Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sumrb Structured version   Visualization version   GIF version

Theorem sumrb 14920
 Description: Rebase the starting point of a sum. (Contributed by Mario Carneiro, 14-Jul-2013.) (Revised by Mario Carneiro, 9-Apr-2014.)
Hypotheses
Ref Expression
summo.1 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
summo.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
sumrb.4 (𝜑𝑀 ∈ ℤ)
sumrb.5 (𝜑𝑁 ∈ ℤ)
sumrb.6 (𝜑𝐴 ⊆ (ℤ𝑀))
sumrb.7 (𝜑𝐴 ⊆ (ℤ𝑁))
Assertion
Ref Expression
sumrb (𝜑 → (seq𝑀( + , 𝐹) ⇝ 𝐶 ↔ seq𝑁( + , 𝐹) ⇝ 𝐶))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑁   𝜑,𝑘   𝑘,𝑀
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem sumrb
StepHypRef Expression
1 sumrb.5 . . . . 5 (𝜑𝑁 ∈ ℤ)
21adantr 473 . . . 4 ((𝜑𝑁 ∈ (ℤ𝑀)) → 𝑁 ∈ ℤ)
3 seqex 13179 . . . 4 seq𝑀( + , 𝐹) ∈ V
4 climres 14783 . . . 4 ((𝑁 ∈ ℤ ∧ seq𝑀( + , 𝐹) ∈ V) → ((seq𝑀( + , 𝐹) ↾ (ℤ𝑁)) ⇝ 𝐶 ↔ seq𝑀( + , 𝐹) ⇝ 𝐶))
52, 3, 4sylancl 577 . . 3 ((𝜑𝑁 ∈ (ℤ𝑀)) → ((seq𝑀( + , 𝐹) ↾ (ℤ𝑁)) ⇝ 𝐶 ↔ seq𝑀( + , 𝐹) ⇝ 𝐶))
6 sumrb.7 . . . . 5 (𝜑𝐴 ⊆ (ℤ𝑁))
7 summo.1 . . . . . 6 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
8 summo.2 . . . . . . 7 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
98adantlr 702 . . . . . 6 (((𝜑𝑁 ∈ (ℤ𝑀)) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
10 simpr 477 . . . . . 6 ((𝜑𝑁 ∈ (ℤ𝑀)) → 𝑁 ∈ (ℤ𝑀))
117, 9, 10sumrblem 14918 . . . . 5 (((𝜑𝑁 ∈ (ℤ𝑀)) ∧ 𝐴 ⊆ (ℤ𝑁)) → (seq𝑀( + , 𝐹) ↾ (ℤ𝑁)) = seq𝑁( + , 𝐹))
126, 11mpidan 676 . . . 4 ((𝜑𝑁 ∈ (ℤ𝑀)) → (seq𝑀( + , 𝐹) ↾ (ℤ𝑁)) = seq𝑁( + , 𝐹))
1312breq1d 4933 . . 3 ((𝜑𝑁 ∈ (ℤ𝑀)) → ((seq𝑀( + , 𝐹) ↾ (ℤ𝑁)) ⇝ 𝐶 ↔ seq𝑁( + , 𝐹) ⇝ 𝐶))
145, 13bitr3d 273 . 2 ((𝜑𝑁 ∈ (ℤ𝑀)) → (seq𝑀( + , 𝐹) ⇝ 𝐶 ↔ seq𝑁( + , 𝐹) ⇝ 𝐶))
15 sumrb.6 . . . . 5 (𝜑𝐴 ⊆ (ℤ𝑀))
168adantlr 702 . . . . . 6 (((𝜑𝑀 ∈ (ℤ𝑁)) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
17 simpr 477 . . . . . 6 ((𝜑𝑀 ∈ (ℤ𝑁)) → 𝑀 ∈ (ℤ𝑁))
187, 16, 17sumrblem 14918 . . . . 5 (((𝜑𝑀 ∈ (ℤ𝑁)) ∧ 𝐴 ⊆ (ℤ𝑀)) → (seq𝑁( + , 𝐹) ↾ (ℤ𝑀)) = seq𝑀( + , 𝐹))
1915, 18mpidan 676 . . . 4 ((𝜑𝑀 ∈ (ℤ𝑁)) → (seq𝑁( + , 𝐹) ↾ (ℤ𝑀)) = seq𝑀( + , 𝐹))
2019breq1d 4933 . . 3 ((𝜑𝑀 ∈ (ℤ𝑁)) → ((seq𝑁( + , 𝐹) ↾ (ℤ𝑀)) ⇝ 𝐶 ↔ seq𝑀( + , 𝐹) ⇝ 𝐶))
21 sumrb.4 . . . . 5 (𝜑𝑀 ∈ ℤ)
2221adantr 473 . . . 4 ((𝜑𝑀 ∈ (ℤ𝑁)) → 𝑀 ∈ ℤ)
23 seqex 13179 . . . 4 seq𝑁( + , 𝐹) ∈ V
24 climres 14783 . . . 4 ((𝑀 ∈ ℤ ∧ seq𝑁( + , 𝐹) ∈ V) → ((seq𝑁( + , 𝐹) ↾ (ℤ𝑀)) ⇝ 𝐶 ↔ seq𝑁( + , 𝐹) ⇝ 𝐶))
2522, 23, 24sylancl 577 . . 3 ((𝜑𝑀 ∈ (ℤ𝑁)) → ((seq𝑁( + , 𝐹) ↾ (ℤ𝑀)) ⇝ 𝐶 ↔ seq𝑁( + , 𝐹) ⇝ 𝐶))
2620, 25bitr3d 273 . 2 ((𝜑𝑀 ∈ (ℤ𝑁)) → (seq𝑀( + , 𝐹) ⇝ 𝐶 ↔ seq𝑁( + , 𝐹) ⇝ 𝐶))
27 uztric 12073 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝑀) ∨ 𝑀 ∈ (ℤ𝑁)))
2821, 1, 27syl2anc 576 . 2 (𝜑 → (𝑁 ∈ (ℤ𝑀) ∨ 𝑀 ∈ (ℤ𝑁)))
2914, 26, 28mpjaodan 941 1 (𝜑 → (seq𝑀( + , 𝐹) ⇝ 𝐶 ↔ seq𝑁( + , 𝐹) ⇝ 𝐶))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   ∧ wa 387   ∨ wo 833   = wceq 1507   ∈ wcel 2048  Vcvv 3409   ⊆ wss 3825  ifcif 4344   class class class wbr 4923   ↦ cmpt 5002   ↾ cres 5402  ‘cfv 6182  ℂcc 10325  0cc0 10327   + caddc 10330  ℤcz 11786  ℤ≥cuz 12051  seqcseq 13177   ⇝ cli 14692 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-inf2 8890  ax-cnex 10383  ax-resscn 10384  ax-1cn 10385  ax-icn 10386  ax-addcl 10387  ax-addrcl 10388  ax-mulcl 10389  ax-mulrcl 10390  ax-mulcom 10391  ax-addass 10392  ax-mulass 10393  ax-distr 10394  ax-i2m1 10395  ax-1ne0 10396  ax-1rid 10397  ax-rnegex 10398  ax-rrecex 10399  ax-cnre 10400  ax-pre-lttri 10401  ax-pre-lttrn 10402  ax-pre-ltadd 10403  ax-pre-mulgt0 10404 This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-pss 3841  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5305  df-eprel 5310  df-po 5319  df-so 5320  df-fr 5359  df-we 5361  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-1st 7494  df-2nd 7495  df-wrecs 7743  df-recs 7805  df-rdg 7843  df-er 8081  df-en 8299  df-dom 8300  df-sdom 8301  df-pnf 10468  df-mnf 10469  df-xr 10470  df-ltxr 10471  df-le 10472  df-sub 10664  df-neg 10665  df-nn 11432  df-n0 11701  df-z 11787  df-uz 12052  df-fz 12702  df-seq 13178  df-clim 14696 This theorem is referenced by:  summo  14924  zsum  14925
 Copyright terms: Public domain W3C validator