Step | Hyp | Ref
| Expression |
1 | | peano1 7767 |
. . . 4
⊢ ∅
∈ ω |
2 | | fconst6g 6693 |
. . . 4
⊢ (∅
∈ ω → (𝑋
× {∅}):𝑋⟶ω) |
3 | 1, 2 | mp1i 13 |
. . 3
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑋 × {∅}):𝑋⟶ω) |
4 | | simpl 484 |
. . . 4
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → 𝑋 ∈ On) |
5 | 1 | a1i 11 |
. . . 4
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ∅ ∈
ω) |
6 | 4, 5 | fczfsuppd 9198 |
. . 3
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑋 × {∅}) finSupp
∅) |
7 | | simpr 486 |
. . . . 5
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → 𝑆 = dom (ω CNF 𝑋)) |
8 | 7 | eleq2d 2822 |
. . . 4
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ((𝑋 × {∅}) ∈ 𝑆 ↔ (𝑋 × {∅}) ∈ dom (ω CNF
𝑋))) |
9 | | eqid 2736 |
. . . . 5
⊢ dom
(ω CNF 𝑋) = dom
(ω CNF 𝑋) |
10 | | omelon 9456 |
. . . . . 6
⊢ ω
∈ On |
11 | 10 | a1i 11 |
. . . . 5
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ω ∈
On) |
12 | 9, 11, 4 | cantnfs 9476 |
. . . 4
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ((𝑋 × {∅}) ∈ dom (ω CNF
𝑋) ↔ ((𝑋 × {∅}):𝑋⟶ω ∧ (𝑋 × {∅}) finSupp
∅))) |
13 | 8, 12 | bitrd 279 |
. . 3
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ((𝑋 × {∅}) ∈ 𝑆 ↔ ((𝑋 × {∅}):𝑋⟶ω ∧ (𝑋 × {∅}) finSupp
∅))) |
14 | 3, 6, 13 | mpbir2and 711 |
. 2
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑋 × {∅}) ∈ 𝑆) |
15 | 7 | eleq2d 2822 |
. . . . . . . 8
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐹 ∈ 𝑆 ↔ 𝐹 ∈ dom (ω CNF 𝑋))) |
16 | 9, 11, 4 | cantnfs 9476 |
. . . . . . . 8
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐹 ∈ dom (ω CNF 𝑋) ↔ (𝐹:𝑋⟶ω ∧ 𝐹 finSupp ∅))) |
17 | 15, 16 | bitrd 279 |
. . . . . . 7
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐹 ∈ 𝑆 ↔ (𝐹:𝑋⟶ω ∧ 𝐹 finSupp ∅))) |
18 | 17 | simprbda 500 |
. . . . . 6
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹 ∈ 𝑆) → 𝐹:𝑋⟶ω) |
19 | 18 | ffnd 6631 |
. . . . 5
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹 ∈ 𝑆) → 𝐹 Fn 𝑋) |
20 | 19 | adantr 482 |
. . . 4
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹 ∈ 𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) → 𝐹 Fn 𝑋) |
21 | 2 | ffnd 6631 |
. . . . 5
⊢ (∅
∈ ω → (𝑋
× {∅}) Fn 𝑋) |
22 | 1, 21 | mp1i 13 |
. . . 4
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹 ∈ 𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) → (𝑋 × {∅}) Fn 𝑋) |
23 | | simplll 773 |
. . . 4
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹 ∈ 𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) → 𝑋 ∈ On) |
24 | | inidm 4158 |
. . . 4
⊢ (𝑋 ∩ 𝑋) = 𝑋 |
25 | 20, 22, 23, 23, 24 | offn 7578 |
. . 3
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹 ∈ 𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) → (𝐹 ∘f +o (𝑋 × {∅})) Fn 𝑋) |
26 | 20 | adantr 482 |
. . . . 5
⊢
(((((𝑋 ∈ On
∧ 𝑆 = dom (ω CNF
𝑋)) ∧ 𝐹 ∈ 𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) ∧ 𝑥 ∈ 𝑋) → 𝐹 Fn 𝑋) |
27 | 1, 21 | mp1i 13 |
. . . . 5
⊢
(((((𝑋 ∈ On
∧ 𝑆 = dom (ω CNF
𝑋)) ∧ 𝐹 ∈ 𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) ∧ 𝑥 ∈ 𝑋) → (𝑋 × {∅}) Fn 𝑋) |
28 | | simp-4l 781 |
. . . . 5
⊢
(((((𝑋 ∈ On
∧ 𝑆 = dom (ω CNF
𝑋)) ∧ 𝐹 ∈ 𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) ∧ 𝑥 ∈ 𝑋) → 𝑋 ∈ On) |
29 | | simpr 486 |
. . . . 5
⊢
(((((𝑋 ∈ On
∧ 𝑆 = dom (ω CNF
𝑋)) ∧ 𝐹 ∈ 𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
30 | | fnfvof 7582 |
. . . . 5
⊢ (((𝐹 Fn 𝑋 ∧ (𝑋 × {∅}) Fn 𝑋) ∧ (𝑋 ∈ On ∧ 𝑥 ∈ 𝑋)) → ((𝐹 ∘f +o (𝑋 × {∅}))‘𝑥) = ((𝐹‘𝑥) +o ((𝑋 × {∅})‘𝑥))) |
31 | 26, 27, 28, 29, 30 | syl22anc 837 |
. . . 4
⊢
(((((𝑋 ∈ On
∧ 𝑆 = dom (ω CNF
𝑋)) ∧ 𝐹 ∈ 𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) ∧ 𝑥 ∈ 𝑋) → ((𝐹 ∘f +o (𝑋 × {∅}))‘𝑥) = ((𝐹‘𝑥) +o ((𝑋 × {∅})‘𝑥))) |
32 | | fvconst2g 7109 |
. . . . . 6
⊢ ((∅
∈ ω ∧ 𝑥
∈ 𝑋) → ((𝑋 × {∅})‘𝑥) = ∅) |
33 | 1, 29, 32 | sylancr 588 |
. . . . 5
⊢
(((((𝑋 ∈ On
∧ 𝑆 = dom (ω CNF
𝑋)) ∧ 𝐹 ∈ 𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) ∧ 𝑥 ∈ 𝑋) → ((𝑋 × {∅})‘𝑥) = ∅) |
34 | 33 | oveq2d 7323 |
. . . 4
⊢
(((((𝑋 ∈ On
∧ 𝑆 = dom (ω CNF
𝑋)) ∧ 𝐹 ∈ 𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) ∧ 𝑥 ∈ 𝑋) → ((𝐹‘𝑥) +o ((𝑋 × {∅})‘𝑥)) = ((𝐹‘𝑥) +o ∅)) |
35 | 18 | adantr 482 |
. . . . . 6
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹 ∈ 𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) → 𝐹:𝑋⟶ω) |
36 | 35 | ffvelcdmda 6993 |
. . . . 5
⊢
(((((𝑋 ∈ On
∧ 𝑆 = dom (ω CNF
𝑋)) ∧ 𝐹 ∈ 𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) ∧ 𝑥 ∈ 𝑋) → (𝐹‘𝑥) ∈ ω) |
37 | | nna0 8466 |
. . . . 5
⊢ ((𝐹‘𝑥) ∈ ω → ((𝐹‘𝑥) +o ∅) = (𝐹‘𝑥)) |
38 | 36, 37 | syl 17 |
. . . 4
⊢
(((((𝑋 ∈ On
∧ 𝑆 = dom (ω CNF
𝑋)) ∧ 𝐹 ∈ 𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) ∧ 𝑥 ∈ 𝑋) → ((𝐹‘𝑥) +o ∅) = (𝐹‘𝑥)) |
39 | 31, 34, 38 | 3eqtrd 2780 |
. . 3
⊢
(((((𝑋 ∈ On
∧ 𝑆 = dom (ω CNF
𝑋)) ∧ 𝐹 ∈ 𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) ∧ 𝑥 ∈ 𝑋) → ((𝐹 ∘f +o (𝑋 × {∅}))‘𝑥) = (𝐹‘𝑥)) |
40 | 25, 20, 39 | eqfnfvd 6944 |
. 2
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹 ∈ 𝑆) ∧ (𝑋 × {∅}) ∈ 𝑆) → (𝐹 ∘f +o (𝑋 × {∅})) = 𝐹) |
41 | 14, 40 | mpidan 687 |
1
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹 ∈ 𝑆) → (𝐹 ∘f +o (𝑋 × {∅})) = 𝐹) |