Step | Hyp | Ref
| Expression |
1 | | wlkp1.v |
. . . 4
β’ π = (VtxβπΊ) |
2 | | wlkp1.i |
. . . 4
β’ πΌ = (iEdgβπΊ) |
3 | | wlkp1.f |
. . . 4
β’ (π β Fun πΌ) |
4 | | wlkp1.a |
. . . 4
β’ (π β πΌ β Fin) |
5 | | wlkp1.b |
. . . 4
β’ (π β π΅ β π) |
6 | | wlkp1.c |
. . . 4
β’ (π β πΆ β π) |
7 | | wlkp1.d |
. . . 4
β’ (π β Β¬ π΅ β dom πΌ) |
8 | | wlkp1.w |
. . . 4
β’ (π β πΉ(WalksβπΊ)π) |
9 | | wlkp1.n |
. . . 4
β’ π = (β―βπΉ) |
10 | | wlkp1.e |
. . . 4
β’ (π β πΈ β (EdgβπΊ)) |
11 | | wlkp1.x |
. . . 4
β’ (π β {(πβπ), πΆ} β πΈ) |
12 | | wlkp1.u |
. . . 4
β’ (π β (iEdgβπ) = (πΌ βͺ {β¨π΅, πΈβ©})) |
13 | | wlkp1.h |
. . . 4
β’ π» = (πΉ βͺ {β¨π, π΅β©}) |
14 | | wlkp1.q |
. . . 4
β’ π = (π βͺ {β¨(π + 1), πΆβ©}) |
15 | | wlkp1.s |
. . . 4
β’ (π β (Vtxβπ) = π) |
16 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15 | wlkp1lem5 29202 |
. . 3
β’ (π β βπ₯ β (0...π)(πβπ₯) = (πβπ₯)) |
17 | | elfzofz 13653 |
. . . . . . 7
β’ (π β (0..^π) β π β (0...π)) |
18 | 17 | adantl 481 |
. . . . . 6
β’ ((π β§ π β (0..^π)) β π β (0...π)) |
19 | | fveq2 6891 |
. . . . . . . 8
β’ (π₯ = π β (πβπ₯) = (πβπ)) |
20 | | fveq2 6891 |
. . . . . . . 8
β’ (π₯ = π β (πβπ₯) = (πβπ)) |
21 | 19, 20 | eqeq12d 2747 |
. . . . . . 7
β’ (π₯ = π β ((πβπ₯) = (πβπ₯) β (πβπ) = (πβπ))) |
22 | 21 | rspcv 3608 |
. . . . . 6
β’ (π β (0...π) β (βπ₯ β (0...π)(πβπ₯) = (πβπ₯) β (πβπ) = (πβπ))) |
23 | 18, 22 | syl 17 |
. . . . 5
β’ ((π β§ π β (0..^π)) β (βπ₯ β (0...π)(πβπ₯) = (πβπ₯) β (πβπ) = (πβπ))) |
24 | 23 | imp 406 |
. . . 4
β’ (((π β§ π β (0..^π)) β§ βπ₯ β (0...π)(πβπ₯) = (πβπ₯)) β (πβπ) = (πβπ)) |
25 | | fzofzp1 13734 |
. . . . . . 7
β’ (π β (0..^π) β (π + 1) β (0...π)) |
26 | 25 | adantl 481 |
. . . . . 6
β’ ((π β§ π β (0..^π)) β (π + 1) β (0...π)) |
27 | | fveq2 6891 |
. . . . . . . 8
β’ (π₯ = (π + 1) β (πβπ₯) = (πβ(π + 1))) |
28 | | fveq2 6891 |
. . . . . . . 8
β’ (π₯ = (π + 1) β (πβπ₯) = (πβ(π + 1))) |
29 | 27, 28 | eqeq12d 2747 |
. . . . . . 7
β’ (π₯ = (π + 1) β ((πβπ₯) = (πβπ₯) β (πβ(π + 1)) = (πβ(π + 1)))) |
30 | 29 | rspcv 3608 |
. . . . . 6
β’ ((π + 1) β (0...π) β (βπ₯ β (0...π)(πβπ₯) = (πβπ₯) β (πβ(π + 1)) = (πβ(π + 1)))) |
31 | 26, 30 | syl 17 |
. . . . 5
β’ ((π β§ π β (0..^π)) β (βπ₯ β (0...π)(πβπ₯) = (πβπ₯) β (πβ(π + 1)) = (πβ(π + 1)))) |
32 | 31 | imp 406 |
. . . 4
β’ (((π β§ π β (0..^π)) β§ βπ₯ β (0...π)(πβπ₯) = (πβπ₯)) β (πβ(π + 1)) = (πβ(π + 1))) |
33 | 12 | adantr 480 |
. . . . . . 7
β’ ((π β§ π β (0..^π)) β (iEdgβπ) = (πΌ βͺ {β¨π΅, πΈβ©})) |
34 | 13 | fveq1i 6892 |
. . . . . . . 8
β’ (π»βπ) = ((πΉ βͺ {β¨π, π΅β©})βπ) |
35 | | fzonel 13651 |
. . . . . . . . . . . . . 14
β’ Β¬
π β (0..^π) |
36 | | eleq1 2820 |
. . . . . . . . . . . . . 14
β’ (π = π β (π β (0..^π) β π β (0..^π))) |
37 | 35, 36 | mtbii 326 |
. . . . . . . . . . . . 13
β’ (π = π β Β¬ π β (0..^π)) |
38 | 37 | a1i 11 |
. . . . . . . . . . . 12
β’ (π β (π = π β Β¬ π β (0..^π))) |
39 | 38 | con2d 134 |
. . . . . . . . . . 11
β’ (π β (π β (0..^π) β Β¬ π = π)) |
40 | 39 | imp 406 |
. . . . . . . . . 10
β’ ((π β§ π β (0..^π)) β Β¬ π = π) |
41 | 40 | neqned 2946 |
. . . . . . . . 9
β’ ((π β§ π β (0..^π)) β π β π) |
42 | | fvunsn 7179 |
. . . . . . . . 9
β’ (π β π β ((πΉ βͺ {β¨π, π΅β©})βπ) = (πΉβπ)) |
43 | 41, 42 | syl 17 |
. . . . . . . 8
β’ ((π β§ π β (0..^π)) β ((πΉ βͺ {β¨π, π΅β©})βπ) = (πΉβπ)) |
44 | 34, 43 | eqtrid 2783 |
. . . . . . 7
β’ ((π β§ π β (0..^π)) β (π»βπ) = (πΉβπ)) |
45 | 33, 44 | fveq12d 6898 |
. . . . . 6
β’ ((π β§ π β (0..^π)) β ((iEdgβπ)β(π»βπ)) = ((πΌ βͺ {β¨π΅, πΈβ©})β(πΉβπ))) |
46 | 9 | oveq2i 7423 |
. . . . . . . . . . . . . . . 16
β’
(0..^π) =
(0..^(β―βπΉ)) |
47 | 46 | eleq2i 2824 |
. . . . . . . . . . . . . . 15
β’ (π β (0..^π) β π β (0..^(β―βπΉ))) |
48 | 2 | wlkf 29139 |
. . . . . . . . . . . . . . . . 17
β’ (πΉ(WalksβπΊ)π β πΉ β Word dom πΌ) |
49 | 8, 48 | syl 17 |
. . . . . . . . . . . . . . . 16
β’ (π β πΉ β Word dom πΌ) |
50 | | wrdsymbcl 14482 |
. . . . . . . . . . . . . . . . 17
β’ ((πΉ β Word dom πΌ β§ π β (0..^(β―βπΉ))) β (πΉβπ) β dom πΌ) |
51 | 50 | ex 412 |
. . . . . . . . . . . . . . . 16
β’ (πΉ β Word dom πΌ β (π β (0..^(β―βπΉ)) β (πΉβπ) β dom πΌ)) |
52 | 49, 51 | syl 17 |
. . . . . . . . . . . . . . 15
β’ (π β (π β (0..^(β―βπΉ)) β (πΉβπ) β dom πΌ)) |
53 | 47, 52 | biimtrid 241 |
. . . . . . . . . . . . . 14
β’ (π β (π β (0..^π) β (πΉβπ) β dom πΌ)) |
54 | 53 | imp 406 |
. . . . . . . . . . . . 13
β’ ((π β§ π β (0..^π)) β (πΉβπ) β dom πΌ) |
55 | | eleq1 2820 |
. . . . . . . . . . . . 13
β’ (π΅ = (πΉβπ) β (π΅ β dom πΌ β (πΉβπ) β dom πΌ)) |
56 | 54, 55 | syl5ibrcom 246 |
. . . . . . . . . . . 12
β’ ((π β§ π β (0..^π)) β (π΅ = (πΉβπ) β π΅ β dom πΌ)) |
57 | 56 | con3d 152 |
. . . . . . . . . . 11
β’ ((π β§ π β (0..^π)) β (Β¬ π΅ β dom πΌ β Β¬ π΅ = (πΉβπ))) |
58 | 57 | ex 412 |
. . . . . . . . . 10
β’ (π β (π β (0..^π) β (Β¬ π΅ β dom πΌ β Β¬ π΅ = (πΉβπ)))) |
59 | 7, 58 | mpid 44 |
. . . . . . . . 9
β’ (π β (π β (0..^π) β Β¬ π΅ = (πΉβπ))) |
60 | 59 | imp 406 |
. . . . . . . 8
β’ ((π β§ π β (0..^π)) β Β¬ π΅ = (πΉβπ)) |
61 | 60 | neqned 2946 |
. . . . . . 7
β’ ((π β§ π β (0..^π)) β π΅ β (πΉβπ)) |
62 | | fvunsn 7179 |
. . . . . . 7
β’ (π΅ β (πΉβπ) β ((πΌ βͺ {β¨π΅, πΈβ©})β(πΉβπ)) = (πΌβ(πΉβπ))) |
63 | 61, 62 | syl 17 |
. . . . . 6
β’ ((π β§ π β (0..^π)) β ((πΌ βͺ {β¨π΅, πΈβ©})β(πΉβπ)) = (πΌβ(πΉβπ))) |
64 | 45, 63 | eqtrd 2771 |
. . . . 5
β’ ((π β§ π β (0..^π)) β ((iEdgβπ)β(π»βπ)) = (πΌβ(πΉβπ))) |
65 | 64 | adantr 480 |
. . . 4
β’ (((π β§ π β (0..^π)) β§ βπ₯ β (0...π)(πβπ₯) = (πβπ₯)) β ((iEdgβπ)β(π»βπ)) = (πΌβ(πΉβπ))) |
66 | 24, 32, 65 | 3jca 1127 |
. . 3
β’ (((π β§ π β (0..^π)) β§ βπ₯ β (0...π)(πβπ₯) = (πβπ₯)) β ((πβπ) = (πβπ) β§ (πβ(π + 1)) = (πβ(π + 1)) β§ ((iEdgβπ)β(π»βπ)) = (πΌβ(πΉβπ)))) |
67 | 16, 66 | mpidan 686 |
. 2
β’ ((π β§ π β (0..^π)) β ((πβπ) = (πβπ) β§ (πβ(π + 1)) = (πβ(π + 1)) β§ ((iEdgβπ)β(π»βπ)) = (πΌβ(πΉβπ)))) |
68 | 67 | ralrimiva 3145 |
1
β’ (π β βπ β (0..^π)((πβπ) = (πβπ) β§ (πβ(π + 1)) = (πβ(π + 1)) β§ ((iEdgβπ)β(π»βπ)) = (πΌβ(πΉβπ)))) |