MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkp1lem6 Structured version   Visualization version   GIF version

Theorem wlkp1lem6 28046
Description: Lemma for wlkp1 28049. (Contributed by AV, 6-Mar-2021.)
Hypotheses
Ref Expression
wlkp1.v 𝑉 = (Vtx‘𝐺)
wlkp1.i 𝐼 = (iEdg‘𝐺)
wlkp1.f (𝜑 → Fun 𝐼)
wlkp1.a (𝜑𝐼 ∈ Fin)
wlkp1.b (𝜑𝐵𝑊)
wlkp1.c (𝜑𝐶𝑉)
wlkp1.d (𝜑 → ¬ 𝐵 ∈ dom 𝐼)
wlkp1.w (𝜑𝐹(Walks‘𝐺)𝑃)
wlkp1.n 𝑁 = (♯‘𝐹)
wlkp1.e (𝜑𝐸 ∈ (Edg‘𝐺))
wlkp1.x (𝜑 → {(𝑃𝑁), 𝐶} ⊆ 𝐸)
wlkp1.u (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩}))
wlkp1.h 𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩})
wlkp1.q 𝑄 = (𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})
wlkp1.s (𝜑 → (Vtx‘𝑆) = 𝑉)
Assertion
Ref Expression
wlkp1lem6 (𝜑 → ∀𝑘 ∈ (0..^𝑁)((𝑄𝑘) = (𝑃𝑘) ∧ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝑆)‘(𝐻𝑘)) = (𝐼‘(𝐹𝑘))))
Distinct variable group:   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)   𝑃(𝑘)   𝑄(𝑘)   𝑆(𝑘)   𝐸(𝑘)   𝐹(𝑘)   𝐺(𝑘)   𝐻(𝑘)   𝐼(𝑘)   𝑁(𝑘)   𝑉(𝑘)   𝑊(𝑘)

Proof of Theorem wlkp1lem6
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 wlkp1.v . . . 4 𝑉 = (Vtx‘𝐺)
2 wlkp1.i . . . 4 𝐼 = (iEdg‘𝐺)
3 wlkp1.f . . . 4 (𝜑 → Fun 𝐼)
4 wlkp1.a . . . 4 (𝜑𝐼 ∈ Fin)
5 wlkp1.b . . . 4 (𝜑𝐵𝑊)
6 wlkp1.c . . . 4 (𝜑𝐶𝑉)
7 wlkp1.d . . . 4 (𝜑 → ¬ 𝐵 ∈ dom 𝐼)
8 wlkp1.w . . . 4 (𝜑𝐹(Walks‘𝐺)𝑃)
9 wlkp1.n . . . 4 𝑁 = (♯‘𝐹)
10 wlkp1.e . . . 4 (𝜑𝐸 ∈ (Edg‘𝐺))
11 wlkp1.x . . . 4 (𝜑 → {(𝑃𝑁), 𝐶} ⊆ 𝐸)
12 wlkp1.u . . . 4 (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩}))
13 wlkp1.h . . . 4 𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩})
14 wlkp1.q . . . 4 𝑄 = (𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})
15 wlkp1.s . . . 4 (𝜑 → (Vtx‘𝑆) = 𝑉)
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15wlkp1lem5 28045 . . 3 (𝜑 → ∀𝑥 ∈ (0...𝑁)(𝑄𝑥) = (𝑃𝑥))
17 elfzofz 13403 . . . . . . 7 (𝑘 ∈ (0..^𝑁) → 𝑘 ∈ (0...𝑁))
1817adantl 482 . . . . . 6 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ (0...𝑁))
19 fveq2 6774 . . . . . . . 8 (𝑥 = 𝑘 → (𝑄𝑥) = (𝑄𝑘))
20 fveq2 6774 . . . . . . . 8 (𝑥 = 𝑘 → (𝑃𝑥) = (𝑃𝑘))
2119, 20eqeq12d 2754 . . . . . . 7 (𝑥 = 𝑘 → ((𝑄𝑥) = (𝑃𝑥) ↔ (𝑄𝑘) = (𝑃𝑘)))
2221rspcv 3557 . . . . . 6 (𝑘 ∈ (0...𝑁) → (∀𝑥 ∈ (0...𝑁)(𝑄𝑥) = (𝑃𝑥) → (𝑄𝑘) = (𝑃𝑘)))
2318, 22syl 17 . . . . 5 ((𝜑𝑘 ∈ (0..^𝑁)) → (∀𝑥 ∈ (0...𝑁)(𝑄𝑥) = (𝑃𝑥) → (𝑄𝑘) = (𝑃𝑘)))
2423imp 407 . . . 4 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ ∀𝑥 ∈ (0...𝑁)(𝑄𝑥) = (𝑃𝑥)) → (𝑄𝑘) = (𝑃𝑘))
25 fzofzp1 13484 . . . . . . 7 (𝑘 ∈ (0..^𝑁) → (𝑘 + 1) ∈ (0...𝑁))
2625adantl 482 . . . . . 6 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝑘 + 1) ∈ (0...𝑁))
27 fveq2 6774 . . . . . . . 8 (𝑥 = (𝑘 + 1) → (𝑄𝑥) = (𝑄‘(𝑘 + 1)))
28 fveq2 6774 . . . . . . . 8 (𝑥 = (𝑘 + 1) → (𝑃𝑥) = (𝑃‘(𝑘 + 1)))
2927, 28eqeq12d 2754 . . . . . . 7 (𝑥 = (𝑘 + 1) → ((𝑄𝑥) = (𝑃𝑥) ↔ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1))))
3029rspcv 3557 . . . . . 6 ((𝑘 + 1) ∈ (0...𝑁) → (∀𝑥 ∈ (0...𝑁)(𝑄𝑥) = (𝑃𝑥) → (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1))))
3126, 30syl 17 . . . . 5 ((𝜑𝑘 ∈ (0..^𝑁)) → (∀𝑥 ∈ (0...𝑁)(𝑄𝑥) = (𝑃𝑥) → (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1))))
3231imp 407 . . . 4 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ ∀𝑥 ∈ (0...𝑁)(𝑄𝑥) = (𝑃𝑥)) → (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)))
3312adantr 481 . . . . . . 7 ((𝜑𝑘 ∈ (0..^𝑁)) → (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩}))
3413fveq1i 6775 . . . . . . . 8 (𝐻𝑘) = ((𝐹 ∪ {⟨𝑁, 𝐵⟩})‘𝑘)
35 fzonel 13401 . . . . . . . . . . . . . 14 ¬ 𝑁 ∈ (0..^𝑁)
36 eleq1 2826 . . . . . . . . . . . . . 14 (𝑁 = 𝑘 → (𝑁 ∈ (0..^𝑁) ↔ 𝑘 ∈ (0..^𝑁)))
3735, 36mtbii 326 . . . . . . . . . . . . 13 (𝑁 = 𝑘 → ¬ 𝑘 ∈ (0..^𝑁))
3837a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝑁 = 𝑘 → ¬ 𝑘 ∈ (0..^𝑁)))
3938con2d 134 . . . . . . . . . . 11 (𝜑 → (𝑘 ∈ (0..^𝑁) → ¬ 𝑁 = 𝑘))
4039imp 407 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0..^𝑁)) → ¬ 𝑁 = 𝑘)
4140neqned 2950 . . . . . . . . 9 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝑁𝑘)
42 fvunsn 7051 . . . . . . . . 9 (𝑁𝑘 → ((𝐹 ∪ {⟨𝑁, 𝐵⟩})‘𝑘) = (𝐹𝑘))
4341, 42syl 17 . . . . . . . 8 ((𝜑𝑘 ∈ (0..^𝑁)) → ((𝐹 ∪ {⟨𝑁, 𝐵⟩})‘𝑘) = (𝐹𝑘))
4434, 43eqtrid 2790 . . . . . . 7 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝐻𝑘) = (𝐹𝑘))
4533, 44fveq12d 6781 . . . . . 6 ((𝜑𝑘 ∈ (0..^𝑁)) → ((iEdg‘𝑆)‘(𝐻𝑘)) = ((𝐼 ∪ {⟨𝐵, 𝐸⟩})‘(𝐹𝑘)))
469oveq2i 7286 . . . . . . . . . . . . . . . 16 (0..^𝑁) = (0..^(♯‘𝐹))
4746eleq2i 2830 . . . . . . . . . . . . . . 15 (𝑘 ∈ (0..^𝑁) ↔ 𝑘 ∈ (0..^(♯‘𝐹)))
482wlkf 27981 . . . . . . . . . . . . . . . . 17 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Word dom 𝐼)
498, 48syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐹 ∈ Word dom 𝐼)
50 wrdsymbcl 14230 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ Word dom 𝐼𝑘 ∈ (0..^(♯‘𝐹))) → (𝐹𝑘) ∈ dom 𝐼)
5150ex 413 . . . . . . . . . . . . . . . 16 (𝐹 ∈ Word dom 𝐼 → (𝑘 ∈ (0..^(♯‘𝐹)) → (𝐹𝑘) ∈ dom 𝐼))
5249, 51syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑘 ∈ (0..^(♯‘𝐹)) → (𝐹𝑘) ∈ dom 𝐼))
5347, 52syl5bi 241 . . . . . . . . . . . . . 14 (𝜑 → (𝑘 ∈ (0..^𝑁) → (𝐹𝑘) ∈ dom 𝐼))
5453imp 407 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝐹𝑘) ∈ dom 𝐼)
55 eleq1 2826 . . . . . . . . . . . . 13 (𝐵 = (𝐹𝑘) → (𝐵 ∈ dom 𝐼 ↔ (𝐹𝑘) ∈ dom 𝐼))
5654, 55syl5ibrcom 246 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝐵 = (𝐹𝑘) → 𝐵 ∈ dom 𝐼))
5756con3d 152 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0..^𝑁)) → (¬ 𝐵 ∈ dom 𝐼 → ¬ 𝐵 = (𝐹𝑘)))
5857ex 413 . . . . . . . . . 10 (𝜑 → (𝑘 ∈ (0..^𝑁) → (¬ 𝐵 ∈ dom 𝐼 → ¬ 𝐵 = (𝐹𝑘))))
597, 58mpid 44 . . . . . . . . 9 (𝜑 → (𝑘 ∈ (0..^𝑁) → ¬ 𝐵 = (𝐹𝑘)))
6059imp 407 . . . . . . . 8 ((𝜑𝑘 ∈ (0..^𝑁)) → ¬ 𝐵 = (𝐹𝑘))
6160neqned 2950 . . . . . . 7 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝐵 ≠ (𝐹𝑘))
62 fvunsn 7051 . . . . . . 7 (𝐵 ≠ (𝐹𝑘) → ((𝐼 ∪ {⟨𝐵, 𝐸⟩})‘(𝐹𝑘)) = (𝐼‘(𝐹𝑘)))
6361, 62syl 17 . . . . . 6 ((𝜑𝑘 ∈ (0..^𝑁)) → ((𝐼 ∪ {⟨𝐵, 𝐸⟩})‘(𝐹𝑘)) = (𝐼‘(𝐹𝑘)))
6445, 63eqtrd 2778 . . . . 5 ((𝜑𝑘 ∈ (0..^𝑁)) → ((iEdg‘𝑆)‘(𝐻𝑘)) = (𝐼‘(𝐹𝑘)))
6564adantr 481 . . . 4 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ ∀𝑥 ∈ (0...𝑁)(𝑄𝑥) = (𝑃𝑥)) → ((iEdg‘𝑆)‘(𝐻𝑘)) = (𝐼‘(𝐹𝑘)))
6624, 32, 653jca 1127 . . 3 (((𝜑𝑘 ∈ (0..^𝑁)) ∧ ∀𝑥 ∈ (0...𝑁)(𝑄𝑥) = (𝑃𝑥)) → ((𝑄𝑘) = (𝑃𝑘) ∧ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝑆)‘(𝐻𝑘)) = (𝐼‘(𝐹𝑘))))
6716, 66mpidan 686 . 2 ((𝜑𝑘 ∈ (0..^𝑁)) → ((𝑄𝑘) = (𝑃𝑘) ∧ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝑆)‘(𝐻𝑘)) = (𝐼‘(𝐹𝑘))))
6867ralrimiva 3103 1 (𝜑 → ∀𝑘 ∈ (0..^𝑁)((𝑄𝑘) = (𝑃𝑘) ∧ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝑆)‘(𝐻𝑘)) = (𝐼‘(𝐹𝑘))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  cun 3885  wss 3887  {csn 4561  {cpr 4563  cop 4567   class class class wbr 5074  dom cdm 5589  Fun wfun 6427  cfv 6433  (class class class)co 7275  Fincfn 8733  0cc0 10871  1c1 10872   + caddc 10874  ...cfz 13239  ..^cfzo 13382  chash 14044  Word cword 14217  Vtxcvtx 27366  iEdgciedg 27367  Edgcedg 27417  Walkscwlks 27963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ifp 1061  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218  df-wlks 27966
This theorem is referenced by:  wlkp1lem8  28048
  Copyright terms: Public domain W3C validator