) Fn 𝑋)
221, 21mp1i 13 . . . 4 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) → (𝑋 × {∅}) Fn 𝑋)
23 simplll 774 . . . 4 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) → 𝑋 ∈ On)
24 inidm 4226 . . . 4 (𝑋𝑋) = 𝑋
2520, 22, 23, 23, 24offn 7711 . . 3 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) → (𝐹f +o (𝑋 × {∅})) Fn 𝑋)
2620adantr 480 . . . . 5 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) ∧ 𝑥𝑋) → 𝐹 Fn 𝑋)
271, 21mp1i 13 . . . . 5 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) ∧ 𝑥𝑋) → (𝑋 × {∅}) Fn 𝑋)
28 simp-4l 782 . . . . 5 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) ∧ 𝑥𝑋) → 𝑋 ∈ On)
29 simpr 484 . . . . 5 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) ∧ 𝑥𝑋) → 𝑥𝑋)
30 fnfvof 7715 . . . . 5 (((𝐹 Fn 𝑋 ∧ (𝑋 × {∅}) Fn 𝑋) ∧ (𝑋 ∈ On ∧ 𝑥𝑋)) → ((𝐹f +o (𝑋 × {∅}))‘𝑥) = ((𝐹𝑥) +o ((𝑋 × {∅})‘𝑥)))
3126, 27, 28, 29, 30syl22anc 838 . . . 4 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) ∧ 𝑥𝑋) → ((𝐹f +o (𝑋 × {∅}))‘𝑥) = ((𝐹𝑥) +o ((𝑋 × {∅})‘𝑥)))
32 fvconst2g 7223 . . . . . 6 ((∅ ∈ ω ∧ 𝑥𝑋) → ((𝑋 × {∅})‘𝑥) = ∅)
331, 29, 32sylancr 587 . . . . 5 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) ∧ 𝑥𝑋) → ((𝑋 × {∅})‘𝑥) = ∅)
3433oveq2d 7448 . . . 4 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) ∧ 𝑥𝑋) → ((𝐹𝑥) +o ((𝑋 × {∅})‘𝑥)) = ((𝐹𝑥) +o ∅))
3518adantr 480 . . . . . 6 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) → 𝐹:𝑋⟶ω)
3635ffvelcdmda 7103 . . . . 5 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) ∧ 𝑥𝑋) → (𝐹𝑥) ∈ ω)
37 nna0 8643 . . . . 5 ((𝐹𝑥) ∈ ω → ((𝐹𝑥) +o ∅) = (𝐹𝑥))
3836, 37syl 17 . . . 4 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) ∧ 𝑥𝑋) → ((𝐹𝑥) +o ∅) = (𝐹𝑥))
3931, 34, 383eqtrd 2780 . . 3 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) ∧ 𝑥𝑋) → ((𝐹f +o (𝑋 × {∅}))‘𝑥) = (𝐹𝑥))
4025, 20, 39eqfnfvd 7053 . 2 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) → (𝐹f +o (𝑋 × {∅})) = 𝐹)
4114, 40mpidan 689 1 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) → (𝐹f +o (𝑋 × {∅})) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  c0 4332  {csn 4625   class class class wbr 5142   × cxp 5682  dom cdm 5684  Oncon0 6383   Fn wfn 6555  wf 6556  cfv 6560  (class class class)co 7432  f cof 7696  ωcom 7888   +o coa 8504   finSupp cfsupp 9402   CNF ccnf 9702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-om 7889  df-2nd 8016  df-supp 8187  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-seqom 8489  df-oadd 8511  df-map 8869  df-en 8987  df-fin 8990  df-fsupp 9403  df-cnf 9703
This theorem is referenced by:  naddcnfid2  43386
  Copyright terms: Public domain W3C validator