| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > asclpropd | Structured version Visualization version GIF version | ||
| Description: If two structures have the same components (properties), one is an associative algebra iff the other one is. The last hypotheses on 1r can be discharged either by letting 𝑊 = V (if strong equality is known on ·𝑠) or assuming 𝐾 is a ring. (Contributed by Mario Carneiro, 5-Jul-2015.) |
| Ref | Expression |
|---|---|
| asclpropd.f | ⊢ 𝐹 = (Scalar‘𝐾) |
| asclpropd.g | ⊢ 𝐺 = (Scalar‘𝐿) |
| asclpropd.1 | ⊢ (𝜑 → 𝑃 = (Base‘𝐹)) |
| asclpropd.2 | ⊢ (𝜑 → 𝑃 = (Base‘𝐺)) |
| asclpropd.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑊)) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) |
| asclpropd.4 | ⊢ (𝜑 → (1r‘𝐾) = (1r‘𝐿)) |
| asclpropd.5 | ⊢ (𝜑 → (1r‘𝐾) ∈ 𝑊) |
| Ref | Expression |
|---|---|
| asclpropd | ⊢ (𝜑 → (algSc‘𝐾) = (algSc‘𝐿)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | asclpropd.5 | . . . . . 6 ⊢ (𝜑 → (1r‘𝐾) ∈ 𝑊) | |
| 2 | asclpropd.3 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑊)) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) | |
| 3 | 2 | oveqrspc2v 7414 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝑃 ∧ (1r‘𝐾) ∈ 𝑊)) → (𝑧( ·𝑠 ‘𝐾)(1r‘𝐾)) = (𝑧( ·𝑠 ‘𝐿)(1r‘𝐾))) |
| 4 | 3 | anassrs 467 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑧 ∈ 𝑃) ∧ (1r‘𝐾) ∈ 𝑊) → (𝑧( ·𝑠 ‘𝐾)(1r‘𝐾)) = (𝑧( ·𝑠 ‘𝐿)(1r‘𝐾))) |
| 5 | 1, 4 | mpidan 689 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑃) → (𝑧( ·𝑠 ‘𝐾)(1r‘𝐾)) = (𝑧( ·𝑠 ‘𝐿)(1r‘𝐾))) |
| 6 | asclpropd.4 | . . . . . . 7 ⊢ (𝜑 → (1r‘𝐾) = (1r‘𝐿)) | |
| 7 | 6 | oveq2d 7403 | . . . . . 6 ⊢ (𝜑 → (𝑧( ·𝑠 ‘𝐿)(1r‘𝐾)) = (𝑧( ·𝑠 ‘𝐿)(1r‘𝐿))) |
| 8 | 7 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑃) → (𝑧( ·𝑠 ‘𝐿)(1r‘𝐾)) = (𝑧( ·𝑠 ‘𝐿)(1r‘𝐿))) |
| 9 | 5, 8 | eqtrd 2764 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑃) → (𝑧( ·𝑠 ‘𝐾)(1r‘𝐾)) = (𝑧( ·𝑠 ‘𝐿)(1r‘𝐿))) |
| 10 | 9 | mpteq2dva 5200 | . . 3 ⊢ (𝜑 → (𝑧 ∈ 𝑃 ↦ (𝑧( ·𝑠 ‘𝐾)(1r‘𝐾))) = (𝑧 ∈ 𝑃 ↦ (𝑧( ·𝑠 ‘𝐿)(1r‘𝐿)))) |
| 11 | asclpropd.1 | . . . 4 ⊢ (𝜑 → 𝑃 = (Base‘𝐹)) | |
| 12 | 11 | mpteq1d 5197 | . . 3 ⊢ (𝜑 → (𝑧 ∈ 𝑃 ↦ (𝑧( ·𝑠 ‘𝐾)(1r‘𝐾))) = (𝑧 ∈ (Base‘𝐹) ↦ (𝑧( ·𝑠 ‘𝐾)(1r‘𝐾)))) |
| 13 | asclpropd.2 | . . . 4 ⊢ (𝜑 → 𝑃 = (Base‘𝐺)) | |
| 14 | 13 | mpteq1d 5197 | . . 3 ⊢ (𝜑 → (𝑧 ∈ 𝑃 ↦ (𝑧( ·𝑠 ‘𝐿)(1r‘𝐿))) = (𝑧 ∈ (Base‘𝐺) ↦ (𝑧( ·𝑠 ‘𝐿)(1r‘𝐿)))) |
| 15 | 10, 12, 14 | 3eqtr3d 2772 | . 2 ⊢ (𝜑 → (𝑧 ∈ (Base‘𝐹) ↦ (𝑧( ·𝑠 ‘𝐾)(1r‘𝐾))) = (𝑧 ∈ (Base‘𝐺) ↦ (𝑧( ·𝑠 ‘𝐿)(1r‘𝐿)))) |
| 16 | eqid 2729 | . . 3 ⊢ (algSc‘𝐾) = (algSc‘𝐾) | |
| 17 | asclpropd.f | . . 3 ⊢ 𝐹 = (Scalar‘𝐾) | |
| 18 | eqid 2729 | . . 3 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
| 19 | eqid 2729 | . . 3 ⊢ ( ·𝑠 ‘𝐾) = ( ·𝑠 ‘𝐾) | |
| 20 | eqid 2729 | . . 3 ⊢ (1r‘𝐾) = (1r‘𝐾) | |
| 21 | 16, 17, 18, 19, 20 | asclfval 21788 | . 2 ⊢ (algSc‘𝐾) = (𝑧 ∈ (Base‘𝐹) ↦ (𝑧( ·𝑠 ‘𝐾)(1r‘𝐾))) |
| 22 | eqid 2729 | . . 3 ⊢ (algSc‘𝐿) = (algSc‘𝐿) | |
| 23 | asclpropd.g | . . 3 ⊢ 𝐺 = (Scalar‘𝐿) | |
| 24 | eqid 2729 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 25 | eqid 2729 | . . 3 ⊢ ( ·𝑠 ‘𝐿) = ( ·𝑠 ‘𝐿) | |
| 26 | eqid 2729 | . . 3 ⊢ (1r‘𝐿) = (1r‘𝐿) | |
| 27 | 22, 23, 24, 25, 26 | asclfval 21788 | . 2 ⊢ (algSc‘𝐿) = (𝑧 ∈ (Base‘𝐺) ↦ (𝑧( ·𝑠 ‘𝐿)(1r‘𝐿))) |
| 28 | 15, 21, 27 | 3eqtr4g 2789 | 1 ⊢ (𝜑 → (algSc‘𝐾) = (algSc‘𝐿)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5188 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 Scalarcsca 17223 ·𝑠 cvsca 17224 1rcur 20090 algSccascl 21761 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-1cn 11126 ax-addcl 11128 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-nn 12187 df-slot 17152 df-ndx 17164 df-base 17180 df-ascl 21764 |
| This theorem is referenced by: ply1ascl 22144 |
| Copyright terms: Public domain | W3C validator |