![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > asclpropd | Structured version Visualization version GIF version |
Description: If two structures have the same components (properties), one is an associative algebra iff the other one is. The last hypotheses on 1r can be discharged either by letting 𝑊 = V (if strong equality is known on ·𝑠) or assuming 𝐾 is a ring. (Contributed by Mario Carneiro, 5-Jul-2015.) |
Ref | Expression |
---|---|
asclpropd.f | ⊢ 𝐹 = (Scalar‘𝐾) |
asclpropd.g | ⊢ 𝐺 = (Scalar‘𝐿) |
asclpropd.1 | ⊢ (𝜑 → 𝑃 = (Base‘𝐹)) |
asclpropd.2 | ⊢ (𝜑 → 𝑃 = (Base‘𝐺)) |
asclpropd.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑊)) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) |
asclpropd.4 | ⊢ (𝜑 → (1r‘𝐾) = (1r‘𝐿)) |
asclpropd.5 | ⊢ (𝜑 → (1r‘𝐾) ∈ 𝑊) |
Ref | Expression |
---|---|
asclpropd | ⊢ (𝜑 → (algSc‘𝐾) = (algSc‘𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | asclpropd.5 | . . . . . 6 ⊢ (𝜑 → (1r‘𝐾) ∈ 𝑊) | |
2 | asclpropd.3 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑊)) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) | |
3 | 2 | oveqrspc2v 7475 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝑃 ∧ (1r‘𝐾) ∈ 𝑊)) → (𝑧( ·𝑠 ‘𝐾)(1r‘𝐾)) = (𝑧( ·𝑠 ‘𝐿)(1r‘𝐾))) |
4 | 3 | anassrs 467 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑃) ∧ (1r‘𝐾) ∈ 𝑊) → (𝑧( ·𝑠 ‘𝐾)(1r‘𝐾)) = (𝑧( ·𝑠 ‘𝐿)(1r‘𝐾))) |
5 | 1, 4 | mpidan 688 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑃) → (𝑧( ·𝑠 ‘𝐾)(1r‘𝐾)) = (𝑧( ·𝑠 ‘𝐿)(1r‘𝐾))) |
6 | asclpropd.4 | . . . . . . 7 ⊢ (𝜑 → (1r‘𝐾) = (1r‘𝐿)) | |
7 | 6 | oveq2d 7464 | . . . . . 6 ⊢ (𝜑 → (𝑧( ·𝑠 ‘𝐿)(1r‘𝐾)) = (𝑧( ·𝑠 ‘𝐿)(1r‘𝐿))) |
8 | 7 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑃) → (𝑧( ·𝑠 ‘𝐿)(1r‘𝐾)) = (𝑧( ·𝑠 ‘𝐿)(1r‘𝐿))) |
9 | 5, 8 | eqtrd 2780 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑃) → (𝑧( ·𝑠 ‘𝐾)(1r‘𝐾)) = (𝑧( ·𝑠 ‘𝐿)(1r‘𝐿))) |
10 | 9 | mpteq2dva 5266 | . . 3 ⊢ (𝜑 → (𝑧 ∈ 𝑃 ↦ (𝑧( ·𝑠 ‘𝐾)(1r‘𝐾))) = (𝑧 ∈ 𝑃 ↦ (𝑧( ·𝑠 ‘𝐿)(1r‘𝐿)))) |
11 | asclpropd.1 | . . . 4 ⊢ (𝜑 → 𝑃 = (Base‘𝐹)) | |
12 | 11 | mpteq1d 5261 | . . 3 ⊢ (𝜑 → (𝑧 ∈ 𝑃 ↦ (𝑧( ·𝑠 ‘𝐾)(1r‘𝐾))) = (𝑧 ∈ (Base‘𝐹) ↦ (𝑧( ·𝑠 ‘𝐾)(1r‘𝐾)))) |
13 | asclpropd.2 | . . . 4 ⊢ (𝜑 → 𝑃 = (Base‘𝐺)) | |
14 | 13 | mpteq1d 5261 | . . 3 ⊢ (𝜑 → (𝑧 ∈ 𝑃 ↦ (𝑧( ·𝑠 ‘𝐿)(1r‘𝐿))) = (𝑧 ∈ (Base‘𝐺) ↦ (𝑧( ·𝑠 ‘𝐿)(1r‘𝐿)))) |
15 | 10, 12, 14 | 3eqtr3d 2788 | . 2 ⊢ (𝜑 → (𝑧 ∈ (Base‘𝐹) ↦ (𝑧( ·𝑠 ‘𝐾)(1r‘𝐾))) = (𝑧 ∈ (Base‘𝐺) ↦ (𝑧( ·𝑠 ‘𝐿)(1r‘𝐿)))) |
16 | eqid 2740 | . . 3 ⊢ (algSc‘𝐾) = (algSc‘𝐾) | |
17 | asclpropd.f | . . 3 ⊢ 𝐹 = (Scalar‘𝐾) | |
18 | eqid 2740 | . . 3 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
19 | eqid 2740 | . . 3 ⊢ ( ·𝑠 ‘𝐾) = ( ·𝑠 ‘𝐾) | |
20 | eqid 2740 | . . 3 ⊢ (1r‘𝐾) = (1r‘𝐾) | |
21 | 16, 17, 18, 19, 20 | asclfval 21922 | . 2 ⊢ (algSc‘𝐾) = (𝑧 ∈ (Base‘𝐹) ↦ (𝑧( ·𝑠 ‘𝐾)(1r‘𝐾))) |
22 | eqid 2740 | . . 3 ⊢ (algSc‘𝐿) = (algSc‘𝐿) | |
23 | asclpropd.g | . . 3 ⊢ 𝐺 = (Scalar‘𝐿) | |
24 | eqid 2740 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
25 | eqid 2740 | . . 3 ⊢ ( ·𝑠 ‘𝐿) = ( ·𝑠 ‘𝐿) | |
26 | eqid 2740 | . . 3 ⊢ (1r‘𝐿) = (1r‘𝐿) | |
27 | 22, 23, 24, 25, 26 | asclfval 21922 | . 2 ⊢ (algSc‘𝐿) = (𝑧 ∈ (Base‘𝐺) ↦ (𝑧( ·𝑠 ‘𝐿)(1r‘𝐿))) |
28 | 15, 21, 27 | 3eqtr4g 2805 | 1 ⊢ (𝜑 → (algSc‘𝐾) = (algSc‘𝐿)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ↦ cmpt 5249 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 Scalarcsca 17314 ·𝑠 cvsca 17315 1rcur 20208 algSccascl 21895 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-1cn 11242 ax-addcl 11244 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-nn 12294 df-slot 17229 df-ndx 17241 df-base 17259 df-ascl 21898 |
This theorem is referenced by: ply1ascl 22282 |
Copyright terms: Public domain | W3C validator |