MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asclpropd Structured version   Visualization version   GIF version

Theorem asclpropd 21822
Description: If two structures have the same components (properties), one is an associative algebra iff the other one is. The last hypotheses on 1r can be discharged either by letting 𝑊 = V (if strong equality is known on ·𝑠) or assuming 𝐾 is a ring. (Contributed by Mario Carneiro, 5-Jul-2015.)
Hypotheses
Ref Expression
asclpropd.f 𝐹 = (Scalar‘𝐾)
asclpropd.g 𝐺 = (Scalar‘𝐿)
asclpropd.1 (𝜑𝑃 = (Base‘𝐹))
asclpropd.2 (𝜑𝑃 = (Base‘𝐺))
asclpropd.3 ((𝜑 ∧ (𝑥𝑃𝑦𝑊)) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝐿)𝑦))
asclpropd.4 (𝜑 → (1r𝐾) = (1r𝐿))
asclpropd.5 (𝜑 → (1r𝐾) ∈ 𝑊)
Assertion
Ref Expression
asclpropd (𝜑 → (algSc‘𝐾) = (algSc‘𝐿))
Distinct variable groups:   𝑥,𝑦,𝐾   𝑥,𝐿,𝑦   𝑥,𝑃,𝑦   𝜑,𝑥,𝑦   𝑥,𝑊,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem asclpropd
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 asclpropd.5 . . . . . 6 (𝜑 → (1r𝐾) ∈ 𝑊)
2 asclpropd.3 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑃𝑦𝑊)) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝐿)𝑦))
32oveqrspc2v 7380 . . . . . . 7 ((𝜑 ∧ (𝑧𝑃 ∧ (1r𝐾) ∈ 𝑊)) → (𝑧( ·𝑠𝐾)(1r𝐾)) = (𝑧( ·𝑠𝐿)(1r𝐾)))
43anassrs 467 . . . . . 6 (((𝜑𝑧𝑃) ∧ (1r𝐾) ∈ 𝑊) → (𝑧( ·𝑠𝐾)(1r𝐾)) = (𝑧( ·𝑠𝐿)(1r𝐾)))
51, 4mpidan 689 . . . . 5 ((𝜑𝑧𝑃) → (𝑧( ·𝑠𝐾)(1r𝐾)) = (𝑧( ·𝑠𝐿)(1r𝐾)))
6 asclpropd.4 . . . . . . 7 (𝜑 → (1r𝐾) = (1r𝐿))
76oveq2d 7369 . . . . . 6 (𝜑 → (𝑧( ·𝑠𝐿)(1r𝐾)) = (𝑧( ·𝑠𝐿)(1r𝐿)))
87adantr 480 . . . . 5 ((𝜑𝑧𝑃) → (𝑧( ·𝑠𝐿)(1r𝐾)) = (𝑧( ·𝑠𝐿)(1r𝐿)))
95, 8eqtrd 2764 . . . 4 ((𝜑𝑧𝑃) → (𝑧( ·𝑠𝐾)(1r𝐾)) = (𝑧( ·𝑠𝐿)(1r𝐿)))
109mpteq2dva 5188 . . 3 (𝜑 → (𝑧𝑃 ↦ (𝑧( ·𝑠𝐾)(1r𝐾))) = (𝑧𝑃 ↦ (𝑧( ·𝑠𝐿)(1r𝐿))))
11 asclpropd.1 . . . 4 (𝜑𝑃 = (Base‘𝐹))
1211mpteq1d 5185 . . 3 (𝜑 → (𝑧𝑃 ↦ (𝑧( ·𝑠𝐾)(1r𝐾))) = (𝑧 ∈ (Base‘𝐹) ↦ (𝑧( ·𝑠𝐾)(1r𝐾))))
13 asclpropd.2 . . . 4 (𝜑𝑃 = (Base‘𝐺))
1413mpteq1d 5185 . . 3 (𝜑 → (𝑧𝑃 ↦ (𝑧( ·𝑠𝐿)(1r𝐿))) = (𝑧 ∈ (Base‘𝐺) ↦ (𝑧( ·𝑠𝐿)(1r𝐿))))
1510, 12, 143eqtr3d 2772 . 2 (𝜑 → (𝑧 ∈ (Base‘𝐹) ↦ (𝑧( ·𝑠𝐾)(1r𝐾))) = (𝑧 ∈ (Base‘𝐺) ↦ (𝑧( ·𝑠𝐿)(1r𝐿))))
16 eqid 2729 . . 3 (algSc‘𝐾) = (algSc‘𝐾)
17 asclpropd.f . . 3 𝐹 = (Scalar‘𝐾)
18 eqid 2729 . . 3 (Base‘𝐹) = (Base‘𝐹)
19 eqid 2729 . . 3 ( ·𝑠𝐾) = ( ·𝑠𝐾)
20 eqid 2729 . . 3 (1r𝐾) = (1r𝐾)
2116, 17, 18, 19, 20asclfval 21804 . 2 (algSc‘𝐾) = (𝑧 ∈ (Base‘𝐹) ↦ (𝑧( ·𝑠𝐾)(1r𝐾)))
22 eqid 2729 . . 3 (algSc‘𝐿) = (algSc‘𝐿)
23 asclpropd.g . . 3 𝐺 = (Scalar‘𝐿)
24 eqid 2729 . . 3 (Base‘𝐺) = (Base‘𝐺)
25 eqid 2729 . . 3 ( ·𝑠𝐿) = ( ·𝑠𝐿)
26 eqid 2729 . . 3 (1r𝐿) = (1r𝐿)
2722, 23, 24, 25, 26asclfval 21804 . 2 (algSc‘𝐿) = (𝑧 ∈ (Base‘𝐺) ↦ (𝑧( ·𝑠𝐿)(1r𝐿)))
2815, 21, 273eqtr4g 2789 1 (𝜑 → (algSc‘𝐾) = (algSc‘𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cmpt 5176  cfv 6486  (class class class)co 7353  Basecbs 17138  Scalarcsca 17182   ·𝑠 cvsca 17183  1rcur 20084  algSccascl 21777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-1cn 11086  ax-addcl 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-nn 12147  df-slot 17111  df-ndx 17123  df-base 17139  df-ascl 21780
This theorem is referenced by:  ply1ascl  22160
  Copyright terms: Public domain W3C validator