![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > asclpropd | Structured version Visualization version GIF version |
Description: If two structures have the same components (properties), one is an associative algebra iff the other one is. The last hypotheses on 1r can be discharged either by letting 𝑊 = V (if strong equality is known on ·𝑠) or assuming 𝐾 is a ring. (Contributed by Mario Carneiro, 5-Jul-2015.) |
Ref | Expression |
---|---|
asclpropd.f | ⊢ 𝐹 = (Scalar‘𝐾) |
asclpropd.g | ⊢ 𝐺 = (Scalar‘𝐿) |
asclpropd.1 | ⊢ (𝜑 → 𝑃 = (Base‘𝐹)) |
asclpropd.2 | ⊢ (𝜑 → 𝑃 = (Base‘𝐺)) |
asclpropd.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑊)) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) |
asclpropd.4 | ⊢ (𝜑 → (1r‘𝐾) = (1r‘𝐿)) |
asclpropd.5 | ⊢ (𝜑 → (1r‘𝐾) ∈ 𝑊) |
Ref | Expression |
---|---|
asclpropd | ⊢ (𝜑 → (algSc‘𝐾) = (algSc‘𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | asclpropd.5 | . . . . . 6 ⊢ (𝜑 → (1r‘𝐾) ∈ 𝑊) | |
2 | asclpropd.3 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑊)) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) | |
3 | 2 | oveqrspc2v 7429 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝑃 ∧ (1r‘𝐾) ∈ 𝑊)) → (𝑧( ·𝑠 ‘𝐾)(1r‘𝐾)) = (𝑧( ·𝑠 ‘𝐿)(1r‘𝐾))) |
4 | 3 | anassrs 467 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑃) ∧ (1r‘𝐾) ∈ 𝑊) → (𝑧( ·𝑠 ‘𝐾)(1r‘𝐾)) = (𝑧( ·𝑠 ‘𝐿)(1r‘𝐾))) |
5 | 1, 4 | mpidan 686 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑃) → (𝑧( ·𝑠 ‘𝐾)(1r‘𝐾)) = (𝑧( ·𝑠 ‘𝐿)(1r‘𝐾))) |
6 | asclpropd.4 | . . . . . . 7 ⊢ (𝜑 → (1r‘𝐾) = (1r‘𝐿)) | |
7 | 6 | oveq2d 7418 | . . . . . 6 ⊢ (𝜑 → (𝑧( ·𝑠 ‘𝐿)(1r‘𝐾)) = (𝑧( ·𝑠 ‘𝐿)(1r‘𝐿))) |
8 | 7 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑃) → (𝑧( ·𝑠 ‘𝐿)(1r‘𝐾)) = (𝑧( ·𝑠 ‘𝐿)(1r‘𝐿))) |
9 | 5, 8 | eqtrd 2764 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑃) → (𝑧( ·𝑠 ‘𝐾)(1r‘𝐾)) = (𝑧( ·𝑠 ‘𝐿)(1r‘𝐿))) |
10 | 9 | mpteq2dva 5239 | . . 3 ⊢ (𝜑 → (𝑧 ∈ 𝑃 ↦ (𝑧( ·𝑠 ‘𝐾)(1r‘𝐾))) = (𝑧 ∈ 𝑃 ↦ (𝑧( ·𝑠 ‘𝐿)(1r‘𝐿)))) |
11 | asclpropd.1 | . . . 4 ⊢ (𝜑 → 𝑃 = (Base‘𝐹)) | |
12 | 11 | mpteq1d 5234 | . . 3 ⊢ (𝜑 → (𝑧 ∈ 𝑃 ↦ (𝑧( ·𝑠 ‘𝐾)(1r‘𝐾))) = (𝑧 ∈ (Base‘𝐹) ↦ (𝑧( ·𝑠 ‘𝐾)(1r‘𝐾)))) |
13 | asclpropd.2 | . . . 4 ⊢ (𝜑 → 𝑃 = (Base‘𝐺)) | |
14 | 13 | mpteq1d 5234 | . . 3 ⊢ (𝜑 → (𝑧 ∈ 𝑃 ↦ (𝑧( ·𝑠 ‘𝐿)(1r‘𝐿))) = (𝑧 ∈ (Base‘𝐺) ↦ (𝑧( ·𝑠 ‘𝐿)(1r‘𝐿)))) |
15 | 10, 12, 14 | 3eqtr3d 2772 | . 2 ⊢ (𝜑 → (𝑧 ∈ (Base‘𝐹) ↦ (𝑧( ·𝑠 ‘𝐾)(1r‘𝐾))) = (𝑧 ∈ (Base‘𝐺) ↦ (𝑧( ·𝑠 ‘𝐿)(1r‘𝐿)))) |
16 | eqid 2724 | . . 3 ⊢ (algSc‘𝐾) = (algSc‘𝐾) | |
17 | asclpropd.f | . . 3 ⊢ 𝐹 = (Scalar‘𝐾) | |
18 | eqid 2724 | . . 3 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
19 | eqid 2724 | . . 3 ⊢ ( ·𝑠 ‘𝐾) = ( ·𝑠 ‘𝐾) | |
20 | eqid 2724 | . . 3 ⊢ (1r‘𝐾) = (1r‘𝐾) | |
21 | 16, 17, 18, 19, 20 | asclfval 21743 | . 2 ⊢ (algSc‘𝐾) = (𝑧 ∈ (Base‘𝐹) ↦ (𝑧( ·𝑠 ‘𝐾)(1r‘𝐾))) |
22 | eqid 2724 | . . 3 ⊢ (algSc‘𝐿) = (algSc‘𝐿) | |
23 | asclpropd.g | . . 3 ⊢ 𝐺 = (Scalar‘𝐿) | |
24 | eqid 2724 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
25 | eqid 2724 | . . 3 ⊢ ( ·𝑠 ‘𝐿) = ( ·𝑠 ‘𝐿) | |
26 | eqid 2724 | . . 3 ⊢ (1r‘𝐿) = (1r‘𝐿) | |
27 | 22, 23, 24, 25, 26 | asclfval 21743 | . 2 ⊢ (algSc‘𝐿) = (𝑧 ∈ (Base‘𝐺) ↦ (𝑧( ·𝑠 ‘𝐿)(1r‘𝐿))) |
28 | 15, 21, 27 | 3eqtr4g 2789 | 1 ⊢ (𝜑 → (algSc‘𝐾) = (algSc‘𝐿)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ↦ cmpt 5222 ‘cfv 6534 (class class class)co 7402 Basecbs 17145 Scalarcsca 17201 ·𝑠 cvsca 17202 1rcur 20078 algSccascl 21717 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-1cn 11165 ax-addcl 11167 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-ov 7405 df-om 7850 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-nn 12211 df-slot 17116 df-ndx 17128 df-base 17146 df-ascl 21720 |
This theorem is referenced by: ply1ascl 22101 |
Copyright terms: Public domain | W3C validator |