Step | Hyp | Ref
| Expression |
1 | | isomushgr.v |
. . 3
⊢ 𝑉 = (Vtx‘𝐴) |
2 | | isomushgr.w |
. . 3
⊢ 𝑊 = (Vtx‘𝐵) |
3 | | isomushgr.e |
. . 3
⊢ 𝐸 = (Edg‘𝐴) |
4 | | isomushgr.k |
. . 3
⊢ 𝐾 = (Edg‘𝐵) |
5 | | isomuspgrlem2.g |
. . 3
⊢ 𝐺 = (𝑥 ∈ 𝐸 ↦ (𝐹 “ 𝑥)) |
6 | | isomuspgrlem2.a |
. . 3
⊢ (𝜑 → 𝐴 ∈ USPGraph) |
7 | | isomuspgrlem2.f |
. . 3
⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝑊) |
8 | | isomuspgrlem2.i |
. . 3
⊢ (𝜑 → ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝐹‘𝑎), (𝐹‘𝑏)} ∈ 𝐾)) |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | isomuspgrlem2b 45281 |
. 2
⊢ (𝜑 → 𝐺:𝐸⟶𝐾) |
10 | | isomuspgrlem2.x |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ 𝑋) |
11 | 1, 2, 3, 4, 5 | isomuspgrlem2a 45280 |
. . . . . 6
⊢ (𝐹 ∈ 𝑋 → ∀𝑒 ∈ 𝐸 (𝐹 “ 𝑒) = (𝐺‘𝑒)) |
12 | 10, 11 | syl 17 |
. . . . 5
⊢ (𝜑 → ∀𝑒 ∈ 𝐸 (𝐹 “ 𝑒) = (𝐺‘𝑒)) |
13 | | imaeq2 5965 |
. . . . . . . . . . 11
⊢ (𝑒 = 𝑐 → (𝐹 “ 𝑒) = (𝐹 “ 𝑐)) |
14 | | fveq2 6774 |
. . . . . . . . . . 11
⊢ (𝑒 = 𝑐 → (𝐺‘𝑒) = (𝐺‘𝑐)) |
15 | 13, 14 | eqeq12d 2754 |
. . . . . . . . . 10
⊢ (𝑒 = 𝑐 → ((𝐹 “ 𝑒) = (𝐺‘𝑒) ↔ (𝐹 “ 𝑐) = (𝐺‘𝑐))) |
16 | 15 | rspcv 3557 |
. . . . . . . . 9
⊢ (𝑐 ∈ 𝐸 → (∀𝑒 ∈ 𝐸 (𝐹 “ 𝑒) = (𝐺‘𝑒) → (𝐹 “ 𝑐) = (𝐺‘𝑐))) |
17 | 16 | ad2antrl 725 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑐 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸)) → (∀𝑒 ∈ 𝐸 (𝐹 “ 𝑒) = (𝐺‘𝑒) → (𝐹 “ 𝑐) = (𝐺‘𝑐))) |
18 | 17 | imp 407 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑐 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸)) ∧ ∀𝑒 ∈ 𝐸 (𝐹 “ 𝑒) = (𝐺‘𝑒)) → (𝐹 “ 𝑐) = (𝐺‘𝑐)) |
19 | 18 | eqcomd 2744 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑐 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸)) ∧ ∀𝑒 ∈ 𝐸 (𝐹 “ 𝑒) = (𝐺‘𝑒)) → (𝐺‘𝑐) = (𝐹 “ 𝑐)) |
20 | | imaeq2 5965 |
. . . . . . . . . . 11
⊢ (𝑒 = 𝑑 → (𝐹 “ 𝑒) = (𝐹 “ 𝑑)) |
21 | | fveq2 6774 |
. . . . . . . . . . 11
⊢ (𝑒 = 𝑑 → (𝐺‘𝑒) = (𝐺‘𝑑)) |
22 | 20, 21 | eqeq12d 2754 |
. . . . . . . . . 10
⊢ (𝑒 = 𝑑 → ((𝐹 “ 𝑒) = (𝐺‘𝑒) ↔ (𝐹 “ 𝑑) = (𝐺‘𝑑))) |
23 | 22 | rspcv 3557 |
. . . . . . . . 9
⊢ (𝑑 ∈ 𝐸 → (∀𝑒 ∈ 𝐸 (𝐹 “ 𝑒) = (𝐺‘𝑒) → (𝐹 “ 𝑑) = (𝐺‘𝑑))) |
24 | 23 | ad2antll 726 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑐 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸)) → (∀𝑒 ∈ 𝐸 (𝐹 “ 𝑒) = (𝐺‘𝑒) → (𝐹 “ 𝑑) = (𝐺‘𝑑))) |
25 | 24 | imp 407 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑐 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸)) ∧ ∀𝑒 ∈ 𝐸 (𝐹 “ 𝑒) = (𝐺‘𝑒)) → (𝐹 “ 𝑑) = (𝐺‘𝑑)) |
26 | 25 | eqcomd 2744 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑐 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸)) ∧ ∀𝑒 ∈ 𝐸 (𝐹 “ 𝑒) = (𝐺‘𝑒)) → (𝐺‘𝑑) = (𝐹 “ 𝑑)) |
27 | 19, 26 | eqeq12d 2754 |
. . . . 5
⊢ (((𝜑 ∧ (𝑐 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸)) ∧ ∀𝑒 ∈ 𝐸 (𝐹 “ 𝑒) = (𝐺‘𝑒)) → ((𝐺‘𝑐) = (𝐺‘𝑑) ↔ (𝐹 “ 𝑐) = (𝐹 “ 𝑑))) |
28 | 12, 27 | mpidan 686 |
. . . 4
⊢ ((𝜑 ∧ (𝑐 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸)) → ((𝐺‘𝑐) = (𝐺‘𝑑) ↔ (𝐹 “ 𝑐) = (𝐹 “ 𝑑))) |
29 | | f1of1 6715 |
. . . . . . 7
⊢ (𝐹:𝑉–1-1-onto→𝑊 → 𝐹:𝑉–1-1→𝑊) |
30 | 7, 29 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐹:𝑉–1-1→𝑊) |
31 | | uspgrupgr 27546 |
. . . . . . . 8
⊢ (𝐴 ∈ USPGraph → 𝐴 ∈
UPGraph) |
32 | | upgruhgr 27472 |
. . . . . . . . 9
⊢ (𝐴 ∈ UPGraph → 𝐴 ∈
UHGraph) |
33 | 3 | eleq2i 2830 |
. . . . . . . . . . 11
⊢ (𝑐 ∈ 𝐸 ↔ 𝑐 ∈ (Edg‘𝐴)) |
34 | | edguhgr 27499 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ UHGraph ∧ 𝑐 ∈ (Edg‘𝐴)) → 𝑐 ∈ 𝒫 (Vtx‘𝐴)) |
35 | | elpwi 4542 |
. . . . . . . . . . . . . 14
⊢ (𝑐 ∈ 𝒫
(Vtx‘𝐴) → 𝑐 ⊆ (Vtx‘𝐴)) |
36 | 35, 1 | sseqtrrdi 3972 |
. . . . . . . . . . . . 13
⊢ (𝑐 ∈ 𝒫
(Vtx‘𝐴) → 𝑐 ⊆ 𝑉) |
37 | 34, 36 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ UHGraph ∧ 𝑐 ∈ (Edg‘𝐴)) → 𝑐 ⊆ 𝑉) |
38 | 37 | ex 413 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ UHGraph → (𝑐 ∈ (Edg‘𝐴) → 𝑐 ⊆ 𝑉)) |
39 | 33, 38 | syl5bi 241 |
. . . . . . . . . 10
⊢ (𝐴 ∈ UHGraph → (𝑐 ∈ 𝐸 → 𝑐 ⊆ 𝑉)) |
40 | 3 | eleq2i 2830 |
. . . . . . . . . . 11
⊢ (𝑑 ∈ 𝐸 ↔ 𝑑 ∈ (Edg‘𝐴)) |
41 | | edguhgr 27499 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ UHGraph ∧ 𝑑 ∈ (Edg‘𝐴)) → 𝑑 ∈ 𝒫 (Vtx‘𝐴)) |
42 | | elpwi 4542 |
. . . . . . . . . . . . . 14
⊢ (𝑑 ∈ 𝒫
(Vtx‘𝐴) → 𝑑 ⊆ (Vtx‘𝐴)) |
43 | 42, 1 | sseqtrrdi 3972 |
. . . . . . . . . . . . 13
⊢ (𝑑 ∈ 𝒫
(Vtx‘𝐴) → 𝑑 ⊆ 𝑉) |
44 | 41, 43 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ UHGraph ∧ 𝑑 ∈ (Edg‘𝐴)) → 𝑑 ⊆ 𝑉) |
45 | 44 | ex 413 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ UHGraph → (𝑑 ∈ (Edg‘𝐴) → 𝑑 ⊆ 𝑉)) |
46 | 40, 45 | syl5bi 241 |
. . . . . . . . . 10
⊢ (𝐴 ∈ UHGraph → (𝑑 ∈ 𝐸 → 𝑑 ⊆ 𝑉)) |
47 | 39, 46 | anim12d 609 |
. . . . . . . . 9
⊢ (𝐴 ∈ UHGraph → ((𝑐 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸) → (𝑐 ⊆ 𝑉 ∧ 𝑑 ⊆ 𝑉))) |
48 | 32, 47 | syl 17 |
. . . . . . . 8
⊢ (𝐴 ∈ UPGraph → ((𝑐 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸) → (𝑐 ⊆ 𝑉 ∧ 𝑑 ⊆ 𝑉))) |
49 | 6, 31, 48 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → ((𝑐 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸) → (𝑐 ⊆ 𝑉 ∧ 𝑑 ⊆ 𝑉))) |
50 | 49 | imp 407 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑐 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸)) → (𝑐 ⊆ 𝑉 ∧ 𝑑 ⊆ 𝑉)) |
51 | | f1imaeq 7138 |
. . . . . 6
⊢ ((𝐹:𝑉–1-1→𝑊 ∧ (𝑐 ⊆ 𝑉 ∧ 𝑑 ⊆ 𝑉)) → ((𝐹 “ 𝑐) = (𝐹 “ 𝑑) ↔ 𝑐 = 𝑑)) |
52 | 30, 50, 51 | syl2an2r 682 |
. . . . 5
⊢ ((𝜑 ∧ (𝑐 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸)) → ((𝐹 “ 𝑐) = (𝐹 “ 𝑑) ↔ 𝑐 = 𝑑)) |
53 | 52 | biimpd 228 |
. . . 4
⊢ ((𝜑 ∧ (𝑐 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸)) → ((𝐹 “ 𝑐) = (𝐹 “ 𝑑) → 𝑐 = 𝑑)) |
54 | 28, 53 | sylbid 239 |
. . 3
⊢ ((𝜑 ∧ (𝑐 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸)) → ((𝐺‘𝑐) = (𝐺‘𝑑) → 𝑐 = 𝑑)) |
55 | 54 | ralrimivva 3123 |
. 2
⊢ (𝜑 → ∀𝑐 ∈ 𝐸 ∀𝑑 ∈ 𝐸 ((𝐺‘𝑐) = (𝐺‘𝑑) → 𝑐 = 𝑑)) |
56 | | dff13 7128 |
. 2
⊢ (𝐺:𝐸–1-1→𝐾 ↔ (𝐺:𝐸⟶𝐾 ∧ ∀𝑐 ∈ 𝐸 ∀𝑑 ∈ 𝐸 ((𝐺‘𝑐) = (𝐺‘𝑑) → 𝑐 = 𝑑))) |
57 | 9, 55, 56 | sylanbrc 583 |
1
⊢ (𝜑 → 𝐺:𝐸–1-1→𝐾) |