MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sumrb Structured version   Visualization version   GIF version

Theorem sumrb 15620
Description: Rebase the starting point of a sum. (Contributed by Mario Carneiro, 14-Jul-2013.) (Revised by Mario Carneiro, 9-Apr-2014.)
Hypotheses
Ref Expression
summo.1 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
summo.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
sumrb.4 (𝜑𝑀 ∈ ℤ)
sumrb.5 (𝜑𝑁 ∈ ℤ)
sumrb.6 (𝜑𝐴 ⊆ (ℤ𝑀))
sumrb.7 (𝜑𝐴 ⊆ (ℤ𝑁))
Assertion
Ref Expression
sumrb (𝜑 → (seq𝑀( + , 𝐹) ⇝ 𝐶 ↔ seq𝑁( + , 𝐹) ⇝ 𝐶))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑁   𝜑,𝑘   𝑘,𝑀
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem sumrb
StepHypRef Expression
1 sumrb.5 . . . . 5 (𝜑𝑁 ∈ ℤ)
21adantr 480 . . . 4 ((𝜑𝑁 ∈ (ℤ𝑀)) → 𝑁 ∈ ℤ)
3 seqex 13910 . . . 4 seq𝑀( + , 𝐹) ∈ V
4 climres 15482 . . . 4 ((𝑁 ∈ ℤ ∧ seq𝑀( + , 𝐹) ∈ V) → ((seq𝑀( + , 𝐹) ↾ (ℤ𝑁)) ⇝ 𝐶 ↔ seq𝑀( + , 𝐹) ⇝ 𝐶))
52, 3, 4sylancl 586 . . 3 ((𝜑𝑁 ∈ (ℤ𝑀)) → ((seq𝑀( + , 𝐹) ↾ (ℤ𝑁)) ⇝ 𝐶 ↔ seq𝑀( + , 𝐹) ⇝ 𝐶))
6 sumrb.7 . . . . 5 (𝜑𝐴 ⊆ (ℤ𝑁))
7 summo.1 . . . . . 6 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
8 summo.2 . . . . . . 7 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
98adantlr 715 . . . . . 6 (((𝜑𝑁 ∈ (ℤ𝑀)) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
10 simpr 484 . . . . . 6 ((𝜑𝑁 ∈ (ℤ𝑀)) → 𝑁 ∈ (ℤ𝑀))
117, 9, 10sumrblem 15618 . . . . 5 (((𝜑𝑁 ∈ (ℤ𝑀)) ∧ 𝐴 ⊆ (ℤ𝑁)) → (seq𝑀( + , 𝐹) ↾ (ℤ𝑁)) = seq𝑁( + , 𝐹))
126, 11mpidan 689 . . . 4 ((𝜑𝑁 ∈ (ℤ𝑀)) → (seq𝑀( + , 𝐹) ↾ (ℤ𝑁)) = seq𝑁( + , 𝐹))
1312breq1d 5099 . . 3 ((𝜑𝑁 ∈ (ℤ𝑀)) → ((seq𝑀( + , 𝐹) ↾ (ℤ𝑁)) ⇝ 𝐶 ↔ seq𝑁( + , 𝐹) ⇝ 𝐶))
145, 13bitr3d 281 . 2 ((𝜑𝑁 ∈ (ℤ𝑀)) → (seq𝑀( + , 𝐹) ⇝ 𝐶 ↔ seq𝑁( + , 𝐹) ⇝ 𝐶))
15 sumrb.6 . . . . 5 (𝜑𝐴 ⊆ (ℤ𝑀))
168adantlr 715 . . . . . 6 (((𝜑𝑀 ∈ (ℤ𝑁)) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
17 simpr 484 . . . . . 6 ((𝜑𝑀 ∈ (ℤ𝑁)) → 𝑀 ∈ (ℤ𝑁))
187, 16, 17sumrblem 15618 . . . . 5 (((𝜑𝑀 ∈ (ℤ𝑁)) ∧ 𝐴 ⊆ (ℤ𝑀)) → (seq𝑁( + , 𝐹) ↾ (ℤ𝑀)) = seq𝑀( + , 𝐹))
1915, 18mpidan 689 . . . 4 ((𝜑𝑀 ∈ (ℤ𝑁)) → (seq𝑁( + , 𝐹) ↾ (ℤ𝑀)) = seq𝑀( + , 𝐹))
2019breq1d 5099 . . 3 ((𝜑𝑀 ∈ (ℤ𝑁)) → ((seq𝑁( + , 𝐹) ↾ (ℤ𝑀)) ⇝ 𝐶 ↔ seq𝑀( + , 𝐹) ⇝ 𝐶))
21 sumrb.4 . . . . 5 (𝜑𝑀 ∈ ℤ)
2221adantr 480 . . . 4 ((𝜑𝑀 ∈ (ℤ𝑁)) → 𝑀 ∈ ℤ)
23 seqex 13910 . . . 4 seq𝑁( + , 𝐹) ∈ V
24 climres 15482 . . . 4 ((𝑀 ∈ ℤ ∧ seq𝑁( + , 𝐹) ∈ V) → ((seq𝑁( + , 𝐹) ↾ (ℤ𝑀)) ⇝ 𝐶 ↔ seq𝑁( + , 𝐹) ⇝ 𝐶))
2522, 23, 24sylancl 586 . . 3 ((𝜑𝑀 ∈ (ℤ𝑁)) → ((seq𝑁( + , 𝐹) ↾ (ℤ𝑀)) ⇝ 𝐶 ↔ seq𝑁( + , 𝐹) ⇝ 𝐶))
2620, 25bitr3d 281 . 2 ((𝜑𝑀 ∈ (ℤ𝑁)) → (seq𝑀( + , 𝐹) ⇝ 𝐶 ↔ seq𝑁( + , 𝐹) ⇝ 𝐶))
27 uztric 12756 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝑀) ∨ 𝑀 ∈ (ℤ𝑁)))
2821, 1, 27syl2anc 584 . 2 (𝜑 → (𝑁 ∈ (ℤ𝑀) ∨ 𝑀 ∈ (ℤ𝑁)))
2914, 26, 28mpjaodan 960 1 (𝜑 → (seq𝑀( + , 𝐹) ⇝ 𝐶 ↔ seq𝑁( + , 𝐹) ⇝ 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  Vcvv 3436  wss 3897  ifcif 4472   class class class wbr 5089  cmpt 5170  cres 5616  cfv 6481  cc 11004  0cc0 11006   + caddc 11009  cz 12468  cuz 12732  seqcseq 13908  cli 15391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-seq 13909  df-clim 15395
This theorem is referenced by:  summo  15624  zsum  15625
  Copyright terms: Public domain W3C validator