MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  faclbnd4lem4 Structured version   Visualization version   GIF version

Theorem faclbnd4lem4 13650
Description: Lemma for faclbnd4 13651. Prove the 0 < 𝑁 case by induction on 𝐾. (Contributed by NM, 19-Dec-2005.)
Assertion
Ref Expression
faclbnd4lem4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → ((𝑁𝐾) · (𝑀𝑁)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)))

Proof of Theorem faclbnd4lem4
Dummy variables 𝑗 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7157 . . . . . . . . . . 11 (𝑛 = 𝑚 → (𝑛𝑗) = (𝑚𝑗))
2 oveq2 7158 . . . . . . . . . . 11 (𝑛 = 𝑚 → (𝑀𝑛) = (𝑀𝑚))
31, 2oveq12d 7168 . . . . . . . . . 10 (𝑛 = 𝑚 → ((𝑛𝑗) · (𝑀𝑛)) = ((𝑚𝑗) · (𝑀𝑚)))
4 fveq2 6664 . . . . . . . . . . 11 (𝑛 = 𝑚 → (!‘𝑛) = (!‘𝑚))
54oveq2d 7166 . . . . . . . . . 10 (𝑛 = 𝑚 → (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑛)) = (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑚)))
63, 5breq12d 5071 . . . . . . . . 9 (𝑛 = 𝑚 → (((𝑛𝑗) · (𝑀𝑛)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑛)) ↔ ((𝑚𝑗) · (𝑀𝑚)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑚))))
76cbvralvw 3449 . . . . . . . 8 (∀𝑛 ∈ ℕ ((𝑛𝑗) · (𝑀𝑛)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑛)) ↔ ∀𝑚 ∈ ℕ ((𝑚𝑗) · (𝑀𝑚)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑚)))
8 nnre 11639 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
9 1re 10635 . . . . . . . . . . . . . 14 1 ∈ ℝ
10 lelttric 10741 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑛 ≤ 1 ∨ 1 < 𝑛))
118, 9, 10sylancl 588 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (𝑛 ≤ 1 ∨ 1 < 𝑛))
1211ancli 551 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (𝑛 ∈ ℕ ∧ (𝑛 ≤ 1 ∨ 1 < 𝑛)))
13 andi 1004 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ (𝑛 ≤ 1 ∨ 1 < 𝑛)) ↔ ((𝑛 ∈ ℕ ∧ 𝑛 ≤ 1) ∨ (𝑛 ∈ ℕ ∧ 1 < 𝑛)))
1412, 13sylib 220 . . . . . . . . . . 11 (𝑛 ∈ ℕ → ((𝑛 ∈ ℕ ∧ 𝑛 ≤ 1) ∨ (𝑛 ∈ ℕ ∧ 1 < 𝑛)))
15 nnge1 11659 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → 1 ≤ 𝑛)
16 letri3 10720 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑛 = 1 ↔ (𝑛 ≤ 1 ∧ 1 ≤ 𝑛)))
178, 9, 16sylancl 588 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → (𝑛 = 1 ↔ (𝑛 ≤ 1 ∧ 1 ≤ 𝑛)))
1817biimpar 480 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ ∧ (𝑛 ≤ 1 ∧ 1 ≤ 𝑛)) → 𝑛 = 1)
1918anassrs 470 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ ℕ ∧ 𝑛 ≤ 1) ∧ 1 ≤ 𝑛) → 𝑛 = 1)
2015, 19mpidan 687 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ ∧ 𝑛 ≤ 1) → 𝑛 = 1)
21 oveq1 7157 . . . . . . . . . . . . . . . 16 (𝑛 = 1 → (𝑛 − 1) = (1 − 1))
22 1m1e0 11703 . . . . . . . . . . . . . . . 16 (1 − 1) = 0
2321, 22syl6eq 2872 . . . . . . . . . . . . . . 15 (𝑛 = 1 → (𝑛 − 1) = 0)
2420, 23syl 17 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ 𝑛 ≤ 1) → (𝑛 − 1) = 0)
25 faclbnd4lem3 13649 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ0𝑗 ∈ ℕ0) ∧ (𝑛 − 1) = 0) → (((𝑛 − 1)↑𝑗) · (𝑀↑(𝑛 − 1))) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘(𝑛 − 1))))
2624, 25sylan2 594 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ0𝑗 ∈ ℕ0) ∧ (𝑛 ∈ ℕ ∧ 𝑛 ≤ 1)) → (((𝑛 − 1)↑𝑗) · (𝑀↑(𝑛 − 1))) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘(𝑛 − 1))))
2726a1d 25 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ0𝑗 ∈ ℕ0) ∧ (𝑛 ∈ ℕ ∧ 𝑛 ≤ 1)) → (∀𝑚 ∈ ℕ ((𝑚𝑗) · (𝑀𝑚)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑚)) → (((𝑛 − 1)↑𝑗) · (𝑀↑(𝑛 − 1))) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘(𝑛 − 1)))))
28 1nn 11643 . . . . . . . . . . . . . . . 16 1 ∈ ℕ
29 nnsub 11675 . . . . . . . . . . . . . . . 16 ((1 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (1 < 𝑛 ↔ (𝑛 − 1) ∈ ℕ))
3028, 29mpan 688 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (1 < 𝑛 ↔ (𝑛 − 1) ∈ ℕ))
3130biimpa 479 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ 1 < 𝑛) → (𝑛 − 1) ∈ ℕ)
32 oveq1 7157 . . . . . . . . . . . . . . . . 17 (𝑚 = (𝑛 − 1) → (𝑚𝑗) = ((𝑛 − 1)↑𝑗))
33 oveq2 7158 . . . . . . . . . . . . . . . . 17 (𝑚 = (𝑛 − 1) → (𝑀𝑚) = (𝑀↑(𝑛 − 1)))
3432, 33oveq12d 7168 . . . . . . . . . . . . . . . 16 (𝑚 = (𝑛 − 1) → ((𝑚𝑗) · (𝑀𝑚)) = (((𝑛 − 1)↑𝑗) · (𝑀↑(𝑛 − 1))))
35 fveq2 6664 . . . . . . . . . . . . . . . . 17 (𝑚 = (𝑛 − 1) → (!‘𝑚) = (!‘(𝑛 − 1)))
3635oveq2d 7166 . . . . . . . . . . . . . . . 16 (𝑚 = (𝑛 − 1) → (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑚)) = (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘(𝑛 − 1))))
3734, 36breq12d 5071 . . . . . . . . . . . . . . 15 (𝑚 = (𝑛 − 1) → (((𝑚𝑗) · (𝑀𝑚)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑚)) ↔ (((𝑛 − 1)↑𝑗) · (𝑀↑(𝑛 − 1))) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘(𝑛 − 1)))))
3837rspcv 3617 . . . . . . . . . . . . . 14 ((𝑛 − 1) ∈ ℕ → (∀𝑚 ∈ ℕ ((𝑚𝑗) · (𝑀𝑚)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑚)) → (((𝑛 − 1)↑𝑗) · (𝑀↑(𝑛 − 1))) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘(𝑛 − 1)))))
3931, 38syl 17 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 1 < 𝑛) → (∀𝑚 ∈ ℕ ((𝑚𝑗) · (𝑀𝑚)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑚)) → (((𝑛 − 1)↑𝑗) · (𝑀↑(𝑛 − 1))) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘(𝑛 − 1)))))
4039adantl 484 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ0𝑗 ∈ ℕ0) ∧ (𝑛 ∈ ℕ ∧ 1 < 𝑛)) → (∀𝑚 ∈ ℕ ((𝑚𝑗) · (𝑀𝑚)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑚)) → (((𝑛 − 1)↑𝑗) · (𝑀↑(𝑛 − 1))) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘(𝑛 − 1)))))
4127, 40jaodan 954 . . . . . . . . . . 11 (((𝑀 ∈ ℕ0𝑗 ∈ ℕ0) ∧ ((𝑛 ∈ ℕ ∧ 𝑛 ≤ 1) ∨ (𝑛 ∈ ℕ ∧ 1 < 𝑛))) → (∀𝑚 ∈ ℕ ((𝑚𝑗) · (𝑀𝑚)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑚)) → (((𝑛 − 1)↑𝑗) · (𝑀↑(𝑛 − 1))) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘(𝑛 − 1)))))
4214, 41sylan2 594 . . . . . . . . . 10 (((𝑀 ∈ ℕ0𝑗 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → (∀𝑚 ∈ ℕ ((𝑚𝑗) · (𝑀𝑚)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑚)) → (((𝑛 − 1)↑𝑗) · (𝑀↑(𝑛 − 1))) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘(𝑛 − 1)))))
43 faclbnd4lem2 13648 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑗 ∈ ℕ0𝑛 ∈ ℕ) → ((((𝑛 − 1)↑𝑗) · (𝑀↑(𝑛 − 1))) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘(𝑛 − 1))) → ((𝑛↑(𝑗 + 1)) · (𝑀𝑛)) ≤ (((2↑((𝑗 + 1)↑2)) · (𝑀↑(𝑀 + (𝑗 + 1)))) · (!‘𝑛))))
44433expa 1114 . . . . . . . . . 10 (((𝑀 ∈ ℕ0𝑗 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → ((((𝑛 − 1)↑𝑗) · (𝑀↑(𝑛 − 1))) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘(𝑛 − 1))) → ((𝑛↑(𝑗 + 1)) · (𝑀𝑛)) ≤ (((2↑((𝑗 + 1)↑2)) · (𝑀↑(𝑀 + (𝑗 + 1)))) · (!‘𝑛))))
4542, 44syld 47 . . . . . . . . 9 (((𝑀 ∈ ℕ0𝑗 ∈ ℕ0) ∧ 𝑛 ∈ ℕ) → (∀𝑚 ∈ ℕ ((𝑚𝑗) · (𝑀𝑚)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑚)) → ((𝑛↑(𝑗 + 1)) · (𝑀𝑛)) ≤ (((2↑((𝑗 + 1)↑2)) · (𝑀↑(𝑀 + (𝑗 + 1)))) · (!‘𝑛))))
4645ralrimdva 3189 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑗 ∈ ℕ0) → (∀𝑚 ∈ ℕ ((𝑚𝑗) · (𝑀𝑚)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑚)) → ∀𝑛 ∈ ℕ ((𝑛↑(𝑗 + 1)) · (𝑀𝑛)) ≤ (((2↑((𝑗 + 1)↑2)) · (𝑀↑(𝑀 + (𝑗 + 1)))) · (!‘𝑛))))
477, 46syl5bi 244 . . . . . . 7 ((𝑀 ∈ ℕ0𝑗 ∈ ℕ0) → (∀𝑛 ∈ ℕ ((𝑛𝑗) · (𝑀𝑛)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑛)) → ∀𝑛 ∈ ℕ ((𝑛↑(𝑗 + 1)) · (𝑀𝑛)) ≤ (((2↑((𝑗 + 1)↑2)) · (𝑀↑(𝑀 + (𝑗 + 1)))) · (!‘𝑛))))
4847expcom 416 . . . . . 6 (𝑗 ∈ ℕ0 → (𝑀 ∈ ℕ0 → (∀𝑛 ∈ ℕ ((𝑛𝑗) · (𝑀𝑛)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑛)) → ∀𝑛 ∈ ℕ ((𝑛↑(𝑗 + 1)) · (𝑀𝑛)) ≤ (((2↑((𝑗 + 1)↑2)) · (𝑀↑(𝑀 + (𝑗 + 1)))) · (!‘𝑛)))))
4948a2d 29 . . . . 5 (𝑗 ∈ ℕ0 → ((𝑀 ∈ ℕ0 → ∀𝑛 ∈ ℕ ((𝑛𝑗) · (𝑀𝑛)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑛))) → (𝑀 ∈ ℕ0 → ∀𝑛 ∈ ℕ ((𝑛↑(𝑗 + 1)) · (𝑀𝑛)) ≤ (((2↑((𝑗 + 1)↑2)) · (𝑀↑(𝑀 + (𝑗 + 1)))) · (!‘𝑛)))))
50 nnnn0 11898 . . . . . . . 8 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
51 faclbnd3 13646 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑛 ∈ ℕ0) → (𝑀𝑛) ≤ ((𝑀𝑀) · (!‘𝑛)))
5250, 51sylan2 594 . . . . . . 7 ((𝑀 ∈ ℕ0𝑛 ∈ ℕ) → (𝑀𝑛) ≤ ((𝑀𝑀) · (!‘𝑛)))
53 nncn 11640 . . . . . . . . . . 11 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
5453exp0d 13498 . . . . . . . . . 10 (𝑛 ∈ ℕ → (𝑛↑0) = 1)
5554oveq1d 7165 . . . . . . . . 9 (𝑛 ∈ ℕ → ((𝑛↑0) · (𝑀𝑛)) = (1 · (𝑀𝑛)))
5655adantl 484 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑛 ∈ ℕ) → ((𝑛↑0) · (𝑀𝑛)) = (1 · (𝑀𝑛)))
57 nn0cn 11901 . . . . . . . . . 10 (𝑀 ∈ ℕ0𝑀 ∈ ℂ)
58 expcl 13441 . . . . . . . . . 10 ((𝑀 ∈ ℂ ∧ 𝑛 ∈ ℕ0) → (𝑀𝑛) ∈ ℂ)
5957, 50, 58syl2an 597 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑛 ∈ ℕ) → (𝑀𝑛) ∈ ℂ)
6059mulid2d 10653 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑛 ∈ ℕ) → (1 · (𝑀𝑛)) = (𝑀𝑛))
6156, 60eqtrd 2856 . . . . . . 7 ((𝑀 ∈ ℕ0𝑛 ∈ ℕ) → ((𝑛↑0) · (𝑀𝑛)) = (𝑀𝑛))
62 sq0 13549 . . . . . . . . . . . . . 14 (0↑2) = 0
6362oveq2i 7161 . . . . . . . . . . . . 13 (2↑(0↑2)) = (2↑0)
64 2cn 11706 . . . . . . . . . . . . . 14 2 ∈ ℂ
65 exp0 13427 . . . . . . . . . . . . . 14 (2 ∈ ℂ → (2↑0) = 1)
6664, 65ax-mp 5 . . . . . . . . . . . . 13 (2↑0) = 1
6763, 66eqtri 2844 . . . . . . . . . . . 12 (2↑(0↑2)) = 1
6867a1i 11 . . . . . . . . . . 11 (𝑀 ∈ ℕ0 → (2↑(0↑2)) = 1)
6957addid1d 10834 . . . . . . . . . . . 12 (𝑀 ∈ ℕ0 → (𝑀 + 0) = 𝑀)
7069oveq2d 7166 . . . . . . . . . . 11 (𝑀 ∈ ℕ0 → (𝑀↑(𝑀 + 0)) = (𝑀𝑀))
7168, 70oveq12d 7168 . . . . . . . . . 10 (𝑀 ∈ ℕ0 → ((2↑(0↑2)) · (𝑀↑(𝑀 + 0))) = (1 · (𝑀𝑀)))
72 expcl 13441 . . . . . . . . . . . 12 ((𝑀 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝑀𝑀) ∈ ℂ)
7357, 72mpancom 686 . . . . . . . . . . 11 (𝑀 ∈ ℕ0 → (𝑀𝑀) ∈ ℂ)
7473mulid2d 10653 . . . . . . . . . 10 (𝑀 ∈ ℕ0 → (1 · (𝑀𝑀)) = (𝑀𝑀))
7571, 74eqtrd 2856 . . . . . . . . 9 (𝑀 ∈ ℕ0 → ((2↑(0↑2)) · (𝑀↑(𝑀 + 0))) = (𝑀𝑀))
7675oveq1d 7165 . . . . . . . 8 (𝑀 ∈ ℕ0 → (((2↑(0↑2)) · (𝑀↑(𝑀 + 0))) · (!‘𝑛)) = ((𝑀𝑀) · (!‘𝑛)))
7776adantr 483 . . . . . . 7 ((𝑀 ∈ ℕ0𝑛 ∈ ℕ) → (((2↑(0↑2)) · (𝑀↑(𝑀 + 0))) · (!‘𝑛)) = ((𝑀𝑀) · (!‘𝑛)))
7852, 61, 773brtr4d 5090 . . . . . 6 ((𝑀 ∈ ℕ0𝑛 ∈ ℕ) → ((𝑛↑0) · (𝑀𝑛)) ≤ (((2↑(0↑2)) · (𝑀↑(𝑀 + 0))) · (!‘𝑛)))
7978ralrimiva 3182 . . . . 5 (𝑀 ∈ ℕ0 → ∀𝑛 ∈ ℕ ((𝑛↑0) · (𝑀𝑛)) ≤ (((2↑(0↑2)) · (𝑀↑(𝑀 + 0))) · (!‘𝑛)))
80 oveq2 7158 . . . . . . . . 9 (𝑚 = 0 → (𝑛𝑚) = (𝑛↑0))
8180oveq1d 7165 . . . . . . . 8 (𝑚 = 0 → ((𝑛𝑚) · (𝑀𝑛)) = ((𝑛↑0) · (𝑀𝑛)))
82 oveq1 7157 . . . . . . . . . . 11 (𝑚 = 0 → (𝑚↑2) = (0↑2))
8382oveq2d 7166 . . . . . . . . . 10 (𝑚 = 0 → (2↑(𝑚↑2)) = (2↑(0↑2)))
84 oveq2 7158 . . . . . . . . . . 11 (𝑚 = 0 → (𝑀 + 𝑚) = (𝑀 + 0))
8584oveq2d 7166 . . . . . . . . . 10 (𝑚 = 0 → (𝑀↑(𝑀 + 𝑚)) = (𝑀↑(𝑀 + 0)))
8683, 85oveq12d 7168 . . . . . . . . 9 (𝑚 = 0 → ((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) = ((2↑(0↑2)) · (𝑀↑(𝑀 + 0))))
8786oveq1d 7165 . . . . . . . 8 (𝑚 = 0 → (((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) · (!‘𝑛)) = (((2↑(0↑2)) · (𝑀↑(𝑀 + 0))) · (!‘𝑛)))
8881, 87breq12d 5071 . . . . . . 7 (𝑚 = 0 → (((𝑛𝑚) · (𝑀𝑛)) ≤ (((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) · (!‘𝑛)) ↔ ((𝑛↑0) · (𝑀𝑛)) ≤ (((2↑(0↑2)) · (𝑀↑(𝑀 + 0))) · (!‘𝑛))))
8988ralbidv 3197 . . . . . 6 (𝑚 = 0 → (∀𝑛 ∈ ℕ ((𝑛𝑚) · (𝑀𝑛)) ≤ (((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) · (!‘𝑛)) ↔ ∀𝑛 ∈ ℕ ((𝑛↑0) · (𝑀𝑛)) ≤ (((2↑(0↑2)) · (𝑀↑(𝑀 + 0))) · (!‘𝑛))))
9089imbi2d 343 . . . . 5 (𝑚 = 0 → ((𝑀 ∈ ℕ0 → ∀𝑛 ∈ ℕ ((𝑛𝑚) · (𝑀𝑛)) ≤ (((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) · (!‘𝑛))) ↔ (𝑀 ∈ ℕ0 → ∀𝑛 ∈ ℕ ((𝑛↑0) · (𝑀𝑛)) ≤ (((2↑(0↑2)) · (𝑀↑(𝑀 + 0))) · (!‘𝑛)))))
91 oveq2 7158 . . . . . . . . 9 (𝑚 = 𝑗 → (𝑛𝑚) = (𝑛𝑗))
9291oveq1d 7165 . . . . . . . 8 (𝑚 = 𝑗 → ((𝑛𝑚) · (𝑀𝑛)) = ((𝑛𝑗) · (𝑀𝑛)))
93 oveq1 7157 . . . . . . . . . . 11 (𝑚 = 𝑗 → (𝑚↑2) = (𝑗↑2))
9493oveq2d 7166 . . . . . . . . . 10 (𝑚 = 𝑗 → (2↑(𝑚↑2)) = (2↑(𝑗↑2)))
95 oveq2 7158 . . . . . . . . . . 11 (𝑚 = 𝑗 → (𝑀 + 𝑚) = (𝑀 + 𝑗))
9695oveq2d 7166 . . . . . . . . . 10 (𝑚 = 𝑗 → (𝑀↑(𝑀 + 𝑚)) = (𝑀↑(𝑀 + 𝑗)))
9794, 96oveq12d 7168 . . . . . . . . 9 (𝑚 = 𝑗 → ((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) = ((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))))
9897oveq1d 7165 . . . . . . . 8 (𝑚 = 𝑗 → (((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) · (!‘𝑛)) = (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑛)))
9992, 98breq12d 5071 . . . . . . 7 (𝑚 = 𝑗 → (((𝑛𝑚) · (𝑀𝑛)) ≤ (((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) · (!‘𝑛)) ↔ ((𝑛𝑗) · (𝑀𝑛)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑛))))
10099ralbidv 3197 . . . . . 6 (𝑚 = 𝑗 → (∀𝑛 ∈ ℕ ((𝑛𝑚) · (𝑀𝑛)) ≤ (((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) · (!‘𝑛)) ↔ ∀𝑛 ∈ ℕ ((𝑛𝑗) · (𝑀𝑛)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑛))))
101100imbi2d 343 . . . . 5 (𝑚 = 𝑗 → ((𝑀 ∈ ℕ0 → ∀𝑛 ∈ ℕ ((𝑛𝑚) · (𝑀𝑛)) ≤ (((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) · (!‘𝑛))) ↔ (𝑀 ∈ ℕ0 → ∀𝑛 ∈ ℕ ((𝑛𝑗) · (𝑀𝑛)) ≤ (((2↑(𝑗↑2)) · (𝑀↑(𝑀 + 𝑗))) · (!‘𝑛)))))
102 oveq2 7158 . . . . . . . . 9 (𝑚 = (𝑗 + 1) → (𝑛𝑚) = (𝑛↑(𝑗 + 1)))
103102oveq1d 7165 . . . . . . . 8 (𝑚 = (𝑗 + 1) → ((𝑛𝑚) · (𝑀𝑛)) = ((𝑛↑(𝑗 + 1)) · (𝑀𝑛)))
104 oveq1 7157 . . . . . . . . . . 11 (𝑚 = (𝑗 + 1) → (𝑚↑2) = ((𝑗 + 1)↑2))
105104oveq2d 7166 . . . . . . . . . 10 (𝑚 = (𝑗 + 1) → (2↑(𝑚↑2)) = (2↑((𝑗 + 1)↑2)))
106 oveq2 7158 . . . . . . . . . . 11 (𝑚 = (𝑗 + 1) → (𝑀 + 𝑚) = (𝑀 + (𝑗 + 1)))
107106oveq2d 7166 . . . . . . . . . 10 (𝑚 = (𝑗 + 1) → (𝑀↑(𝑀 + 𝑚)) = (𝑀↑(𝑀 + (𝑗 + 1))))
108105, 107oveq12d 7168 . . . . . . . . 9 (𝑚 = (𝑗 + 1) → ((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) = ((2↑((𝑗 + 1)↑2)) · (𝑀↑(𝑀 + (𝑗 + 1)))))
109108oveq1d 7165 . . . . . . . 8 (𝑚 = (𝑗 + 1) → (((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) · (!‘𝑛)) = (((2↑((𝑗 + 1)↑2)) · (𝑀↑(𝑀 + (𝑗 + 1)))) · (!‘𝑛)))
110103, 109breq12d 5071 . . . . . . 7 (𝑚 = (𝑗 + 1) → (((𝑛𝑚) · (𝑀𝑛)) ≤ (((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) · (!‘𝑛)) ↔ ((𝑛↑(𝑗 + 1)) · (𝑀𝑛)) ≤ (((2↑((𝑗 + 1)↑2)) · (𝑀↑(𝑀 + (𝑗 + 1)))) · (!‘𝑛))))
111110ralbidv 3197 . . . . . 6 (𝑚 = (𝑗 + 1) → (∀𝑛 ∈ ℕ ((𝑛𝑚) · (𝑀𝑛)) ≤ (((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) · (!‘𝑛)) ↔ ∀𝑛 ∈ ℕ ((𝑛↑(𝑗 + 1)) · (𝑀𝑛)) ≤ (((2↑((𝑗 + 1)↑2)) · (𝑀↑(𝑀 + (𝑗 + 1)))) · (!‘𝑛))))
112111imbi2d 343 . . . . 5 (𝑚 = (𝑗 + 1) → ((𝑀 ∈ ℕ0 → ∀𝑛 ∈ ℕ ((𝑛𝑚) · (𝑀𝑛)) ≤ (((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) · (!‘𝑛))) ↔ (𝑀 ∈ ℕ0 → ∀𝑛 ∈ ℕ ((𝑛↑(𝑗 + 1)) · (𝑀𝑛)) ≤ (((2↑((𝑗 + 1)↑2)) · (𝑀↑(𝑀 + (𝑗 + 1)))) · (!‘𝑛)))))
113 oveq2 7158 . . . . . . . . 9 (𝑚 = 𝐾 → (𝑛𝑚) = (𝑛𝐾))
114113oveq1d 7165 . . . . . . . 8 (𝑚 = 𝐾 → ((𝑛𝑚) · (𝑀𝑛)) = ((𝑛𝐾) · (𝑀𝑛)))
115 oveq1 7157 . . . . . . . . . . 11 (𝑚 = 𝐾 → (𝑚↑2) = (𝐾↑2))
116115oveq2d 7166 . . . . . . . . . 10 (𝑚 = 𝐾 → (2↑(𝑚↑2)) = (2↑(𝐾↑2)))
117 oveq2 7158 . . . . . . . . . . 11 (𝑚 = 𝐾 → (𝑀 + 𝑚) = (𝑀 + 𝐾))
118117oveq2d 7166 . . . . . . . . . 10 (𝑚 = 𝐾 → (𝑀↑(𝑀 + 𝑚)) = (𝑀↑(𝑀 + 𝐾)))
119116, 118oveq12d 7168 . . . . . . . . 9 (𝑚 = 𝐾 → ((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) = ((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))))
120119oveq1d 7165 . . . . . . . 8 (𝑚 = 𝐾 → (((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) · (!‘𝑛)) = (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑛)))
121114, 120breq12d 5071 . . . . . . 7 (𝑚 = 𝐾 → (((𝑛𝑚) · (𝑀𝑛)) ≤ (((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) · (!‘𝑛)) ↔ ((𝑛𝐾) · (𝑀𝑛)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑛))))
122121ralbidv 3197 . . . . . 6 (𝑚 = 𝐾 → (∀𝑛 ∈ ℕ ((𝑛𝑚) · (𝑀𝑛)) ≤ (((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) · (!‘𝑛)) ↔ ∀𝑛 ∈ ℕ ((𝑛𝐾) · (𝑀𝑛)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑛))))
123122imbi2d 343 . . . . 5 (𝑚 = 𝐾 → ((𝑀 ∈ ℕ0 → ∀𝑛 ∈ ℕ ((𝑛𝑚) · (𝑀𝑛)) ≤ (((2↑(𝑚↑2)) · (𝑀↑(𝑀 + 𝑚))) · (!‘𝑛))) ↔ (𝑀 ∈ ℕ0 → ∀𝑛 ∈ ℕ ((𝑛𝐾) · (𝑀𝑛)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑛)))))
12449, 79, 90, 101, 112, 123nn0indALT 12072 . . . 4 (𝐾 ∈ ℕ0 → (𝑀 ∈ ℕ0 → ∀𝑛 ∈ ℕ ((𝑛𝐾) · (𝑀𝑛)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑛))))
125124imp 409 . . 3 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → ∀𝑛 ∈ ℕ ((𝑛𝐾) · (𝑀𝑛)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑛)))
126 oveq1 7157 . . . . . 6 (𝑛 = 𝑁 → (𝑛𝐾) = (𝑁𝐾))
127 oveq2 7158 . . . . . 6 (𝑛 = 𝑁 → (𝑀𝑛) = (𝑀𝑁))
128126, 127oveq12d 7168 . . . . 5 (𝑛 = 𝑁 → ((𝑛𝐾) · (𝑀𝑛)) = ((𝑁𝐾) · (𝑀𝑁)))
129 fveq2 6664 . . . . . 6 (𝑛 = 𝑁 → (!‘𝑛) = (!‘𝑁))
130129oveq2d 7166 . . . . 5 (𝑛 = 𝑁 → (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑛)) = (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)))
131128, 130breq12d 5071 . . . 4 (𝑛 = 𝑁 → (((𝑛𝐾) · (𝑀𝑛)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑛)) ↔ ((𝑁𝐾) · (𝑀𝑁)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁))))
132131rspcva 3620 . . 3 ((𝑁 ∈ ℕ ∧ ∀𝑛 ∈ ℕ ((𝑛𝐾) · (𝑀𝑛)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑛))) → ((𝑁𝐾) · (𝑀𝑁)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)))
133125, 132sylan2 594 . 2 ((𝑁 ∈ ℕ ∧ (𝐾 ∈ ℕ0𝑀 ∈ ℕ0)) → ((𝑁𝐾) · (𝑀𝑁)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)))
1341333impb 1111 1 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → ((𝑁𝐾) · (𝑀𝑁)) ≤ (((2↑(𝐾↑2)) · (𝑀↑(𝑀 + 𝐾))) · (!‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1533  wcel 2110  wral 3138   class class class wbr 5058  cfv 6349  (class class class)co 7150  cc 10529  cr 10530  0cc0 10531  1c1 10532   + caddc 10534   · cmul 10536   < clt 10669  cle 10670  cmin 10864  cn 11632  2c2 11686  0cn0 11891  cexp 13423  !cfa 13627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-seq 13364  df-exp 13424  df-fac 13628
This theorem is referenced by:  faclbnd4  13651
  Copyright terms: Public domain W3C validator