Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  naddcnfid1 Structured version   Visualization version   GIF version

Theorem naddcnfid1 43366
Description: Identity law for component-wise ordinal addition of Cantor normal forms. (Contributed by RP, 3-Jan-2025.)
Assertion
Ref Expression
naddcnfid1 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) → (𝐹f +o (𝑋 × {∅})) = 𝐹)

Proof of Theorem naddcnfid1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 peano1 7889 . . . 4 ∅ ∈ ω
2 fconst6g 6772 . . . 4 (∅ ∈ ω → (𝑋 × {∅}):𝑋⟶ω)
31, 2mp1i 13 . . 3 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑋 × {∅}):𝑋⟶ω)
4 simpl 482 . . . 4 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → 𝑋 ∈ On)
51a1i 11 . . . 4 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ∅ ∈ ω)
64, 5fczfsuppd 9403 . . 3 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑋 × {∅}) finSupp ∅)
7 simpr 484 . . . . 5 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → 𝑆 = dom (ω CNF 𝑋))
87eleq2d 2821 . . . 4 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ((𝑋 × {∅}) ∈ 𝑆 ↔ (𝑋 × {∅}) ∈ dom (ω CNF 𝑋)))
9 eqid 2736 . . . . 5 dom (ω CNF 𝑋) = dom (ω CNF 𝑋)
10 omelon 9665 . . . . . 6 ω ∈ On
1110a1i 11 . . . . 5 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ω ∈ On)
129, 11, 4cantnfs 9685 . . . 4 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ((𝑋 × {∅}) ∈ dom (ω CNF 𝑋) ↔ ((𝑋 × {∅}):𝑋⟶ω ∧ (𝑋 × {∅}) finSupp ∅)))
138, 12bitrd 279 . . 3 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ((𝑋 × {∅}) ∈ 𝑆 ↔ ((𝑋 × {∅}):𝑋⟶ω ∧ (𝑋 × {∅}) finSupp ∅)))
143, 6, 13mpbir2and 713 . 2 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑋 × {∅}) ∈ 𝑆)
157eleq2d 2821 . . . . . . . 8 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐹𝑆𝐹 ∈ dom (ω CNF 𝑋)))
169, 11, 4cantnfs 9685 . . . . . . . 8 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐹 ∈ dom (ω CNF 𝑋) ↔ (𝐹:𝑋⟶ω ∧ 𝐹 finSupp ∅)))
1715, 16bitrd 279 . . . . . . 7 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐹𝑆 ↔ (𝐹:𝑋⟶ω ∧ 𝐹 finSupp ∅)))
1817simprbda 498 . . . . . 6 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) → 𝐹:𝑋⟶ω)
1918ffnd 6712 . . . . 5 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) → 𝐹 Fn 𝑋)
2019adantr 480 . . . 4 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) → 𝐹 Fn 𝑋)
212ffnd 6712 . . . . 5 (∅ ∈ ω → (𝑋 × {∅}) Fn 𝑋)
221, 21mp1i 13 . . . 4 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) → (𝑋 × {∅}) Fn 𝑋)
23 simplll 774 . . . 4 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) → 𝑋 ∈ On)
24 inidm 4207 . . . 4 (𝑋𝑋) = 𝑋
2520, 22, 23, 23, 24offn 7689 . . 3 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) → (𝐹f +o (𝑋 × {∅})) Fn 𝑋)
2620adantr 480 . . . . 5 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) ∧ 𝑥𝑋) → 𝐹 Fn 𝑋)
271, 21mp1i 13 . . . . 5 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) ∧ 𝑥𝑋) → (𝑋 × {∅}) Fn 𝑋)
28 simp-4l 782 . . . . 5 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) ∧ 𝑥𝑋) → 𝑋 ∈ On)
29 simpr 484 . . . . 5 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) ∧ 𝑥𝑋) → 𝑥𝑋)
30 fnfvof 7693 . . . . 5 (((𝐹 Fn 𝑋 ∧ (𝑋 × {∅}) Fn 𝑋) ∧ (𝑋 ∈ On ∧ 𝑥𝑋)) → ((𝐹f +o (𝑋 × {∅}))‘𝑥) = ((𝐹𝑥) +o ((𝑋 × {∅})‘𝑥)))
3126, 27, 28, 29, 30syl22anc 838 . . . 4 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) ∧ 𝑥𝑋) → ((𝐹f +o (𝑋 × {∅}))‘𝑥) = ((𝐹𝑥) +o ((𝑋 × {∅})‘𝑥)))
32 fvconst2g 7199 . . . . . 6 ((∅ ∈ ω ∧ 𝑥𝑋) → ((𝑋 × {∅})‘𝑥) = ∅)
331, 29, 32sylancr 587 . . . . 5 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) ∧ 𝑥𝑋) → ((𝑋 × {∅})‘𝑥) = ∅)
3433oveq2d 7426 . . . 4 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) ∧ 𝑥𝑋) → ((𝐹𝑥) +o ((𝑋 × {∅})‘𝑥)) = ((𝐹𝑥) +o ∅))
3518adantr 480 . . . . . 6 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) → 𝐹:𝑋⟶ω)
3635ffvelcdmda 7079 . . . . 5 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) ∧ 𝑥𝑋) → (𝐹𝑥) ∈ ω)
37 nna0 8621 . . . . 5 ((𝐹𝑥) ∈ ω → ((𝐹𝑥) +o ∅) = (𝐹𝑥))
3836, 37syl 17 . . . 4 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) ∧ 𝑥𝑋) → ((𝐹𝑥) +o ∅) = (𝐹𝑥))
3931, 34, 383eqtrd 2775 . . 3 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) ∧ 𝑥𝑋) → ((𝐹f +o (𝑋 × {∅}))‘𝑥) = (𝐹𝑥))
4025, 20, 39eqfnfvd 7029 . 2 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) → (𝐹f +o (𝑋 × {∅})) = 𝐹)
4114, 40mpidan 689 1 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹𝑆) → (𝐹f +o (𝑋 × {∅})) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  c0 4313  {csn 4606   class class class wbr 5124   × cxp 5657  dom cdm 5659  Oncon0 6357   Fn wfn 6531  wf 6532  cfv 6536  (class class class)co 7410  f cof 7674  ωcom 7866   +o coa 8482   finSupp cfsupp 9378   CNF ccnf 9680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-seqom 8467  df-oadd 8489  df-map 8847  df-en 8965  df-fin 8968  df-fsupp 9379  df-cnf 9681
This theorem is referenced by:  naddcnfid2  43367
  Copyright terms: Public domain W3C validator