MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asclpropd Structured version   Visualization version   GIF version

Theorem asclpropd 21761
Description: If two structures have the same components (properties), one is an associative algebra iff the other one is. The last hypotheses on 1r can be discharged either by letting 𝑊 = V (if strong equality is known on ·𝑠) or assuming 𝐾 is a ring. (Contributed by Mario Carneiro, 5-Jul-2015.)
Hypotheses
Ref Expression
asclpropd.f 𝐹 = (Scalar‘𝐾)
asclpropd.g 𝐺 = (Scalar‘𝐿)
asclpropd.1 (𝜑𝑃 = (Base‘𝐹))
asclpropd.2 (𝜑𝑃 = (Base‘𝐺))
asclpropd.3 ((𝜑 ∧ (𝑥𝑃𝑦𝑊)) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝐿)𝑦))
asclpropd.4 (𝜑 → (1r𝐾) = (1r𝐿))
asclpropd.5 (𝜑 → (1r𝐾) ∈ 𝑊)
Assertion
Ref Expression
asclpropd (𝜑 → (algSc‘𝐾) = (algSc‘𝐿))
Distinct variable groups:   𝑥,𝑦,𝐾   𝑥,𝐿,𝑦   𝑥,𝑃,𝑦   𝜑,𝑥,𝑦   𝑥,𝑊,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem asclpropd
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 asclpropd.5 . . . . . 6 (𝜑 → (1r𝐾) ∈ 𝑊)
2 asclpropd.3 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑃𝑦𝑊)) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝐿)𝑦))
32oveqrspc2v 7429 . . . . . . 7 ((𝜑 ∧ (𝑧𝑃 ∧ (1r𝐾) ∈ 𝑊)) → (𝑧( ·𝑠𝐾)(1r𝐾)) = (𝑧( ·𝑠𝐿)(1r𝐾)))
43anassrs 467 . . . . . 6 (((𝜑𝑧𝑃) ∧ (1r𝐾) ∈ 𝑊) → (𝑧( ·𝑠𝐾)(1r𝐾)) = (𝑧( ·𝑠𝐿)(1r𝐾)))
51, 4mpidan 686 . . . . 5 ((𝜑𝑧𝑃) → (𝑧( ·𝑠𝐾)(1r𝐾)) = (𝑧( ·𝑠𝐿)(1r𝐾)))
6 asclpropd.4 . . . . . . 7 (𝜑 → (1r𝐾) = (1r𝐿))
76oveq2d 7418 . . . . . 6 (𝜑 → (𝑧( ·𝑠𝐿)(1r𝐾)) = (𝑧( ·𝑠𝐿)(1r𝐿)))
87adantr 480 . . . . 5 ((𝜑𝑧𝑃) → (𝑧( ·𝑠𝐿)(1r𝐾)) = (𝑧( ·𝑠𝐿)(1r𝐿)))
95, 8eqtrd 2764 . . . 4 ((𝜑𝑧𝑃) → (𝑧( ·𝑠𝐾)(1r𝐾)) = (𝑧( ·𝑠𝐿)(1r𝐿)))
109mpteq2dva 5239 . . 3 (𝜑 → (𝑧𝑃 ↦ (𝑧( ·𝑠𝐾)(1r𝐾))) = (𝑧𝑃 ↦ (𝑧( ·𝑠𝐿)(1r𝐿))))
11 asclpropd.1 . . . 4 (𝜑𝑃 = (Base‘𝐹))
1211mpteq1d 5234 . . 3 (𝜑 → (𝑧𝑃 ↦ (𝑧( ·𝑠𝐾)(1r𝐾))) = (𝑧 ∈ (Base‘𝐹) ↦ (𝑧( ·𝑠𝐾)(1r𝐾))))
13 asclpropd.2 . . . 4 (𝜑𝑃 = (Base‘𝐺))
1413mpteq1d 5234 . . 3 (𝜑 → (𝑧𝑃 ↦ (𝑧( ·𝑠𝐿)(1r𝐿))) = (𝑧 ∈ (Base‘𝐺) ↦ (𝑧( ·𝑠𝐿)(1r𝐿))))
1510, 12, 143eqtr3d 2772 . 2 (𝜑 → (𝑧 ∈ (Base‘𝐹) ↦ (𝑧( ·𝑠𝐾)(1r𝐾))) = (𝑧 ∈ (Base‘𝐺) ↦ (𝑧( ·𝑠𝐿)(1r𝐿))))
16 eqid 2724 . . 3 (algSc‘𝐾) = (algSc‘𝐾)
17 asclpropd.f . . 3 𝐹 = (Scalar‘𝐾)
18 eqid 2724 . . 3 (Base‘𝐹) = (Base‘𝐹)
19 eqid 2724 . . 3 ( ·𝑠𝐾) = ( ·𝑠𝐾)
20 eqid 2724 . . 3 (1r𝐾) = (1r𝐾)
2116, 17, 18, 19, 20asclfval 21743 . 2 (algSc‘𝐾) = (𝑧 ∈ (Base‘𝐹) ↦ (𝑧( ·𝑠𝐾)(1r𝐾)))
22 eqid 2724 . . 3 (algSc‘𝐿) = (algSc‘𝐿)
23 asclpropd.g . . 3 𝐺 = (Scalar‘𝐿)
24 eqid 2724 . . 3 (Base‘𝐺) = (Base‘𝐺)
25 eqid 2724 . . 3 ( ·𝑠𝐿) = ( ·𝑠𝐿)
26 eqid 2724 . . 3 (1r𝐿) = (1r𝐿)
2722, 23, 24, 25, 26asclfval 21743 . 2 (algSc‘𝐿) = (𝑧 ∈ (Base‘𝐺) ↦ (𝑧( ·𝑠𝐿)(1r𝐿)))
2815, 21, 273eqtr4g 2789 1 (𝜑 → (algSc‘𝐾) = (algSc‘𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  cmpt 5222  cfv 6534  (class class class)co 7402  Basecbs 17145  Scalarcsca 17201   ·𝑠 cvsca 17202  1rcur 20078  algSccascl 21717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-1cn 11165  ax-addcl 11167
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-ov 7405  df-om 7850  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-nn 12211  df-slot 17116  df-ndx 17128  df-base 17146  df-ascl 21720
This theorem is referenced by:  ply1ascl  22101
  Copyright terms: Public domain W3C validator