MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asclpropd Structured version   Visualization version   GIF version

Theorem asclpropd 21855
Description: If two structures have the same components (properties), one is an associative algebra iff the other one is. The last hypotheses on 1r can be discharged either by letting 𝑊 = V (if strong equality is known on ·𝑠) or assuming 𝐾 is a ring. (Contributed by Mario Carneiro, 5-Jul-2015.)
Hypotheses
Ref Expression
asclpropd.f 𝐹 = (Scalar‘𝐾)
asclpropd.g 𝐺 = (Scalar‘𝐿)
asclpropd.1 (𝜑𝑃 = (Base‘𝐹))
asclpropd.2 (𝜑𝑃 = (Base‘𝐺))
asclpropd.3 ((𝜑 ∧ (𝑥𝑃𝑦𝑊)) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝐿)𝑦))
asclpropd.4 (𝜑 → (1r𝐾) = (1r𝐿))
asclpropd.5 (𝜑 → (1r𝐾) ∈ 𝑊)
Assertion
Ref Expression
asclpropd (𝜑 → (algSc‘𝐾) = (algSc‘𝐿))
Distinct variable groups:   𝑥,𝑦,𝐾   𝑥,𝐿,𝑦   𝑥,𝑃,𝑦   𝜑,𝑥,𝑦   𝑥,𝑊,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem asclpropd
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 asclpropd.5 . . . . . 6 (𝜑 → (1r𝐾) ∈ 𝑊)
2 asclpropd.3 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑃𝑦𝑊)) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝐿)𝑦))
32oveqrspc2v 7430 . . . . . . 7 ((𝜑 ∧ (𝑧𝑃 ∧ (1r𝐾) ∈ 𝑊)) → (𝑧( ·𝑠𝐾)(1r𝐾)) = (𝑧( ·𝑠𝐿)(1r𝐾)))
43anassrs 467 . . . . . 6 (((𝜑𝑧𝑃) ∧ (1r𝐾) ∈ 𝑊) → (𝑧( ·𝑠𝐾)(1r𝐾)) = (𝑧( ·𝑠𝐿)(1r𝐾)))
51, 4mpidan 689 . . . . 5 ((𝜑𝑧𝑃) → (𝑧( ·𝑠𝐾)(1r𝐾)) = (𝑧( ·𝑠𝐿)(1r𝐾)))
6 asclpropd.4 . . . . . . 7 (𝜑 → (1r𝐾) = (1r𝐿))
76oveq2d 7419 . . . . . 6 (𝜑 → (𝑧( ·𝑠𝐿)(1r𝐾)) = (𝑧( ·𝑠𝐿)(1r𝐿)))
87adantr 480 . . . . 5 ((𝜑𝑧𝑃) → (𝑧( ·𝑠𝐿)(1r𝐾)) = (𝑧( ·𝑠𝐿)(1r𝐿)))
95, 8eqtrd 2770 . . . 4 ((𝜑𝑧𝑃) → (𝑧( ·𝑠𝐾)(1r𝐾)) = (𝑧( ·𝑠𝐿)(1r𝐿)))
109mpteq2dva 5214 . . 3 (𝜑 → (𝑧𝑃 ↦ (𝑧( ·𝑠𝐾)(1r𝐾))) = (𝑧𝑃 ↦ (𝑧( ·𝑠𝐿)(1r𝐿))))
11 asclpropd.1 . . . 4 (𝜑𝑃 = (Base‘𝐹))
1211mpteq1d 5210 . . 3 (𝜑 → (𝑧𝑃 ↦ (𝑧( ·𝑠𝐾)(1r𝐾))) = (𝑧 ∈ (Base‘𝐹) ↦ (𝑧( ·𝑠𝐾)(1r𝐾))))
13 asclpropd.2 . . . 4 (𝜑𝑃 = (Base‘𝐺))
1413mpteq1d 5210 . . 3 (𝜑 → (𝑧𝑃 ↦ (𝑧( ·𝑠𝐿)(1r𝐿))) = (𝑧 ∈ (Base‘𝐺) ↦ (𝑧( ·𝑠𝐿)(1r𝐿))))
1510, 12, 143eqtr3d 2778 . 2 (𝜑 → (𝑧 ∈ (Base‘𝐹) ↦ (𝑧( ·𝑠𝐾)(1r𝐾))) = (𝑧 ∈ (Base‘𝐺) ↦ (𝑧( ·𝑠𝐿)(1r𝐿))))
16 eqid 2735 . . 3 (algSc‘𝐾) = (algSc‘𝐾)
17 asclpropd.f . . 3 𝐹 = (Scalar‘𝐾)
18 eqid 2735 . . 3 (Base‘𝐹) = (Base‘𝐹)
19 eqid 2735 . . 3 ( ·𝑠𝐾) = ( ·𝑠𝐾)
20 eqid 2735 . . 3 (1r𝐾) = (1r𝐾)
2116, 17, 18, 19, 20asclfval 21837 . 2 (algSc‘𝐾) = (𝑧 ∈ (Base‘𝐹) ↦ (𝑧( ·𝑠𝐾)(1r𝐾)))
22 eqid 2735 . . 3 (algSc‘𝐿) = (algSc‘𝐿)
23 asclpropd.g . . 3 𝐺 = (Scalar‘𝐿)
24 eqid 2735 . . 3 (Base‘𝐺) = (Base‘𝐺)
25 eqid 2735 . . 3 ( ·𝑠𝐿) = ( ·𝑠𝐿)
26 eqid 2735 . . 3 (1r𝐿) = (1r𝐿)
2722, 23, 24, 25, 26asclfval 21837 . 2 (algSc‘𝐿) = (𝑧 ∈ (Base‘𝐺) ↦ (𝑧( ·𝑠𝐿)(1r𝐿)))
2815, 21, 273eqtr4g 2795 1 (𝜑 → (algSc‘𝐾) = (algSc‘𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cmpt 5201  cfv 6530  (class class class)co 7403  Basecbs 17226  Scalarcsca 17272   ·𝑠 cvsca 17273  1rcur 20139  algSccascl 21810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-1cn 11185  ax-addcl 11187
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-ov 7406  df-om 7860  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-nn 12239  df-slot 17199  df-ndx 17211  df-base 17227  df-ascl 21813
This theorem is referenced by:  ply1ascl  22193
  Copyright terms: Public domain W3C validator