Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isomuspgrlem2c Structured version   Visualization version   GIF version

Theorem isomuspgrlem2c 44348
Description: Lemma 3 for isomuspgrlem2 44351. (Contributed by AV, 29-Nov-2022.)
Hypotheses
Ref Expression
isomushgr.v 𝑉 = (Vtx‘𝐴)
isomushgr.w 𝑊 = (Vtx‘𝐵)
isomushgr.e 𝐸 = (Edg‘𝐴)
isomushgr.k 𝐾 = (Edg‘𝐵)
isomuspgrlem2.g 𝐺 = (𝑥𝐸 ↦ (𝐹𝑥))
isomuspgrlem2.a (𝜑𝐴 ∈ USPGraph)
isomuspgrlem2.f (𝜑𝐹:𝑉1-1-onto𝑊)
isomuspgrlem2.i (𝜑 → ∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝐹𝑎), (𝐹𝑏)} ∈ 𝐾))
isomuspgrlem2.x (𝜑𝐹𝑋)
Assertion
Ref Expression
isomuspgrlem2c (𝜑𝐺:𝐸1-1𝐾)
Distinct variable groups:   𝑎,𝑏,𝑥   𝑥,𝐴   𝑥,𝐵   𝑥,𝐸   𝑥,𝐾   𝑥,𝑉   𝑥,𝑊   𝑥,𝐹   𝑥,𝑋   𝐸,𝑎,𝑏   𝐹,𝑎,𝑏   𝐾,𝑎,𝑏   𝑉,𝑎,𝑏   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐴(𝑎,𝑏)   𝐵(𝑎,𝑏)   𝐺(𝑥,𝑎,𝑏)   𝑊(𝑎,𝑏)   𝑋(𝑎,𝑏)

Proof of Theorem isomuspgrlem2c
Dummy variables 𝑒 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isomushgr.v . . 3 𝑉 = (Vtx‘𝐴)
2 isomushgr.w . . 3 𝑊 = (Vtx‘𝐵)
3 isomushgr.e . . 3 𝐸 = (Edg‘𝐴)
4 isomushgr.k . . 3 𝐾 = (Edg‘𝐵)
5 isomuspgrlem2.g . . 3 𝐺 = (𝑥𝐸 ↦ (𝐹𝑥))
6 isomuspgrlem2.a . . 3 (𝜑𝐴 ∈ USPGraph)
7 isomuspgrlem2.f . . 3 (𝜑𝐹:𝑉1-1-onto𝑊)
8 isomuspgrlem2.i . . 3 (𝜑 → ∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝐹𝑎), (𝐹𝑏)} ∈ 𝐾))
91, 2, 3, 4, 5, 6, 7, 8isomuspgrlem2b 44347 . 2 (𝜑𝐺:𝐸𝐾)
10 isomuspgrlem2.x . . . . . 6 (𝜑𝐹𝑋)
111, 2, 3, 4, 5isomuspgrlem2a 44346 . . . . . 6 (𝐹𝑋 → ∀𝑒𝐸 (𝐹𝑒) = (𝐺𝑒))
1210, 11syl 17 . . . . 5 (𝜑 → ∀𝑒𝐸 (𝐹𝑒) = (𝐺𝑒))
13 imaeq2 5892 . . . . . . . . . . 11 (𝑒 = 𝑐 → (𝐹𝑒) = (𝐹𝑐))
14 fveq2 6645 . . . . . . . . . . 11 (𝑒 = 𝑐 → (𝐺𝑒) = (𝐺𝑐))
1513, 14eqeq12d 2814 . . . . . . . . . 10 (𝑒 = 𝑐 → ((𝐹𝑒) = (𝐺𝑒) ↔ (𝐹𝑐) = (𝐺𝑐)))
1615rspcv 3566 . . . . . . . . 9 (𝑐𝐸 → (∀𝑒𝐸 (𝐹𝑒) = (𝐺𝑒) → (𝐹𝑐) = (𝐺𝑐)))
1716ad2antrl 727 . . . . . . . 8 ((𝜑 ∧ (𝑐𝐸𝑑𝐸)) → (∀𝑒𝐸 (𝐹𝑒) = (𝐺𝑒) → (𝐹𝑐) = (𝐺𝑐)))
1817imp 410 . . . . . . 7 (((𝜑 ∧ (𝑐𝐸𝑑𝐸)) ∧ ∀𝑒𝐸 (𝐹𝑒) = (𝐺𝑒)) → (𝐹𝑐) = (𝐺𝑐))
1918eqcomd 2804 . . . . . 6 (((𝜑 ∧ (𝑐𝐸𝑑𝐸)) ∧ ∀𝑒𝐸 (𝐹𝑒) = (𝐺𝑒)) → (𝐺𝑐) = (𝐹𝑐))
20 imaeq2 5892 . . . . . . . . . . 11 (𝑒 = 𝑑 → (𝐹𝑒) = (𝐹𝑑))
21 fveq2 6645 . . . . . . . . . . 11 (𝑒 = 𝑑 → (𝐺𝑒) = (𝐺𝑑))
2220, 21eqeq12d 2814 . . . . . . . . . 10 (𝑒 = 𝑑 → ((𝐹𝑒) = (𝐺𝑒) ↔ (𝐹𝑑) = (𝐺𝑑)))
2322rspcv 3566 . . . . . . . . 9 (𝑑𝐸 → (∀𝑒𝐸 (𝐹𝑒) = (𝐺𝑒) → (𝐹𝑑) = (𝐺𝑑)))
2423ad2antll 728 . . . . . . . 8 ((𝜑 ∧ (𝑐𝐸𝑑𝐸)) → (∀𝑒𝐸 (𝐹𝑒) = (𝐺𝑒) → (𝐹𝑑) = (𝐺𝑑)))
2524imp 410 . . . . . . 7 (((𝜑 ∧ (𝑐𝐸𝑑𝐸)) ∧ ∀𝑒𝐸 (𝐹𝑒) = (𝐺𝑒)) → (𝐹𝑑) = (𝐺𝑑))
2625eqcomd 2804 . . . . . 6 (((𝜑 ∧ (𝑐𝐸𝑑𝐸)) ∧ ∀𝑒𝐸 (𝐹𝑒) = (𝐺𝑒)) → (𝐺𝑑) = (𝐹𝑑))
2719, 26eqeq12d 2814 . . . . 5 (((𝜑 ∧ (𝑐𝐸𝑑𝐸)) ∧ ∀𝑒𝐸 (𝐹𝑒) = (𝐺𝑒)) → ((𝐺𝑐) = (𝐺𝑑) ↔ (𝐹𝑐) = (𝐹𝑑)))
2812, 27mpidan 688 . . . 4 ((𝜑 ∧ (𝑐𝐸𝑑𝐸)) → ((𝐺𝑐) = (𝐺𝑑) ↔ (𝐹𝑐) = (𝐹𝑑)))
29 f1of1 6589 . . . . . . 7 (𝐹:𝑉1-1-onto𝑊𝐹:𝑉1-1𝑊)
307, 29syl 17 . . . . . 6 (𝜑𝐹:𝑉1-1𝑊)
31 uspgrupgr 26969 . . . . . . . 8 (𝐴 ∈ USPGraph → 𝐴 ∈ UPGraph)
32 upgruhgr 26895 . . . . . . . . 9 (𝐴 ∈ UPGraph → 𝐴 ∈ UHGraph)
333eleq2i 2881 . . . . . . . . . . 11 (𝑐𝐸𝑐 ∈ (Edg‘𝐴))
34 edguhgr 26922 . . . . . . . . . . . . 13 ((𝐴 ∈ UHGraph ∧ 𝑐 ∈ (Edg‘𝐴)) → 𝑐 ∈ 𝒫 (Vtx‘𝐴))
35 elpwi 4506 . . . . . . . . . . . . . 14 (𝑐 ∈ 𝒫 (Vtx‘𝐴) → 𝑐 ⊆ (Vtx‘𝐴))
3635, 1sseqtrrdi 3966 . . . . . . . . . . . . 13 (𝑐 ∈ 𝒫 (Vtx‘𝐴) → 𝑐𝑉)
3734, 36syl 17 . . . . . . . . . . . 12 ((𝐴 ∈ UHGraph ∧ 𝑐 ∈ (Edg‘𝐴)) → 𝑐𝑉)
3837ex 416 . . . . . . . . . . 11 (𝐴 ∈ UHGraph → (𝑐 ∈ (Edg‘𝐴) → 𝑐𝑉))
3933, 38syl5bi 245 . . . . . . . . . 10 (𝐴 ∈ UHGraph → (𝑐𝐸𝑐𝑉))
403eleq2i 2881 . . . . . . . . . . 11 (𝑑𝐸𝑑 ∈ (Edg‘𝐴))
41 edguhgr 26922 . . . . . . . . . . . . 13 ((𝐴 ∈ UHGraph ∧ 𝑑 ∈ (Edg‘𝐴)) → 𝑑 ∈ 𝒫 (Vtx‘𝐴))
42 elpwi 4506 . . . . . . . . . . . . . 14 (𝑑 ∈ 𝒫 (Vtx‘𝐴) → 𝑑 ⊆ (Vtx‘𝐴))
4342, 1sseqtrrdi 3966 . . . . . . . . . . . . 13 (𝑑 ∈ 𝒫 (Vtx‘𝐴) → 𝑑𝑉)
4441, 43syl 17 . . . . . . . . . . . 12 ((𝐴 ∈ UHGraph ∧ 𝑑 ∈ (Edg‘𝐴)) → 𝑑𝑉)
4544ex 416 . . . . . . . . . . 11 (𝐴 ∈ UHGraph → (𝑑 ∈ (Edg‘𝐴) → 𝑑𝑉))
4640, 45syl5bi 245 . . . . . . . . . 10 (𝐴 ∈ UHGraph → (𝑑𝐸𝑑𝑉))
4739, 46anim12d 611 . . . . . . . . 9 (𝐴 ∈ UHGraph → ((𝑐𝐸𝑑𝐸) → (𝑐𝑉𝑑𝑉)))
4832, 47syl 17 . . . . . . . 8 (𝐴 ∈ UPGraph → ((𝑐𝐸𝑑𝐸) → (𝑐𝑉𝑑𝑉)))
496, 31, 483syl 18 . . . . . . 7 (𝜑 → ((𝑐𝐸𝑑𝐸) → (𝑐𝑉𝑑𝑉)))
5049imp 410 . . . . . 6 ((𝜑 ∧ (𝑐𝐸𝑑𝐸)) → (𝑐𝑉𝑑𝑉))
51 f1imaeq 7001 . . . . . 6 ((𝐹:𝑉1-1𝑊 ∧ (𝑐𝑉𝑑𝑉)) → ((𝐹𝑐) = (𝐹𝑑) ↔ 𝑐 = 𝑑))
5230, 50, 51syl2an2r 684 . . . . 5 ((𝜑 ∧ (𝑐𝐸𝑑𝐸)) → ((𝐹𝑐) = (𝐹𝑑) ↔ 𝑐 = 𝑑))
5352biimpd 232 . . . 4 ((𝜑 ∧ (𝑐𝐸𝑑𝐸)) → ((𝐹𝑐) = (𝐹𝑑) → 𝑐 = 𝑑))
5428, 53sylbid 243 . . 3 ((𝜑 ∧ (𝑐𝐸𝑑𝐸)) → ((𝐺𝑐) = (𝐺𝑑) → 𝑐 = 𝑑))
5554ralrimivva 3156 . 2 (𝜑 → ∀𝑐𝐸𝑑𝐸 ((𝐺𝑐) = (𝐺𝑑) → 𝑐 = 𝑑))
56 dff13 6991 . 2 (𝐺:𝐸1-1𝐾 ↔ (𝐺:𝐸𝐾 ∧ ∀𝑐𝐸𝑑𝐸 ((𝐺𝑐) = (𝐺𝑑) → 𝑐 = 𝑑)))
579, 55, 56sylanbrc 586 1 (𝜑𝐺:𝐸1-1𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3106  wss 3881  𝒫 cpw 4497  {cpr 4527  cmpt 5110  cima 5522  wf 6320  1-1wf1 6321  1-1-ontowf1o 6323  cfv 6324  Vtxcvtx 26789  Edgcedg 26840  UHGraphcuhgr 26849  UPGraphcupgr 26873  USPGraphcuspgr 26941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-fz 12886  df-hash 13687  df-edg 26841  df-uhgr 26851  df-upgr 26875  df-uspgr 26943
This theorem is referenced by:  isomuspgrlem2e  44350
  Copyright terms: Public domain W3C validator