Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isomuspgrlem2c Structured version   Visualization version   GIF version

Theorem isomuspgrlem2c 45170
Description: Lemma 3 for isomuspgrlem2 45173. (Contributed by AV, 29-Nov-2022.)
Hypotheses
Ref Expression
isomushgr.v 𝑉 = (Vtx‘𝐴)
isomushgr.w 𝑊 = (Vtx‘𝐵)
isomushgr.e 𝐸 = (Edg‘𝐴)
isomushgr.k 𝐾 = (Edg‘𝐵)
isomuspgrlem2.g 𝐺 = (𝑥𝐸 ↦ (𝐹𝑥))
isomuspgrlem2.a (𝜑𝐴 ∈ USPGraph)
isomuspgrlem2.f (𝜑𝐹:𝑉1-1-onto𝑊)
isomuspgrlem2.i (𝜑 → ∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝐹𝑎), (𝐹𝑏)} ∈ 𝐾))
isomuspgrlem2.x (𝜑𝐹𝑋)
Assertion
Ref Expression
isomuspgrlem2c (𝜑𝐺:𝐸1-1𝐾)
Distinct variable groups:   𝑎,𝑏,𝑥   𝑥,𝐴   𝑥,𝐵   𝑥,𝐸   𝑥,𝐾   𝑥,𝑉   𝑥,𝑊   𝑥,𝐹   𝑥,𝑋   𝐸,𝑎,𝑏   𝐹,𝑎,𝑏   𝐾,𝑎,𝑏   𝑉,𝑎,𝑏   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐴(𝑎,𝑏)   𝐵(𝑎,𝑏)   𝐺(𝑥,𝑎,𝑏)   𝑊(𝑎,𝑏)   𝑋(𝑎,𝑏)

Proof of Theorem isomuspgrlem2c
Dummy variables 𝑒 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isomushgr.v . . 3 𝑉 = (Vtx‘𝐴)
2 isomushgr.w . . 3 𝑊 = (Vtx‘𝐵)
3 isomushgr.e . . 3 𝐸 = (Edg‘𝐴)
4 isomushgr.k . . 3 𝐾 = (Edg‘𝐵)
5 isomuspgrlem2.g . . 3 𝐺 = (𝑥𝐸 ↦ (𝐹𝑥))
6 isomuspgrlem2.a . . 3 (𝜑𝐴 ∈ USPGraph)
7 isomuspgrlem2.f . . 3 (𝜑𝐹:𝑉1-1-onto𝑊)
8 isomuspgrlem2.i . . 3 (𝜑 → ∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝐹𝑎), (𝐹𝑏)} ∈ 𝐾))
91, 2, 3, 4, 5, 6, 7, 8isomuspgrlem2b 45169 . 2 (𝜑𝐺:𝐸𝐾)
10 isomuspgrlem2.x . . . . . 6 (𝜑𝐹𝑋)
111, 2, 3, 4, 5isomuspgrlem2a 45168 . . . . . 6 (𝐹𝑋 → ∀𝑒𝐸 (𝐹𝑒) = (𝐺𝑒))
1210, 11syl 17 . . . . 5 (𝜑 → ∀𝑒𝐸 (𝐹𝑒) = (𝐺𝑒))
13 imaeq2 5954 . . . . . . . . . . 11 (𝑒 = 𝑐 → (𝐹𝑒) = (𝐹𝑐))
14 fveq2 6756 . . . . . . . . . . 11 (𝑒 = 𝑐 → (𝐺𝑒) = (𝐺𝑐))
1513, 14eqeq12d 2754 . . . . . . . . . 10 (𝑒 = 𝑐 → ((𝐹𝑒) = (𝐺𝑒) ↔ (𝐹𝑐) = (𝐺𝑐)))
1615rspcv 3547 . . . . . . . . 9 (𝑐𝐸 → (∀𝑒𝐸 (𝐹𝑒) = (𝐺𝑒) → (𝐹𝑐) = (𝐺𝑐)))
1716ad2antrl 724 . . . . . . . 8 ((𝜑 ∧ (𝑐𝐸𝑑𝐸)) → (∀𝑒𝐸 (𝐹𝑒) = (𝐺𝑒) → (𝐹𝑐) = (𝐺𝑐)))
1817imp 406 . . . . . . 7 (((𝜑 ∧ (𝑐𝐸𝑑𝐸)) ∧ ∀𝑒𝐸 (𝐹𝑒) = (𝐺𝑒)) → (𝐹𝑐) = (𝐺𝑐))
1918eqcomd 2744 . . . . . 6 (((𝜑 ∧ (𝑐𝐸𝑑𝐸)) ∧ ∀𝑒𝐸 (𝐹𝑒) = (𝐺𝑒)) → (𝐺𝑐) = (𝐹𝑐))
20 imaeq2 5954 . . . . . . . . . . 11 (𝑒 = 𝑑 → (𝐹𝑒) = (𝐹𝑑))
21 fveq2 6756 . . . . . . . . . . 11 (𝑒 = 𝑑 → (𝐺𝑒) = (𝐺𝑑))
2220, 21eqeq12d 2754 . . . . . . . . . 10 (𝑒 = 𝑑 → ((𝐹𝑒) = (𝐺𝑒) ↔ (𝐹𝑑) = (𝐺𝑑)))
2322rspcv 3547 . . . . . . . . 9 (𝑑𝐸 → (∀𝑒𝐸 (𝐹𝑒) = (𝐺𝑒) → (𝐹𝑑) = (𝐺𝑑)))
2423ad2antll 725 . . . . . . . 8 ((𝜑 ∧ (𝑐𝐸𝑑𝐸)) → (∀𝑒𝐸 (𝐹𝑒) = (𝐺𝑒) → (𝐹𝑑) = (𝐺𝑑)))
2524imp 406 . . . . . . 7 (((𝜑 ∧ (𝑐𝐸𝑑𝐸)) ∧ ∀𝑒𝐸 (𝐹𝑒) = (𝐺𝑒)) → (𝐹𝑑) = (𝐺𝑑))
2625eqcomd 2744 . . . . . 6 (((𝜑 ∧ (𝑐𝐸𝑑𝐸)) ∧ ∀𝑒𝐸 (𝐹𝑒) = (𝐺𝑒)) → (𝐺𝑑) = (𝐹𝑑))
2719, 26eqeq12d 2754 . . . . 5 (((𝜑 ∧ (𝑐𝐸𝑑𝐸)) ∧ ∀𝑒𝐸 (𝐹𝑒) = (𝐺𝑒)) → ((𝐺𝑐) = (𝐺𝑑) ↔ (𝐹𝑐) = (𝐹𝑑)))
2812, 27mpidan 685 . . . 4 ((𝜑 ∧ (𝑐𝐸𝑑𝐸)) → ((𝐺𝑐) = (𝐺𝑑) ↔ (𝐹𝑐) = (𝐹𝑑)))
29 f1of1 6699 . . . . . . 7 (𝐹:𝑉1-1-onto𝑊𝐹:𝑉1-1𝑊)
307, 29syl 17 . . . . . 6 (𝜑𝐹:𝑉1-1𝑊)
31 uspgrupgr 27449 . . . . . . . 8 (𝐴 ∈ USPGraph → 𝐴 ∈ UPGraph)
32 upgruhgr 27375 . . . . . . . . 9 (𝐴 ∈ UPGraph → 𝐴 ∈ UHGraph)
333eleq2i 2830 . . . . . . . . . . 11 (𝑐𝐸𝑐 ∈ (Edg‘𝐴))
34 edguhgr 27402 . . . . . . . . . . . . 13 ((𝐴 ∈ UHGraph ∧ 𝑐 ∈ (Edg‘𝐴)) → 𝑐 ∈ 𝒫 (Vtx‘𝐴))
35 elpwi 4539 . . . . . . . . . . . . . 14 (𝑐 ∈ 𝒫 (Vtx‘𝐴) → 𝑐 ⊆ (Vtx‘𝐴))
3635, 1sseqtrrdi 3968 . . . . . . . . . . . . 13 (𝑐 ∈ 𝒫 (Vtx‘𝐴) → 𝑐𝑉)
3734, 36syl 17 . . . . . . . . . . . 12 ((𝐴 ∈ UHGraph ∧ 𝑐 ∈ (Edg‘𝐴)) → 𝑐𝑉)
3837ex 412 . . . . . . . . . . 11 (𝐴 ∈ UHGraph → (𝑐 ∈ (Edg‘𝐴) → 𝑐𝑉))
3933, 38syl5bi 241 . . . . . . . . . 10 (𝐴 ∈ UHGraph → (𝑐𝐸𝑐𝑉))
403eleq2i 2830 . . . . . . . . . . 11 (𝑑𝐸𝑑 ∈ (Edg‘𝐴))
41 edguhgr 27402 . . . . . . . . . . . . 13 ((𝐴 ∈ UHGraph ∧ 𝑑 ∈ (Edg‘𝐴)) → 𝑑 ∈ 𝒫 (Vtx‘𝐴))
42 elpwi 4539 . . . . . . . . . . . . . 14 (𝑑 ∈ 𝒫 (Vtx‘𝐴) → 𝑑 ⊆ (Vtx‘𝐴))
4342, 1sseqtrrdi 3968 . . . . . . . . . . . . 13 (𝑑 ∈ 𝒫 (Vtx‘𝐴) → 𝑑𝑉)
4441, 43syl 17 . . . . . . . . . . . 12 ((𝐴 ∈ UHGraph ∧ 𝑑 ∈ (Edg‘𝐴)) → 𝑑𝑉)
4544ex 412 . . . . . . . . . . 11 (𝐴 ∈ UHGraph → (𝑑 ∈ (Edg‘𝐴) → 𝑑𝑉))
4640, 45syl5bi 241 . . . . . . . . . 10 (𝐴 ∈ UHGraph → (𝑑𝐸𝑑𝑉))
4739, 46anim12d 608 . . . . . . . . 9 (𝐴 ∈ UHGraph → ((𝑐𝐸𝑑𝐸) → (𝑐𝑉𝑑𝑉)))
4832, 47syl 17 . . . . . . . 8 (𝐴 ∈ UPGraph → ((𝑐𝐸𝑑𝐸) → (𝑐𝑉𝑑𝑉)))
496, 31, 483syl 18 . . . . . . 7 (𝜑 → ((𝑐𝐸𝑑𝐸) → (𝑐𝑉𝑑𝑉)))
5049imp 406 . . . . . 6 ((𝜑 ∧ (𝑐𝐸𝑑𝐸)) → (𝑐𝑉𝑑𝑉))
51 f1imaeq 7119 . . . . . 6 ((𝐹:𝑉1-1𝑊 ∧ (𝑐𝑉𝑑𝑉)) → ((𝐹𝑐) = (𝐹𝑑) ↔ 𝑐 = 𝑑))
5230, 50, 51syl2an2r 681 . . . . 5 ((𝜑 ∧ (𝑐𝐸𝑑𝐸)) → ((𝐹𝑐) = (𝐹𝑑) ↔ 𝑐 = 𝑑))
5352biimpd 228 . . . 4 ((𝜑 ∧ (𝑐𝐸𝑑𝐸)) → ((𝐹𝑐) = (𝐹𝑑) → 𝑐 = 𝑑))
5428, 53sylbid 239 . . 3 ((𝜑 ∧ (𝑐𝐸𝑑𝐸)) → ((𝐺𝑐) = (𝐺𝑑) → 𝑐 = 𝑑))
5554ralrimivva 3114 . 2 (𝜑 → ∀𝑐𝐸𝑑𝐸 ((𝐺𝑐) = (𝐺𝑑) → 𝑐 = 𝑑))
56 dff13 7109 . 2 (𝐺:𝐸1-1𝐾 ↔ (𝐺:𝐸𝐾 ∧ ∀𝑐𝐸𝑑𝐸 ((𝐺𝑐) = (𝐺𝑑) → 𝑐 = 𝑑)))
579, 55, 56sylanbrc 582 1 (𝜑𝐺:𝐸1-1𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wss 3883  𝒫 cpw 4530  {cpr 4560  cmpt 5153  cima 5583  wf 6414  1-1wf1 6415  1-1-ontowf1o 6417  cfv 6418  Vtxcvtx 27269  Edgcedg 27320  UHGraphcuhgr 27329  UPGraphcupgr 27353  USPGraphcuspgr 27421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-fz 13169  df-hash 13973  df-edg 27321  df-uhgr 27331  df-upgr 27355  df-uspgr 27423
This theorem is referenced by:  isomuspgrlem2e  45172
  Copyright terms: Public domain W3C validator