![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sumrb | Structured version Visualization version GIF version |
Description: Rebase the starting point of a sum. (Contributed by Mario Carneiro, 14-Jul-2013.) (Revised by Mario Carneiro, 9-Apr-2014.) |
Ref | Expression |
---|---|
summo.1 | ⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 0)) |
summo.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
sumrb.4 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
sumrb.5 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
sumrb.6 | ⊢ (𝜑 → 𝐴 ⊆ (ℤ≥‘𝑀)) |
sumrb.7 | ⊢ (𝜑 → 𝐴 ⊆ (ℤ≥‘𝑁)) |
Ref | Expression |
---|---|
sumrb | ⊢ (𝜑 → (seq𝑀( + , 𝐹) ⇝ 𝐶 ↔ seq𝑁( + , 𝐹) ⇝ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sumrb.5 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
2 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝑁 ∈ ℤ) |
3 | seqex 14054 | . . . 4 ⊢ seq𝑀( + , 𝐹) ∈ V | |
4 | climres 15621 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ seq𝑀( + , 𝐹) ∈ V) → ((seq𝑀( + , 𝐹) ↾ (ℤ≥‘𝑁)) ⇝ 𝐶 ↔ seq𝑀( + , 𝐹) ⇝ 𝐶)) | |
5 | 2, 3, 4 | sylancl 585 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → ((seq𝑀( + , 𝐹) ↾ (ℤ≥‘𝑁)) ⇝ 𝐶 ↔ seq𝑀( + , 𝐹) ⇝ 𝐶)) |
6 | sumrb.7 | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ (ℤ≥‘𝑁)) | |
7 | summo.1 | . . . . . 6 ⊢ 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 0)) | |
8 | summo.2 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
9 | 8 | adantlr 714 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
10 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝑁 ∈ (ℤ≥‘𝑀)) | |
11 | 7, 9, 10 | sumrblem 15759 | . . . . 5 ⊢ (((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) ∧ 𝐴 ⊆ (ℤ≥‘𝑁)) → (seq𝑀( + , 𝐹) ↾ (ℤ≥‘𝑁)) = seq𝑁( + , 𝐹)) |
12 | 6, 11 | mpidan 688 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (seq𝑀( + , 𝐹) ↾ (ℤ≥‘𝑁)) = seq𝑁( + , 𝐹)) |
13 | 12 | breq1d 5176 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → ((seq𝑀( + , 𝐹) ↾ (ℤ≥‘𝑁)) ⇝ 𝐶 ↔ seq𝑁( + , 𝐹) ⇝ 𝐶)) |
14 | 5, 13 | bitr3d 281 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (seq𝑀( + , 𝐹) ⇝ 𝐶 ↔ seq𝑁( + , 𝐹) ⇝ 𝐶)) |
15 | sumrb.6 | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ (ℤ≥‘𝑀)) | |
16 | 8 | adantlr 714 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
17 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ (ℤ≥‘𝑁)) | |
18 | 7, 16, 17 | sumrblem 15759 | . . . . 5 ⊢ (((𝜑 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) ∧ 𝐴 ⊆ (ℤ≥‘𝑀)) → (seq𝑁( + , 𝐹) ↾ (ℤ≥‘𝑀)) = seq𝑀( + , 𝐹)) |
19 | 15, 18 | mpidan 688 | . . . 4 ⊢ ((𝜑 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → (seq𝑁( + , 𝐹) ↾ (ℤ≥‘𝑀)) = seq𝑀( + , 𝐹)) |
20 | 19 | breq1d 5176 | . . 3 ⊢ ((𝜑 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → ((seq𝑁( + , 𝐹) ↾ (ℤ≥‘𝑀)) ⇝ 𝐶 ↔ seq𝑀( + , 𝐹) ⇝ 𝐶)) |
21 | sumrb.4 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
22 | 21 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ ℤ) |
23 | seqex 14054 | . . . 4 ⊢ seq𝑁( + , 𝐹) ∈ V | |
24 | climres 15621 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ seq𝑁( + , 𝐹) ∈ V) → ((seq𝑁( + , 𝐹) ↾ (ℤ≥‘𝑀)) ⇝ 𝐶 ↔ seq𝑁( + , 𝐹) ⇝ 𝐶)) | |
25 | 22, 23, 24 | sylancl 585 | . . 3 ⊢ ((𝜑 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → ((seq𝑁( + , 𝐹) ↾ (ℤ≥‘𝑀)) ⇝ 𝐶 ↔ seq𝑁( + , 𝐹) ⇝ 𝐶)) |
26 | 20, 25 | bitr3d 281 | . 2 ⊢ ((𝜑 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → (seq𝑀( + , 𝐹) ⇝ 𝐶 ↔ seq𝑁( + , 𝐹) ⇝ 𝐶)) |
27 | uztric 12927 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘𝑀) ∨ 𝑀 ∈ (ℤ≥‘𝑁))) | |
28 | 21, 1, 27 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝑁 ∈ (ℤ≥‘𝑀) ∨ 𝑀 ∈ (ℤ≥‘𝑁))) |
29 | 14, 26, 28 | mpjaodan 959 | 1 ⊢ (𝜑 → (seq𝑀( + , 𝐹) ⇝ 𝐶 ↔ seq𝑁( + , 𝐹) ⇝ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 846 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 ifcif 4548 class class class wbr 5166 ↦ cmpt 5249 ↾ cres 5702 ‘cfv 6573 ℂcc 11182 0cc0 11184 + caddc 11187 ℤcz 12639 ℤ≥cuz 12903 seqcseq 14052 ⇝ cli 15530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-seq 14053 df-clim 15534 |
This theorem is referenced by: summo 15765 zsum 15766 |
Copyright terms: Public domain | W3C validator |