Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  naddcnfid1 Structured version   Visualization version   GIF version

Theorem naddcnfid1 43356
Description: Identity law for component-wise ordinal addition of Cantor normal forms. (Contributed by RP, 3-Jan-2025.)
Assertion
Ref Expression
naddcnfid1 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) → (𝐹f +o (𝑋 × {∅})) = 𝐹)

Proof of Theorem naddcnfid1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 peano1 7865 . . . 4 ∅ ∈ ω
2 fconst6g 6749 . . . 4 (∅ ∈ ω → (𝑋 × {∅}):𝑋⟶ω)
31, 2mp1i 13 . . 3 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑋 × {∅}):𝑋⟶ω)
4 simpl 482 . . . 4 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → 𝑋 ∈ On)
51a1i 11 . . . 4 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ∅ ∈ ω)
64, 5fczfsuppd 9337 . . 3 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑋 × {∅}) finSupp ∅)
7 simpr 484 . . . . 5 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → 𝑆 = dom (ω CNF 𝑋))
87eleq2d 2814 . . . 4 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ((𝑋 × {∅}) ∈ 𝑆 ↔ (𝑋 × {∅}) ∈ dom (ω CNF 𝑋)))
9 eqid 2729 . . . . 5 dom (ω CNF 𝑋) = dom (ω CNF 𝑋)
10 omelon 9599 . . . . . 6 ω ∈ On
1110a1i 11 . . . . 5 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ω ∈ On)
129, 11, 4cantnfs 9619 . . . 4 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ((𝑋 × {∅}) ∈ dom (ω CNF 𝑋) ↔ ((𝑋 × {∅}):𝑋⟶ω ∧ (𝑋 × {∅}) finSupp ∅)))
138, 12bitrd 279 . . 3 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ((𝑋 × {∅}) ∈ 𝑆 ↔ ((𝑋 × {∅}):𝑋⟶ω ∧ (𝑋 × {∅}) finSupp ∅)))
143, 6, 13mpbir2and 713 . 2 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑋 × {∅}) ∈ 𝑆)
157eleq2d 2814 . . . . . . . 8 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐹𝑆𝐹 ∈ dom (ω CNF 𝑋)))
169, 11, 4cantnfs 9619 . . . . . . . 8 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐹 ∈ dom (ω CNF 𝑋) ↔ (𝐹:𝑋⟶ω ∧ 𝐹 finSupp ∅)))
1715, 16bitrd 279 . . . . . . 7 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐹𝑆 ↔ (𝐹:𝑋⟶ω ∧ 𝐹 finSupp ∅)))
1817simprbda 498 . . . . . 6 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) → 𝐹:𝑋⟶ω)
1918ffnd 6689 . . . . 5 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) → 𝐹 Fn 𝑋)
2019adantr 480 . . . 4 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) → 𝐹 Fn 𝑋)
212ffnd 6689 . . . . 5 (∅ ∈ ω → (𝑋 × {∅}) Fn 𝑋)
221, 21mp1i 13 . . . 4 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) → (𝑋 × {∅}) Fn 𝑋)
23 simplll 774 . . . 4 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) → 𝑋 ∈ On)
24 inidm 4190 . . . 4 (𝑋𝑋) = 𝑋
2520, 22, 23, 23, 24offn 7666 . . 3 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) → (𝐹f +o (𝑋 × {∅})) Fn 𝑋)
2620adantr 480 . . . . 5 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) ∧ 𝑥𝑋) → 𝐹 Fn 𝑋)
271, 21mp1i 13 . . . . 5 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) ∧ 𝑥𝑋) → (𝑋 × {∅}) Fn 𝑋)
28 simp-4l 782 . . . . 5 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) ∧ 𝑥𝑋) → 𝑋 ∈ On)
29 simpr 484 . . . . 5 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) ∧ 𝑥𝑋) → 𝑥𝑋)
30 fnfvof 7670 . . . . 5 (((𝐹 Fn 𝑋 ∧ (𝑋 × {∅}) Fn 𝑋) ∧ (𝑋 ∈ On ∧ 𝑥𝑋)) → ((𝐹f +o (𝑋 × {∅}))‘𝑥) = ((𝐹𝑥) +o ((𝑋 × {∅})‘𝑥)))
3126, 27, 28, 29, 30syl22anc 838 . . . 4 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) ∧ 𝑥𝑋) → ((𝐹f +o (𝑋 × {∅}))‘𝑥) = ((𝐹𝑥) +o ((𝑋 × {∅})‘𝑥)))
32 fvconst2g 7176 . . . . . 6 ((∅ ∈ ω ∧ 𝑥𝑋) → ((𝑋 × {∅})‘𝑥) = ∅)
331, 29, 32sylancr 587 . . . . 5 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) ∧ 𝑥𝑋) → ((𝑋 × {∅})‘𝑥) = ∅)
3433oveq2d 7403 . . . 4 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) ∧ 𝑥𝑋) → ((𝐹𝑥) +o ((𝑋 × {∅})‘𝑥)) = ((𝐹𝑥) +o ∅))
3518adantr 480 . . . . . 6 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) → 𝐹:𝑋⟶ω)
3635ffvelcdmda 7056 . . . . 5 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) ∧ 𝑥𝑋) → (𝐹𝑥) ∈ ω)
37 nna0 8568 . . . . 5 ((𝐹𝑥) ∈ ω → ((𝐹𝑥) +o ∅) = (𝐹𝑥))
3836, 37syl 17 . . . 4 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) ∧ 𝑥𝑋) → ((𝐹𝑥) +o ∅) = (𝐹𝑥))
3931, 34, 383eqtrd 2768 . . 3 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) ∧ 𝑥𝑋) → ((𝐹f +o (𝑋 × {∅}))‘𝑥) = (𝐹𝑥))
4025, 20, 39eqfnfvd 7006 . 2 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) → (𝐹f +o (𝑋 × {∅})) = 𝐹)
4114, 40mpidan 689 1 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) → (𝐹f +o (𝑋 × {∅})) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  c0 4296  {csn 4589   class class class wbr 5107   × cxp 5636  dom cdm 5638  Oncon0 6332   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  f cof 7651  ωcom 7842   +o coa 8431   finSupp cfsupp 9312   CNF ccnf 9614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-seqom 8416  df-oadd 8438  df-map 8801  df-en 8919  df-fin 8922  df-fsupp 9313  df-cnf 9615
This theorem is referenced by:  naddcnfid2  43357
  Copyright terms: Public domain W3C validator