MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  faclbnd4lem4 Structured version   Visualization version   GIF version

Theorem faclbnd4lem4 13938
Description: Lemma for faclbnd4 13939. Prove the 0 < 𝑁 case by induction on 𝐾. (Contributed by NM, 19-Dec-2005.)
Assertion
Ref Expression
faclbnd4lem4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → ((𝑁𝐾) · (𝑀𝑁)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)))

Proof of Theorem faclbnd4lem4
Dummy variables 𝑗 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7262 . . . . . . . . . . 11 (𝑛 = 𝑚 → (𝑛𝑗) = (𝑚𝑗))
2 oveq2 7263 . . . . . . . . . . 11 (𝑛 = 𝑚 → (𝑀𝑛) = (𝑀𝑚))
31, 2oveq12d 7273 . . . . . . . . . 10 (𝑛 = 𝑚 → ((𝑛𝑗) · (𝑀𝑛)) = ((𝑚𝑗) · (𝑀𝑚)))
4 fveq2 6756 . . . . . . . . . . 11 (𝑛 = 𝑚 → (!‘𝑛) = (!‘𝑚))
54oveq2d 7271 . . . . . . . . . 10 (𝑛 = 𝑚 → (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑛)) = (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑚)))
63, 5breq12d 5083 . . . . . . . . 9 (𝑛 = 𝑚 → (((𝑛𝑗) · (𝑀𝑛)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑛)) ↔ ((𝑚𝑗) · (𝑀𝑚)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑚))))
76cbvralvw 3372 . . . . . . . 8 (∀𝑛 ∈ ℕ ((𝑛𝑗) · (𝑀𝑛)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑛)) ↔ ∀𝑚 ∈ ℕ ((𝑚𝑗) · (𝑀𝑚)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑚)))
8 nnre 11910 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
9 1re 10906 . . . . . . . . . . . . . 14 1 ∈ ℝ
10 lelttric 11012 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑛 ≤ 1 ∨ 1 < 𝑛))
118, 9, 10sylancl 585 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (𝑛 ≤ 1 ∨ 1 < 𝑛))
1211ancli 548 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (𝑛 ∈ ℕ ∧ (𝑛 ≤ 1 ∨ 1 < 𝑛)))
13 andi 1004 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ (𝑛 ≤ 1 ∨ 1 < 𝑛)) ↔ ((𝑛 ∈ ℕ ∧ 𝑛 ≤ 1) ∨ (𝑛 ∈ ℕ ∧ 1 < 𝑛)))
1412, 13sylib 217 . . . . . . . . . . 11 (𝑛 ∈ ℕ → ((𝑛 ∈ ℕ ∧ 𝑛 ≤ 1) ∨ (𝑛 ∈ ℕ ∧ 1 < 𝑛)))
15 nnge1 11931 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → 1 ≤ 𝑛)
16 letri3 10991 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑛 = 1 ↔ (𝑛 ≤ 1 ∧ 1 ≤ 𝑛)))
178, 9, 16sylancl 585 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → (𝑛 = 1 ↔ (𝑛 ≤ 1 ∧ 1 ≤ 𝑛)))
1817biimpar 477 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ ∧ (𝑛 ≤ 1 ∧ 1 ≤ 𝑛)) → 𝑛 = 1)
1918anassrs 467 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ ℕ ∧ 𝑛 ≤ 1) ∧ 1 ≤ 𝑛) → 𝑛 = 1)
2015, 19mpidan 685 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ ∧ 𝑛 ≤ 1) → 𝑛 = 1)
21 oveq1 7262 . . . . . . . . . . . . . . . 16 (𝑛 = 1 → (𝑛 − 1) = (1 − 1))
22 1m1e0 11975 . . . . . . . . . . . . . . . 16 (1 − 1) = 0
2321, 22eqtrdi 2795 . . . . . . . . . . . . . . 15 (𝑛 = 1 → (𝑛 − 1) = 0)
2420, 23syl 17 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ 𝑛 ≤ 1) → (𝑛 − 1) = 0)
25 faclbnd4lem3 13937 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ0𝑗 ∈ ℕ0) ∧ (𝑛 − 1) = 0) → (((𝑛 − 1)↑𝑗) · (𝑀↑(𝑛 − 1))) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘(𝑛 − 1))))
2624, 25sylan2 592 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ0𝑗 ∈ ℕ0) ∧ (𝑛 ∈ ℕ ∧ 𝑛 ≤ 1)) → (((𝑛 − 1)↑𝑗) · (𝑀↑(𝑛 − 1))) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘(𝑛 − 1))))
2726a1d 25 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ0𝑗 ∈ ℕ0) ∧ (𝑛 ∈ ℕ ∧ 𝑛 ≤ 1)) → (∀𝑚 ∈ ℕ ((𝑚𝑗) · (𝑀𝑚)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑚)) → (((𝑛 − 1)↑𝑗) · (𝑀↑(𝑛 − 1))) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘(𝑛 − 1)))))
28 1nn 11914 . . . . . . . . . . . . . . . 16 1 ∈ ℕ
29 nnsub 11947 . . . . . . . . . . . . . . . 16 ((1 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (1 < 𝑛 ↔ (𝑛 − 1) ∈ ℕ))
3028, 29mpan 686 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (1 < 𝑛 ↔ (𝑛 − 1) ∈ ℕ))
3130biimpa 476 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ 1 < 𝑛) → (𝑛 − 1) ∈ ℕ)
32 oveq1 7262 . . . . . . . . . . . . . . . . 17 (𝑚 = (𝑛 − 1) → (𝑚𝑗) = ((𝑛 − 1)↑𝑗))
33 oveq2 7263 . . . . . . . . . . . . . . . . 17 (𝑚 = (𝑛 − 1) → (𝑀𝑚) = (𝑀↑(𝑛 − 1)))
3432, 33oveq12d 7273 . . . . . . . . . . . . . . . 16 (𝑚 = (𝑛 − 1) → ((𝑚𝑗) · (𝑀𝑚)) = (((𝑛 − 1)↑𝑗) · (𝑀↑(𝑛 − 1))))
35 fveq2 6756 . . . . . . . . . . . . . . . . 17 (𝑚 = (𝑛 − 1) → (!‘𝑚) = (!‘(𝑛 − 1)))
3635oveq2d 7271 . . . . . . . . . . . . . . . 16 (𝑚 = (𝑛 − 1) → (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑚)) = (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘(𝑛 − 1))))
3734, 36breq12d 5083 . . . . . . . . . . . . . . 15 (𝑚 = (𝑛 − 1) → (((𝑚𝑗) · (𝑀𝑚)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑚)) ↔ (((𝑛 − 1)↑𝑗) · (𝑀↑(𝑛 − 1))) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘(𝑛 − 1)))))
3837rspcv 3547 . . . . . . . . . . . . . 14 ((𝑛 − 1) ∈ ℕ → (∀𝑚 ∈ ℕ ((𝑚𝑗) · (𝑀𝑚)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑚)) → (((𝑛 − 1)↑𝑗) · (𝑀↑(𝑛 − 1))) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘(𝑛 − 1)))))
3931, 38syl 17 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 1 < 𝑛) → (∀𝑚 ∈ ℕ ((𝑚𝑗) · (𝑀𝑚)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑚)) → (((𝑛 − 1)↑𝑗) · (𝑀↑(𝑛 − 1))) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘(𝑛 − 1)))))
4039adantl 481 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ0𝑗 ∈ ℕ0) ∧ (𝑛 ∈ ℕ ∧ 1 < 𝑛)) → (∀𝑚 ∈ ℕ ((𝑚𝑗) · (𝑀𝑚)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑚)) → (((𝑛 − 1)↑𝑗) · (𝑀↑(𝑛 − 1))) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘(𝑛 − 1)))))
4127, 40jaodan 954 . . . . . . . . . . 11 (((𝑀 ∈ ℕ0𝑗 ∈ ℕ0) ∧ ((𝑛 ∈ ℕ ∧ 𝑛 ≤ 1) ∨ (𝑛 ∈ ℕ ∧ 1 < 𝑛))) → (∀𝑚 ∈ ℕ ((𝑚𝑗) · (𝑀𝑚)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑚)) → (((𝑛 − 1)↑𝑗) · (𝑀↑(𝑛 − 1))) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘(𝑛 − 1)))))
4214, 41sylan2 592 . . . . . . . . . 10 (((𝑀 ∈ ℕ0𝑗 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → (∀𝑚 ∈ ℕ ((𝑚𝑗) · (𝑀𝑚)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑚)) → (((𝑛 − 1)↑𝑗) · (𝑀↑(𝑛 − 1))) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘(𝑛 − 1)))))
43 faclbnd4lem2 13936 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑗 ∈ ℕ0𝑛 ∈ ℕ) → ((((𝑛 − 1)↑𝑗) · (𝑀↑(𝑛 − 1))) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘(𝑛 − 1))) → ((𝑛↑(𝑗 + 1)) · (𝑀𝑛)) ≤ (((2↑((𝑗 + 1)↑2)) · (𝑀↑(𝑀 + (𝑗 + 1)))) · (!‘𝑛))))
44433expa 1116 . . . . . . . . . 10 (((𝑀 ∈ ℕ0𝑗 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → ((((𝑛 − 1)↑𝑗) · (𝑀↑(𝑛 − 1))) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘(𝑛 − 1))) → ((𝑛↑(𝑗 + 1)) · (𝑀𝑛)) ≤ (((2↑((𝑗 + 1)↑2)) · (𝑀↑(𝑀 + (𝑗 + 1)))) · (!‘𝑛))))
4542, 44syld 47 . . . . . . . . 9 (((𝑀 ∈ ℕ0𝑗 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → (∀𝑚 ∈ ℕ ((𝑚𝑗) · (𝑀𝑚)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑚)) → ((𝑛↑(𝑗 + 1)) · (𝑀𝑛)) ≤ (((2↑((𝑗 + 1)↑2)) · (𝑀↑(𝑀 + (𝑗 + 1)))) · (!‘𝑛))))
4645ralrimdva 3112 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑗 ∈ ℕ0) → (∀𝑚 ∈ ℕ ((𝑚𝑗) · (𝑀𝑚)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑚)) → ∀𝑛 ∈ ℕ ((𝑛↑(𝑗 + 1)) · (𝑀𝑛)) ≤ (((2↑((𝑗 + 1)↑2)) · (𝑀↑(𝑀 + (𝑗 + 1)))) · (!‘𝑛))))
477, 46syl5bi 241 . . . . . . 7 ((𝑀 ∈ ℕ0𝑗 ∈ ℕ0) → (∀𝑛 ∈ ℕ ((𝑛𝑗) · (𝑀𝑛)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑛)) → ∀𝑛 ∈ ℕ ((𝑛↑(𝑗 + 1)) · (𝑀𝑛)) ≤ (((2↑((𝑗 + 1)↑2)) · (𝑀↑(𝑀 + (𝑗 + 1)))) · (!‘𝑛))))
4847expcom 413 . . . . . 6 (𝑗 ∈ ℕ0 → (𝑀 ∈ ℕ0 → (∀𝑛 ∈ ℕ ((𝑛𝑗) · (𝑀𝑛)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑛)) → ∀𝑛 ∈ ℕ ((𝑛↑(𝑗 + 1)) · (𝑀𝑛)) ≤ (((2↑((𝑗 + 1)↑2)) · (𝑀↑(𝑀 + (𝑗 + 1)))) · (!‘𝑛)))))
4948a2d 29 . . . . 5 (𝑗 ∈ ℕ0 → ((𝑀 ∈ ℕ0 → ∀𝑛 ∈ ℕ ((𝑛𝑗) · (𝑀𝑛)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑛))) → (𝑀 ∈ ℕ0 → ∀𝑛 ∈ ℕ ((𝑛↑(𝑗 + 1)) · (𝑀𝑛)) ≤ (((2↑((𝑗 + 1)↑2)) · (𝑀↑(𝑀 + (𝑗 + 1)))) · (!‘𝑛)))))
50 nnnn0 12170 . . . . . . . 8 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
51 faclbnd3 13934 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑛 ∈ ℕ0) → (𝑀𝑛) ≤ ((𝑀𝑀) · (!‘𝑛)))
5250, 51sylan2 592 . . . . . . 7 ((𝑀 ∈ ℕ0𝑛 ∈ ℕ) → (𝑀𝑛) ≤ ((𝑀𝑀) · (!‘𝑛)))
53 nncn 11911 . . . . . . . . . . 11 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
5453exp0d 13786 . . . . . . . . . 10 (𝑛 ∈ ℕ → (𝑛↑0) = 1)
5554oveq1d 7270 . . . . . . . . 9 (𝑛 ∈ ℕ → ((𝑛↑0) · (𝑀𝑛)) = (1 · (𝑀𝑛)))
5655adantl 481 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑛 ∈ ℕ) → ((𝑛↑0) · (𝑀𝑛)) = (1 · (𝑀𝑛)))
57 nn0cn 12173 . . . . . . . . . 10 (𝑀 ∈ ℕ0𝑀 ∈ ℂ)
58 expcl 13728 . . . . . . . . . 10 ((𝑀 ∈ ℂ ∧ 𝑛 ∈ ℕ0) → (𝑀𝑛) ∈ ℂ)
5957, 50, 58syl2an 595 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑛 ∈ ℕ) → (𝑀𝑛) ∈ ℂ)
6059mulid2d 10924 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑛 ∈ ℕ) → (1 · (𝑀𝑛)) = (𝑀𝑛))
6156, 60eqtrd 2778 . . . . . . 7 ((𝑀 ∈ ℕ0𝑛 ∈ ℕ) → ((𝑛↑0) · (𝑀𝑛)) = (𝑀𝑛))
62 sq0 13837 . . . . . . . . . . . . . 14 (0↑2) = 0
6362oveq2i 7266 . . . . . . . . . . . . 13 (2↑(0↑2)) = (2↑0)
64 2cn 11978 . . . . . . . . . . . . . 14 2 ∈ ℂ
65 exp0 13714 . . . . . . . . . . . . . 14 (2 ∈ ℂ → (2↑0) = 1)
6664, 65ax-mp 5 . . . . . . . . . . . . 13 (2↑0) = 1
6763, 66eqtri 2766 . . . . . . . . . . . 12 (2↑(0↑2)) = 1
6867a1i 11 . . . . . . . . . . 11 (𝑀 ∈ ℕ0 → (2↑(0↑2)) = 1)
6957addid1d 11105 . . . . . . . . . . . 12 (𝑀 ∈ ℕ0 → (𝑀 + 0) = 𝑀)
7069oveq2d 7271 . . . . . . . . . . 11 (𝑀 ∈ ℕ0 → (𝑀↑(𝑀 + 0)) = (𝑀𝑀))
7168, 70oveq12d 7273 . . . . . . . . . 10 (𝑀 ∈ ℕ0 → ((2↑(0↑2)) · (𝑀↑(𝑀 + 0))) = (1 · (𝑀𝑀)))
72 expcl 13728 . . . . . . . . . . . 12 ((𝑀 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝑀𝑀) ∈ ℂ)
7357, 72mpancom 684 . . . . . . . . . . 11 (𝑀 ∈ ℕ0 → (𝑀𝑀) ∈ ℂ)
7473mulid2d 10924 . . . . . . . . . 10 (𝑀 ∈ ℕ0 → (1 · (𝑀𝑀)) = (𝑀𝑀))
7571, 74eqtrd 2778 . . . . . . . . 9 (𝑀 ∈ ℕ0 → ((2↑(0↑2)) · (𝑀↑(𝑀 + 0))) = (𝑀𝑀))
7675oveq1d 7270 . . . . . . . 8 (𝑀 ∈ ℕ0 → (((2↑(0↑2)) · (𝑀↑(𝑀 + 0))) · (!‘𝑛)) = ((𝑀𝑀) · (!‘𝑛)))
7776adantr 480 . . . . . . 7 ((𝑀 ∈ ℕ0𝑛 ∈ ℕ) → (((2↑(0↑2)) · (𝑀↑(𝑀 + 0))) · (!‘𝑛)) = ((𝑀𝑀) · (!‘𝑛)))
7852, 61, 773brtr4d 5102 . . . . . 6 ((𝑀 ∈ ℕ0𝑛 ∈ ℕ) → ((𝑛↑0) · (𝑀𝑛)) ≤ (((2↑(0↑2)) · (𝑀↑(𝑀 + 0))) · (!‘𝑛)))
7978ralrimiva 3107 . . . . 5 (𝑀 ∈ ℕ0 → ∀𝑛 ∈ ℕ ((𝑛↑0) · (𝑀𝑛)) ≤ (((2↑(0↑2)) · (𝑀↑(𝑀 + 0))) · (!‘𝑛)))
80 oveq2 7263 . . . . . . . . 9 (𝑚 = 0 → (𝑛𝑚) = (𝑛↑0))
8180oveq1d 7270 . . . . . . . 8 (𝑚 = 0 → ((𝑛𝑚) · (𝑀𝑛)) = ((𝑛↑0) · (𝑀𝑛)))
82 oveq1 7262 . . . . . . . . . . 11 (𝑚 = 0 → (𝑚↑2) = (0↑2))
8382oveq2d 7271 . . . . . . . . . 10 (𝑚 = 0 → (2↑(𝑚↑2)) = (2↑(0↑2)))
84 oveq2 7263 . . . . . . . . . . 11 (𝑚 = 0 → (𝑀 + 𝑚) = (𝑀 + 0))
8584oveq2d 7271 . . . . . . . . . 10 (𝑚 = 0 → (𝑀↑(𝑀 + 𝑚)) = (𝑀↑(𝑀 + 0)))
8683, 85oveq12d 7273 . . . . . . . . 9 (𝑚 = 0 → ((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) = ((2↑(0↑2)) · (𝑀↑(𝑀 + 0))))
8786oveq1d 7270 . . . . . . . 8 (𝑚 = 0 → (((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) · (!‘𝑛)) = (((2↑(0↑2)) · (𝑀↑(𝑀 + 0))) · (!‘𝑛)))
8881, 87breq12d 5083 . . . . . . 7 (𝑚 = 0 → (((𝑛𝑚) · (𝑀𝑛)) ≤ (((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) · (!‘𝑛)) ↔ ((𝑛↑0) · (𝑀𝑛)) ≤ (((2↑(0↑2)) · (𝑀↑(𝑀 + 0))) · (!‘𝑛))))
8988ralbidv 3120 . . . . . 6 (𝑚 = 0 → (∀𝑛 ∈ ℕ ((𝑛𝑚) · (𝑀𝑛)) ≤ (((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) · (!‘𝑛)) ↔ ∀𝑛 ∈ ℕ ((𝑛↑0) · (𝑀𝑛)) ≤ (((2↑(0↑2)) · (𝑀↑(𝑀 + 0))) · (!‘𝑛))))
9089imbi2d 340 . . . . 5 (𝑚 = 0 → ((𝑀 ∈ ℕ0 → ∀𝑛 ∈ ℕ ((𝑛𝑚) · (𝑀𝑛)) ≤ (((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) · (!‘𝑛))) ↔ (𝑀 ∈ ℕ0 → ∀𝑛 ∈ ℕ ((𝑛↑0) · (𝑀𝑛)) ≤ (((2↑(0↑2)) · (𝑀↑(𝑀 + 0))) · (!‘𝑛)))))
91 oveq2 7263 . . . . . . . . 9 (𝑚 = 𝑗 → (𝑛𝑚) = (𝑛𝑗))
9291oveq1d 7270 . . . . . . . 8 (𝑚 = 𝑗 → ((𝑛𝑚) · (𝑀𝑛)) = ((𝑛𝑗) · (𝑀𝑛)))
93 oveq1 7262 . . . . . . . . . . 11 (𝑚 = 𝑗 → (𝑚↑2) = (𝑗↑2))
9493oveq2d 7271 . . . . . . . . . 10 (𝑚 = 𝑗 → (2↑(𝑚↑2)) = (2↑(𝑗↑2)))
95 oveq2 7263 . . . . . . . . . . 11 (𝑚 = 𝑗 → (𝑀 + 𝑚) = (𝑀 + 𝑗))
9695oveq2d 7271 . . . . . . . . . 10 (𝑚 = 𝑗 → (𝑀↑(𝑀 + 𝑚)) = (𝑀↑(𝑀 + 𝑗)))
9794, 96oveq12d 7273 . . . . . . . . 9 (𝑚 = 𝑗 → ((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) = ((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))))
9897oveq1d 7270 . . . . . . . 8 (𝑚 = 𝑗 → (((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) · (!‘𝑛)) = (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑛)))
9992, 98breq12d 5083 . . . . . . 7 (𝑚 = 𝑗 → (((𝑛𝑚) · (𝑀𝑛)) ≤ (((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) · (!‘𝑛)) ↔ ((𝑛𝑗) · (𝑀𝑛)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑛))))
10099ralbidv 3120 . . . . . 6 (𝑚 = 𝑗 → (∀𝑛 ∈ ℕ ((𝑛𝑚) · (𝑀𝑛)) ≤ (((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) · (!‘𝑛)) ↔ ∀𝑛 ∈ ℕ ((𝑛𝑗) · (𝑀𝑛)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑛))))
101100imbi2d 340 . . . . 5 (𝑚 = 𝑗 → ((𝑀 ∈ ℕ0 → ∀𝑛 ∈ ℕ ((𝑛𝑚) · (𝑀𝑛)) ≤ (((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) · (!‘𝑛))) ↔ (𝑀 ∈ ℕ0 → ∀𝑛 ∈ ℕ ((𝑛𝑗) · (𝑀𝑛)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑛)))))
102 oveq2 7263 . . . . . . . . 9 (𝑚 = (𝑗 + 1) → (𝑛𝑚) = (𝑛↑(𝑗 + 1)))
103102oveq1d 7270 . . . . . . . 8 (𝑚 = (𝑗 + 1) → ((𝑛𝑚) · (𝑀𝑛)) = ((𝑛↑(𝑗 + 1)) · (𝑀𝑛)))
104 oveq1 7262 . . . . . . . . . . 11 (𝑚 = (𝑗 + 1) → (𝑚↑2) = ((𝑗 + 1)↑2))
105104oveq2d 7271 . . . . . . . . . 10 (𝑚 = (𝑗 + 1) → (2↑(𝑚↑2)) = (2↑((𝑗 + 1)↑2)))
106 oveq2 7263 . . . . . . . . . . 11 (𝑚 = (𝑗 + 1) → (𝑀 + 𝑚) = (𝑀 + (𝑗 + 1)))
107106oveq2d 7271 . . . . . . . . . 10 (𝑚 = (𝑗 + 1) → (𝑀↑(𝑀 + 𝑚)) = (𝑀↑(𝑀 + (𝑗 + 1))))
108105, 107oveq12d 7273 . . . . . . . . 9 (𝑚 = (𝑗 + 1) → ((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) = ((2↑((𝑗 + 1)↑2)) · (𝑀↑(𝑀 + (𝑗 + 1)))))
109108oveq1d 7270 . . . . . . . 8 (𝑚 = (𝑗 + 1) → (((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) · (!‘𝑛)) = (((2↑((𝑗 + 1)↑2)) · (𝑀↑(𝑀 + (𝑗 + 1)))) · (!‘𝑛)))
110103, 109breq12d 5083 . . . . . . 7 (𝑚 = (𝑗 + 1) → (((𝑛𝑚) · (𝑀𝑛)) ≤ (((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) · (!‘𝑛)) ↔ ((𝑛↑(𝑗 + 1)) · (𝑀𝑛)) ≤ (((2↑((𝑗 + 1)↑2)) · (𝑀↑(𝑀 + (𝑗 + 1)))) · (!‘𝑛))))
111110ralbidv 3120 . . . . . 6 (𝑚 = (𝑗 + 1) → (∀𝑛 ∈ ℕ ((𝑛𝑚) · (𝑀𝑛)) ≤ (((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) · (!‘𝑛)) ↔ ∀𝑛 ∈ ℕ ((𝑛↑(𝑗 + 1)) · (𝑀𝑛)) ≤ (((2↑((𝑗 + 1)↑2)) · (𝑀↑(𝑀 + (𝑗 + 1)))) · (!‘𝑛))))
112111imbi2d 340 . . . . 5 (𝑚 = (𝑗 + 1) → ((𝑀 ∈ ℕ0 → ∀𝑛 ∈ ℕ ((𝑛𝑚) · (𝑀𝑛)) ≤ (((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) · (!‘𝑛))) ↔ (𝑀 ∈ ℕ0 → ∀𝑛 ∈ ℕ ((𝑛↑(𝑗 + 1)) · (𝑀𝑛)) ≤ (((2↑((𝑗 + 1)↑2)) · (𝑀↑(𝑀 + (𝑗 + 1)))) · (!‘𝑛)))))
113 oveq2 7263 . . . . . . . . 9 (𝑚 = 𝐾 → (𝑛𝑚) = (𝑛𝐾))
114113oveq1d 7270 . . . . . . . 8 (𝑚 = 𝐾 → ((𝑛𝑚) · (𝑀𝑛)) = ((𝑛𝐾) · (𝑀𝑛)))
115 oveq1 7262 . . . . . . . . . . 11 (𝑚 = 𝐾 → (𝑚↑2) = (𝐾↑2))
116115oveq2d 7271 . . . . . . . . . 10 (𝑚 = 𝐾 → (2↑(𝑚↑2)) = (2↑(𝐾↑2)))
117 oveq2 7263 . . . . . . . . . . 11 (𝑚 = 𝐾 → (𝑀 + 𝑚) = (𝑀 + 𝐾))
118117oveq2d 7271 . . . . . . . . . 10 (𝑚 = 𝐾 → (𝑀↑(𝑀 + 𝑚)) = (𝑀↑(𝑀 + 𝐾)))
119116, 118oveq12d 7273 . . . . . . . . 9 (𝑚 = 𝐾 → ((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) = ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))))
120119oveq1d 7270 . . . . . . . 8 (𝑚 = 𝐾 → (((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) · (!‘𝑛)) = (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑛)))
121114, 120breq12d 5083 . . . . . . 7 (𝑚 = 𝐾 → (((𝑛𝑚) · (𝑀𝑛)) ≤ (((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) · (!‘𝑛)) ↔ ((𝑛𝐾) · (𝑀𝑛)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑛))))
122121ralbidv 3120 . . . . . 6 (𝑚 = 𝐾 → (∀𝑛 ∈ ℕ ((𝑛𝑚) · (𝑀𝑛)) ≤ (((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) · (!‘𝑛)) ↔ ∀𝑛 ∈ ℕ ((𝑛𝐾) · (𝑀𝑛)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑛))))
123122imbi2d 340 . . . . 5 (𝑚 = 𝐾 → ((𝑀 ∈ ℕ0 → ∀𝑛 ∈ ℕ ((𝑛𝑚) · (𝑀𝑛)) ≤ (((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) · (!‘𝑛))) ↔ (𝑀 ∈ ℕ0 → ∀𝑛 ∈ ℕ ((𝑛𝐾) · (𝑀𝑛)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑛)))))
12449, 79, 90, 101, 112, 123nn0indALT 12346 . . . 4 (𝐾 ∈ ℕ0 → (𝑀 ∈ ℕ0 → ∀𝑛 ∈ ℕ ((𝑛𝐾) · (𝑀𝑛)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑛))))
125124imp 406 . . 3 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → ∀𝑛 ∈ ℕ ((𝑛𝐾) · (𝑀𝑛)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑛)))
126 oveq1 7262 . . . . . 6 (𝑛 = 𝑁 → (𝑛𝐾) = (𝑁𝐾))
127 oveq2 7263 . . . . . 6 (𝑛 = 𝑁 → (𝑀𝑛) = (𝑀𝑁))
128126, 127oveq12d 7273 . . . . 5 (𝑛 = 𝑁 → ((𝑛𝐾) · (𝑀𝑛)) = ((𝑁𝐾) · (𝑀𝑁)))
129 fveq2 6756 . . . . . 6 (𝑛 = 𝑁 → (!‘𝑛) = (!‘𝑁))
130129oveq2d 7271 . . . . 5 (𝑛 = 𝑁 → (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑛)) = (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)))
131128, 130breq12d 5083 . . . 4 (𝑛 = 𝑁 → (((𝑛𝐾) · (𝑀𝑛)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑛)) ↔ ((𝑁𝐾) · (𝑀𝑁)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁))))
132131rspcva 3550 . . 3 ((𝑁 ∈ ℕ ∧ ∀𝑛 ∈ ℕ ((𝑛𝐾) · (𝑀𝑛)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑛))) → ((𝑁𝐾) · (𝑀𝑁)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)))
133125, 132sylan2 592 . 2 ((𝑁 ∈ ℕ ∧ (𝐾 ∈ ℕ0𝑀 ∈ ℕ0)) → ((𝑁𝐾) · (𝑀𝑁)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)))
1341333impb 1113 1 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → ((𝑁𝐾) · (𝑀𝑁)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  wral 3063   class class class wbr 5070  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807   < clt 10940  cle 10941  cmin 11135  cn 11903  2c2 11958  0cn0 12163  cexp 13710  !cfa 13915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-seq 13650  df-exp 13711  df-fac 13916
This theorem is referenced by:  faclbnd4  13939
  Copyright terms: Public domain W3C validator