Step | Hyp | Ref
| Expression |
1 | | wlkp1.v |
. . . 4
⊢ 𝑉 = (Vtx‘𝐺) |
2 | | wlkp1.i |
. . . 4
⊢ 𝐼 = (iEdg‘𝐺) |
3 | | wlkp1.f |
. . . 4
⊢ (𝜑 → Fun 𝐼) |
4 | | wlkp1.a |
. . . 4
⊢ (𝜑 → 𝐼 ∈ Fin) |
5 | | wlkp1.b |
. . . 4
⊢ (𝜑 → 𝐵 ∈ 𝑊) |
6 | | wlkp1.c |
. . . 4
⊢ (𝜑 → 𝐶 ∈ 𝑉) |
7 | | wlkp1.d |
. . . 4
⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐼) |
8 | | wlkp1.w |
. . . 4
⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
9 | | wlkp1.n |
. . . 4
⊢ 𝑁 = (♯‘𝐹) |
10 | | wlkp1.e |
. . . 4
⊢ (𝜑 → 𝐸 ∈ (Edg‘𝐺)) |
11 | | wlkp1.x |
. . . 4
⊢ (𝜑 → {(𝑃‘𝑁), 𝐶} ⊆ 𝐸) |
12 | | wlkp1.u |
. . . 4
⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {〈𝐵, 𝐸〉})) |
13 | | wlkp1.h |
. . . 4
⊢ 𝐻 = (𝐹 ∪ {〈𝑁, 𝐵〉}) |
14 | | wlkp1.q |
. . . 4
⊢ 𝑄 = (𝑃 ∪ {〈(𝑁 + 1), 𝐶〉}) |
15 | | wlkp1.s |
. . . 4
⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) |
16 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15 | wlkp1lem5 28045 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ (0...𝑁)(𝑄‘𝑥) = (𝑃‘𝑥)) |
17 | | elfzofz 13403 |
. . . . . . 7
⊢ (𝑘 ∈ (0..^𝑁) → 𝑘 ∈ (0...𝑁)) |
18 | 17 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ (0...𝑁)) |
19 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑥 = 𝑘 → (𝑄‘𝑥) = (𝑄‘𝑘)) |
20 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑥 = 𝑘 → (𝑃‘𝑥) = (𝑃‘𝑘)) |
21 | 19, 20 | eqeq12d 2754 |
. . . . . . 7
⊢ (𝑥 = 𝑘 → ((𝑄‘𝑥) = (𝑃‘𝑥) ↔ (𝑄‘𝑘) = (𝑃‘𝑘))) |
22 | 21 | rspcv 3557 |
. . . . . 6
⊢ (𝑘 ∈ (0...𝑁) → (∀𝑥 ∈ (0...𝑁)(𝑄‘𝑥) = (𝑃‘𝑥) → (𝑄‘𝑘) = (𝑃‘𝑘))) |
23 | 18, 22 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → (∀𝑥 ∈ (0...𝑁)(𝑄‘𝑥) = (𝑃‘𝑥) → (𝑄‘𝑘) = (𝑃‘𝑘))) |
24 | 23 | imp 407 |
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑥 ∈ (0...𝑁)(𝑄‘𝑥) = (𝑃‘𝑥)) → (𝑄‘𝑘) = (𝑃‘𝑘)) |
25 | | fzofzp1 13484 |
. . . . . . 7
⊢ (𝑘 ∈ (0..^𝑁) → (𝑘 + 1) ∈ (0...𝑁)) |
26 | 25 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → (𝑘 + 1) ∈ (0...𝑁)) |
27 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑥 = (𝑘 + 1) → (𝑄‘𝑥) = (𝑄‘(𝑘 + 1))) |
28 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑥 = (𝑘 + 1) → (𝑃‘𝑥) = (𝑃‘(𝑘 + 1))) |
29 | 27, 28 | eqeq12d 2754 |
. . . . . . 7
⊢ (𝑥 = (𝑘 + 1) → ((𝑄‘𝑥) = (𝑃‘𝑥) ↔ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)))) |
30 | 29 | rspcv 3557 |
. . . . . 6
⊢ ((𝑘 + 1) ∈ (0...𝑁) → (∀𝑥 ∈ (0...𝑁)(𝑄‘𝑥) = (𝑃‘𝑥) → (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)))) |
31 | 26, 30 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → (∀𝑥 ∈ (0...𝑁)(𝑄‘𝑥) = (𝑃‘𝑥) → (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)))) |
32 | 31 | imp 407 |
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑥 ∈ (0...𝑁)(𝑄‘𝑥) = (𝑃‘𝑥)) → (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1))) |
33 | 12 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → (iEdg‘𝑆) = (𝐼 ∪ {〈𝐵, 𝐸〉})) |
34 | 13 | fveq1i 6775 |
. . . . . . . 8
⊢ (𝐻‘𝑘) = ((𝐹 ∪ {〈𝑁, 𝐵〉})‘𝑘) |
35 | | fzonel 13401 |
. . . . . . . . . . . . . 14
⊢ ¬
𝑁 ∈ (0..^𝑁) |
36 | | eleq1 2826 |
. . . . . . . . . . . . . 14
⊢ (𝑁 = 𝑘 → (𝑁 ∈ (0..^𝑁) ↔ 𝑘 ∈ (0..^𝑁))) |
37 | 35, 36 | mtbii 326 |
. . . . . . . . . . . . 13
⊢ (𝑁 = 𝑘 → ¬ 𝑘 ∈ (0..^𝑁)) |
38 | 37 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑁 = 𝑘 → ¬ 𝑘 ∈ (0..^𝑁))) |
39 | 38 | con2d 134 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑘 ∈ (0..^𝑁) → ¬ 𝑁 = 𝑘)) |
40 | 39 | imp 407 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → ¬ 𝑁 = 𝑘) |
41 | 40 | neqned 2950 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → 𝑁 ≠ 𝑘) |
42 | | fvunsn 7051 |
. . . . . . . . 9
⊢ (𝑁 ≠ 𝑘 → ((𝐹 ∪ {〈𝑁, 𝐵〉})‘𝑘) = (𝐹‘𝑘)) |
43 | 41, 42 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐹 ∪ {〈𝑁, 𝐵〉})‘𝑘) = (𝐹‘𝑘)) |
44 | 34, 43 | eqtrid 2790 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → (𝐻‘𝑘) = (𝐹‘𝑘)) |
45 | 33, 44 | fveq12d 6781 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → ((iEdg‘𝑆)‘(𝐻‘𝑘)) = ((𝐼 ∪ {〈𝐵, 𝐸〉})‘(𝐹‘𝑘))) |
46 | 9 | oveq2i 7286 |
. . . . . . . . . . . . . . . 16
⊢
(0..^𝑁) =
(0..^(♯‘𝐹)) |
47 | 46 | eleq2i 2830 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (0..^𝑁) ↔ 𝑘 ∈ (0..^(♯‘𝐹))) |
48 | 2 | wlkf 27981 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐹 ∈ Word dom 𝐼) |
49 | 8, 48 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐹 ∈ Word dom 𝐼) |
50 | | wrdsymbcl 14230 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (𝐹‘𝑘) ∈ dom 𝐼) |
51 | 50 | ex 413 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹 ∈ Word dom 𝐼 → (𝑘 ∈ (0..^(♯‘𝐹)) → (𝐹‘𝑘) ∈ dom 𝐼)) |
52 | 49, 51 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑘 ∈ (0..^(♯‘𝐹)) → (𝐹‘𝑘) ∈ dom 𝐼)) |
53 | 47, 52 | syl5bi 241 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑘 ∈ (0..^𝑁) → (𝐹‘𝑘) ∈ dom 𝐼)) |
54 | 53 | imp 407 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → (𝐹‘𝑘) ∈ dom 𝐼) |
55 | | eleq1 2826 |
. . . . . . . . . . . . 13
⊢ (𝐵 = (𝐹‘𝑘) → (𝐵 ∈ dom 𝐼 ↔ (𝐹‘𝑘) ∈ dom 𝐼)) |
56 | 54, 55 | syl5ibrcom 246 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → (𝐵 = (𝐹‘𝑘) → 𝐵 ∈ dom 𝐼)) |
57 | 56 | con3d 152 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → (¬ 𝐵 ∈ dom 𝐼 → ¬ 𝐵 = (𝐹‘𝑘))) |
58 | 57 | ex 413 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑘 ∈ (0..^𝑁) → (¬ 𝐵 ∈ dom 𝐼 → ¬ 𝐵 = (𝐹‘𝑘)))) |
59 | 7, 58 | mpid 44 |
. . . . . . . . 9
⊢ (𝜑 → (𝑘 ∈ (0..^𝑁) → ¬ 𝐵 = (𝐹‘𝑘))) |
60 | 59 | imp 407 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → ¬ 𝐵 = (𝐹‘𝑘)) |
61 | 60 | neqned 2950 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → 𝐵 ≠ (𝐹‘𝑘)) |
62 | | fvunsn 7051 |
. . . . . . 7
⊢ (𝐵 ≠ (𝐹‘𝑘) → ((𝐼 ∪ {〈𝐵, 𝐸〉})‘(𝐹‘𝑘)) = (𝐼‘(𝐹‘𝑘))) |
63 | 61, 62 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐼 ∪ {〈𝐵, 𝐸〉})‘(𝐹‘𝑘)) = (𝐼‘(𝐹‘𝑘))) |
64 | 45, 63 | eqtrd 2778 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → ((iEdg‘𝑆)‘(𝐻‘𝑘)) = (𝐼‘(𝐹‘𝑘))) |
65 | 64 | adantr 481 |
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑥 ∈ (0...𝑁)(𝑄‘𝑥) = (𝑃‘𝑥)) → ((iEdg‘𝑆)‘(𝐻‘𝑘)) = (𝐼‘(𝐹‘𝑘))) |
66 | 24, 32, 65 | 3jca 1127 |
. . 3
⊢ (((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) ∧ ∀𝑥 ∈ (0...𝑁)(𝑄‘𝑥) = (𝑃‘𝑥)) → ((𝑄‘𝑘) = (𝑃‘𝑘) ∧ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝑆)‘(𝐻‘𝑘)) = (𝐼‘(𝐹‘𝑘)))) |
67 | 16, 66 | mpidan 686 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑁)) → ((𝑄‘𝑘) = (𝑃‘𝑘) ∧ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝑆)‘(𝐻‘𝑘)) = (𝐼‘(𝐹‘𝑘)))) |
68 | 67 | ralrimiva 3103 |
1
⊢ (𝜑 → ∀𝑘 ∈ (0..^𝑁)((𝑄‘𝑘) = (𝑃‘𝑘) ∧ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝑆)‘(𝐻‘𝑘)) = (𝐼‘(𝐹‘𝑘)))) |