![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > asclpropd | Structured version Visualization version GIF version |
Description: If two structures have the same components (properties), one is an associative algebra iff the other one is. The last hypotheses on 1r can be discharged either by letting 𝑊 = V (if strong equality is known on ·𝑠) or assuming 𝐾 is a ring. (Contributed by Mario Carneiro, 5-Jul-2015.) |
Ref | Expression |
---|---|
asclpropd.f | ⊢ 𝐹 = (Scalar‘𝐾) |
asclpropd.g | ⊢ 𝐺 = (Scalar‘𝐿) |
asclpropd.1 | ⊢ (𝜑 → 𝑃 = (Base‘𝐹)) |
asclpropd.2 | ⊢ (𝜑 → 𝑃 = (Base‘𝐺)) |
asclpropd.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑊)) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) |
asclpropd.4 | ⊢ (𝜑 → (1r‘𝐾) = (1r‘𝐿)) |
asclpropd.5 | ⊢ (𝜑 → (1r‘𝐾) ∈ 𝑊) |
Ref | Expression |
---|---|
asclpropd | ⊢ (𝜑 → (algSc‘𝐾) = (algSc‘𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | asclpropd.5 | . . . . . 6 ⊢ (𝜑 → (1r‘𝐾) ∈ 𝑊) | |
2 | asclpropd.3 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑊)) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) | |
3 | 2 | oveqrspc2v 7457 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝑃 ∧ (1r‘𝐾) ∈ 𝑊)) → (𝑧( ·𝑠 ‘𝐾)(1r‘𝐾)) = (𝑧( ·𝑠 ‘𝐿)(1r‘𝐾))) |
4 | 3 | anassrs 467 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑃) ∧ (1r‘𝐾) ∈ 𝑊) → (𝑧( ·𝑠 ‘𝐾)(1r‘𝐾)) = (𝑧( ·𝑠 ‘𝐿)(1r‘𝐾))) |
5 | 1, 4 | mpidan 689 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑃) → (𝑧( ·𝑠 ‘𝐾)(1r‘𝐾)) = (𝑧( ·𝑠 ‘𝐿)(1r‘𝐾))) |
6 | asclpropd.4 | . . . . . . 7 ⊢ (𝜑 → (1r‘𝐾) = (1r‘𝐿)) | |
7 | 6 | oveq2d 7446 | . . . . . 6 ⊢ (𝜑 → (𝑧( ·𝑠 ‘𝐿)(1r‘𝐾)) = (𝑧( ·𝑠 ‘𝐿)(1r‘𝐿))) |
8 | 7 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑃) → (𝑧( ·𝑠 ‘𝐿)(1r‘𝐾)) = (𝑧( ·𝑠 ‘𝐿)(1r‘𝐿))) |
9 | 5, 8 | eqtrd 2774 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑃) → (𝑧( ·𝑠 ‘𝐾)(1r‘𝐾)) = (𝑧( ·𝑠 ‘𝐿)(1r‘𝐿))) |
10 | 9 | mpteq2dva 5247 | . . 3 ⊢ (𝜑 → (𝑧 ∈ 𝑃 ↦ (𝑧( ·𝑠 ‘𝐾)(1r‘𝐾))) = (𝑧 ∈ 𝑃 ↦ (𝑧( ·𝑠 ‘𝐿)(1r‘𝐿)))) |
11 | asclpropd.1 | . . . 4 ⊢ (𝜑 → 𝑃 = (Base‘𝐹)) | |
12 | 11 | mpteq1d 5242 | . . 3 ⊢ (𝜑 → (𝑧 ∈ 𝑃 ↦ (𝑧( ·𝑠 ‘𝐾)(1r‘𝐾))) = (𝑧 ∈ (Base‘𝐹) ↦ (𝑧( ·𝑠 ‘𝐾)(1r‘𝐾)))) |
13 | asclpropd.2 | . . . 4 ⊢ (𝜑 → 𝑃 = (Base‘𝐺)) | |
14 | 13 | mpteq1d 5242 | . . 3 ⊢ (𝜑 → (𝑧 ∈ 𝑃 ↦ (𝑧( ·𝑠 ‘𝐿)(1r‘𝐿))) = (𝑧 ∈ (Base‘𝐺) ↦ (𝑧( ·𝑠 ‘𝐿)(1r‘𝐿)))) |
15 | 10, 12, 14 | 3eqtr3d 2782 | . 2 ⊢ (𝜑 → (𝑧 ∈ (Base‘𝐹) ↦ (𝑧( ·𝑠 ‘𝐾)(1r‘𝐾))) = (𝑧 ∈ (Base‘𝐺) ↦ (𝑧( ·𝑠 ‘𝐿)(1r‘𝐿)))) |
16 | eqid 2734 | . . 3 ⊢ (algSc‘𝐾) = (algSc‘𝐾) | |
17 | asclpropd.f | . . 3 ⊢ 𝐹 = (Scalar‘𝐾) | |
18 | eqid 2734 | . . 3 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
19 | eqid 2734 | . . 3 ⊢ ( ·𝑠 ‘𝐾) = ( ·𝑠 ‘𝐾) | |
20 | eqid 2734 | . . 3 ⊢ (1r‘𝐾) = (1r‘𝐾) | |
21 | 16, 17, 18, 19, 20 | asclfval 21916 | . 2 ⊢ (algSc‘𝐾) = (𝑧 ∈ (Base‘𝐹) ↦ (𝑧( ·𝑠 ‘𝐾)(1r‘𝐾))) |
22 | eqid 2734 | . . 3 ⊢ (algSc‘𝐿) = (algSc‘𝐿) | |
23 | asclpropd.g | . . 3 ⊢ 𝐺 = (Scalar‘𝐿) | |
24 | eqid 2734 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
25 | eqid 2734 | . . 3 ⊢ ( ·𝑠 ‘𝐿) = ( ·𝑠 ‘𝐿) | |
26 | eqid 2734 | . . 3 ⊢ (1r‘𝐿) = (1r‘𝐿) | |
27 | 22, 23, 24, 25, 26 | asclfval 21916 | . 2 ⊢ (algSc‘𝐿) = (𝑧 ∈ (Base‘𝐺) ↦ (𝑧( ·𝑠 ‘𝐿)(1r‘𝐿))) |
28 | 15, 21, 27 | 3eqtr4g 2799 | 1 ⊢ (𝜑 → (algSc‘𝐾) = (algSc‘𝐿)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ↦ cmpt 5230 ‘cfv 6562 (class class class)co 7430 Basecbs 17244 Scalarcsca 17300 ·𝑠 cvsca 17301 1rcur 20198 algSccascl 21889 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-1cn 11210 ax-addcl 11212 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-om 7887 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-nn 12264 df-slot 17215 df-ndx 17227 df-base 17245 df-ascl 21892 |
This theorem is referenced by: ply1ascl 22276 |
Copyright terms: Public domain | W3C validator |