| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > asclpropd | Structured version Visualization version GIF version | ||
| Description: If two structures have the same components (properties), one is an associative algebra iff the other one is. The last hypotheses on 1r can be discharged either by letting 𝑊 = V (if strong equality is known on ·𝑠) or assuming 𝐾 is a ring. (Contributed by Mario Carneiro, 5-Jul-2015.) |
| Ref | Expression |
|---|---|
| asclpropd.f | ⊢ 𝐹 = (Scalar‘𝐾) |
| asclpropd.g | ⊢ 𝐺 = (Scalar‘𝐿) |
| asclpropd.1 | ⊢ (𝜑 → 𝑃 = (Base‘𝐹)) |
| asclpropd.2 | ⊢ (𝜑 → 𝑃 = (Base‘𝐺)) |
| asclpropd.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑊)) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) |
| asclpropd.4 | ⊢ (𝜑 → (1r‘𝐾) = (1r‘𝐿)) |
| asclpropd.5 | ⊢ (𝜑 → (1r‘𝐾) ∈ 𝑊) |
| Ref | Expression |
|---|---|
| asclpropd | ⊢ (𝜑 → (algSc‘𝐾) = (algSc‘𝐿)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | asclpropd.5 | . . . . . 6 ⊢ (𝜑 → (1r‘𝐾) ∈ 𝑊) | |
| 2 | asclpropd.3 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑊)) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) | |
| 3 | 2 | oveqrspc2v 7381 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝑃 ∧ (1r‘𝐾) ∈ 𝑊)) → (𝑧( ·𝑠 ‘𝐾)(1r‘𝐾)) = (𝑧( ·𝑠 ‘𝐿)(1r‘𝐾))) |
| 4 | 3 | anassrs 467 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑃) ∧ (1r‘𝐾) ∈ 𝑊) → (𝑧( ·𝑠 ‘𝐾)(1r‘𝐾)) = (𝑧( ·𝑠 ‘𝐿)(1r‘𝐾))) |
| 5 | 1, 4 | mpidan 689 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑃) → (𝑧( ·𝑠 ‘𝐾)(1r‘𝐾)) = (𝑧( ·𝑠 ‘𝐿)(1r‘𝐾))) |
| 6 | asclpropd.4 | . . . . . . 7 ⊢ (𝜑 → (1r‘𝐾) = (1r‘𝐿)) | |
| 7 | 6 | oveq2d 7370 | . . . . . 6 ⊢ (𝜑 → (𝑧( ·𝑠 ‘𝐿)(1r‘𝐾)) = (𝑧( ·𝑠 ‘𝐿)(1r‘𝐿))) |
| 8 | 7 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑃) → (𝑧( ·𝑠 ‘𝐿)(1r‘𝐾)) = (𝑧( ·𝑠 ‘𝐿)(1r‘𝐿))) |
| 9 | 5, 8 | eqtrd 2768 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑃) → (𝑧( ·𝑠 ‘𝐾)(1r‘𝐾)) = (𝑧( ·𝑠 ‘𝐿)(1r‘𝐿))) |
| 10 | 9 | mpteq2dva 5188 | . . 3 ⊢ (𝜑 → (𝑧 ∈ 𝑃 ↦ (𝑧( ·𝑠 ‘𝐾)(1r‘𝐾))) = (𝑧 ∈ 𝑃 ↦ (𝑧( ·𝑠 ‘𝐿)(1r‘𝐿)))) |
| 11 | asclpropd.1 | . . . 4 ⊢ (𝜑 → 𝑃 = (Base‘𝐹)) | |
| 12 | 11 | mpteq1d 5185 | . . 3 ⊢ (𝜑 → (𝑧 ∈ 𝑃 ↦ (𝑧( ·𝑠 ‘𝐾)(1r‘𝐾))) = (𝑧 ∈ (Base‘𝐹) ↦ (𝑧( ·𝑠 ‘𝐾)(1r‘𝐾)))) |
| 13 | asclpropd.2 | . . . 4 ⊢ (𝜑 → 𝑃 = (Base‘𝐺)) | |
| 14 | 13 | mpteq1d 5185 | . . 3 ⊢ (𝜑 → (𝑧 ∈ 𝑃 ↦ (𝑧( ·𝑠 ‘𝐿)(1r‘𝐿))) = (𝑧 ∈ (Base‘𝐺) ↦ (𝑧( ·𝑠 ‘𝐿)(1r‘𝐿)))) |
| 15 | 10, 12, 14 | 3eqtr3d 2776 | . 2 ⊢ (𝜑 → (𝑧 ∈ (Base‘𝐹) ↦ (𝑧( ·𝑠 ‘𝐾)(1r‘𝐾))) = (𝑧 ∈ (Base‘𝐺) ↦ (𝑧( ·𝑠 ‘𝐿)(1r‘𝐿)))) |
| 16 | eqid 2733 | . . 3 ⊢ (algSc‘𝐾) = (algSc‘𝐾) | |
| 17 | asclpropd.f | . . 3 ⊢ 𝐹 = (Scalar‘𝐾) | |
| 18 | eqid 2733 | . . 3 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
| 19 | eqid 2733 | . . 3 ⊢ ( ·𝑠 ‘𝐾) = ( ·𝑠 ‘𝐾) | |
| 20 | eqid 2733 | . . 3 ⊢ (1r‘𝐾) = (1r‘𝐾) | |
| 21 | 16, 17, 18, 19, 20 | asclfval 21820 | . 2 ⊢ (algSc‘𝐾) = (𝑧 ∈ (Base‘𝐹) ↦ (𝑧( ·𝑠 ‘𝐾)(1r‘𝐾))) |
| 22 | eqid 2733 | . . 3 ⊢ (algSc‘𝐿) = (algSc‘𝐿) | |
| 23 | asclpropd.g | . . 3 ⊢ 𝐺 = (Scalar‘𝐿) | |
| 24 | eqid 2733 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 25 | eqid 2733 | . . 3 ⊢ ( ·𝑠 ‘𝐿) = ( ·𝑠 ‘𝐿) | |
| 26 | eqid 2733 | . . 3 ⊢ (1r‘𝐿) = (1r‘𝐿) | |
| 27 | 22, 23, 24, 25, 26 | asclfval 21820 | . 2 ⊢ (algSc‘𝐿) = (𝑧 ∈ (Base‘𝐺) ↦ (𝑧( ·𝑠 ‘𝐿)(1r‘𝐿))) |
| 28 | 15, 21, 27 | 3eqtr4g 2793 | 1 ⊢ (𝜑 → (algSc‘𝐾) = (algSc‘𝐿)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ↦ cmpt 5176 ‘cfv 6488 (class class class)co 7354 Basecbs 17124 Scalarcsca 17168 ·𝑠 cvsca 17169 1rcur 20103 algSccascl 21793 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-1cn 11073 ax-addcl 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-ov 7357 df-om 7805 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-nn 12135 df-slot 17097 df-ndx 17109 df-base 17125 df-ascl 21796 |
| This theorem is referenced by: ply1ascl 22175 |
| Copyright terms: Public domain | W3C validator |