![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mplmapghm | Structured version Visualization version GIF version |
Description: The function 𝐻 mapping polynomials 𝑝 to their coefficient given a bag of variables 𝐹 is a group homomorphism. (Contributed by SN, 15-Mar-2025.) |
Ref | Expression |
---|---|
mplmapghm.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
mplmapghm.b | ⊢ 𝐵 = (Base‘𝑃) |
mplmapghm.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
mplmapghm.h | ⊢ 𝐻 = (𝑝 ∈ 𝐵 ↦ (𝑝‘𝐹)) |
mplmapghm.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
mplmapghm.r | ⊢ (𝜑 → 𝑅 ∈ Grp) |
mplmapghm.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
Ref | Expression |
---|---|
mplmapghm | ⊢ (𝜑 → 𝐻 ∈ (𝑃 GrpHom 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mplmapghm.b | . 2 ⊢ 𝐵 = (Base‘𝑃) | |
2 | eqid 2732 | . 2 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
3 | eqid 2732 | . 2 ⊢ (+g‘𝑃) = (+g‘𝑃) | |
4 | eqid 2732 | . 2 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
5 | mplmapghm.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
6 | mplmapghm.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Grp) | |
7 | mplmapghm.p | . . . 4 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
8 | 7 | mplgrp 21575 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Grp) → 𝑃 ∈ Grp) |
9 | 5, 6, 8 | syl2anc 584 | . 2 ⊢ (𝜑 → 𝑃 ∈ Grp) |
10 | mplmapghm.d | . . . . 5 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
11 | simpr 485 | . . . . 5 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → 𝑝 ∈ 𝐵) | |
12 | 7, 2, 1, 10, 11 | mplelf 21556 | . . . 4 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → 𝑝:𝐷⟶(Base‘𝑅)) |
13 | mplmapghm.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
14 | 13 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → 𝐹 ∈ 𝐷) |
15 | 12, 14 | ffvelcdmd 7087 | . . 3 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → (𝑝‘𝐹) ∈ (Base‘𝑅)) |
16 | mplmapghm.h | . . 3 ⊢ 𝐻 = (𝑝 ∈ 𝐵 ↦ (𝑝‘𝐹)) | |
17 | 15, 16 | fmptd 7113 | . 2 ⊢ (𝜑 → 𝐻:𝐵⟶(Base‘𝑅)) |
18 | simprl 769 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → 𝑞 ∈ 𝐵) | |
19 | simprr 771 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → 𝑟 ∈ 𝐵) | |
20 | 7, 1, 4, 3, 18, 19 | mpladd 21567 | . . . . 5 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → (𝑞(+g‘𝑃)𝑟) = (𝑞 ∘f (+g‘𝑅)𝑟)) |
21 | 20 | fveq1d 6893 | . . . 4 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → ((𝑞(+g‘𝑃)𝑟)‘𝐹) = ((𝑞 ∘f (+g‘𝑅)𝑟)‘𝐹)) |
22 | 7, 2, 1, 10, 18 | mplelf 21556 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → 𝑞:𝐷⟶(Base‘𝑅)) |
23 | 22 | ffnd 6718 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → 𝑞 Fn 𝐷) |
24 | 7, 2, 1, 10, 19 | mplelf 21556 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → 𝑟:𝐷⟶(Base‘𝑅)) |
25 | 24 | ffnd 6718 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → 𝑟 Fn 𝐷) |
26 | ovex 7441 | . . . . . . . 8 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
27 | 10, 26 | rabex2 5334 | . . . . . . 7 ⊢ 𝐷 ∈ V |
28 | 27 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → 𝐷 ∈ V) |
29 | inidm 4218 | . . . . . 6 ⊢ (𝐷 ∩ 𝐷) = 𝐷 | |
30 | eqidd 2733 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) ∧ 𝐹 ∈ 𝐷) → (𝑞‘𝐹) = (𝑞‘𝐹)) | |
31 | eqidd 2733 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) ∧ 𝐹 ∈ 𝐷) → (𝑟‘𝐹) = (𝑟‘𝐹)) | |
32 | 23, 25, 28, 28, 29, 30, 31 | ofval 7680 | . . . . 5 ⊢ (((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) ∧ 𝐹 ∈ 𝐷) → ((𝑞 ∘f (+g‘𝑅)𝑟)‘𝐹) = ((𝑞‘𝐹)(+g‘𝑅)(𝑟‘𝐹))) |
33 | 13, 32 | mpidan 687 | . . . 4 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → ((𝑞 ∘f (+g‘𝑅)𝑟)‘𝐹) = ((𝑞‘𝐹)(+g‘𝑅)(𝑟‘𝐹))) |
34 | 21, 33 | eqtrd 2772 | . . 3 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → ((𝑞(+g‘𝑃)𝑟)‘𝐹) = ((𝑞‘𝐹)(+g‘𝑅)(𝑟‘𝐹))) |
35 | fveq1 6890 | . . . 4 ⊢ (𝑝 = (𝑞(+g‘𝑃)𝑟) → (𝑝‘𝐹) = ((𝑞(+g‘𝑃)𝑟)‘𝐹)) | |
36 | 9 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → 𝑃 ∈ Grp) |
37 | 1, 3, 36, 18, 19 | grpcld 18832 | . . . 4 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → (𝑞(+g‘𝑃)𝑟) ∈ 𝐵) |
38 | fvexd 6906 | . . . 4 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → ((𝑞(+g‘𝑃)𝑟)‘𝐹) ∈ V) | |
39 | 16, 35, 37, 38 | fvmptd3 7021 | . . 3 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → (𝐻‘(𝑞(+g‘𝑃)𝑟)) = ((𝑞(+g‘𝑃)𝑟)‘𝐹)) |
40 | fveq1 6890 | . . . . 5 ⊢ (𝑝 = 𝑞 → (𝑝‘𝐹) = (𝑞‘𝐹)) | |
41 | fvexd 6906 | . . . . 5 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → (𝑞‘𝐹) ∈ V) | |
42 | 16, 40, 18, 41 | fvmptd3 7021 | . . . 4 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → (𝐻‘𝑞) = (𝑞‘𝐹)) |
43 | fveq1 6890 | . . . . 5 ⊢ (𝑝 = 𝑟 → (𝑝‘𝐹) = (𝑟‘𝐹)) | |
44 | fvexd 6906 | . . . . 5 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → (𝑟‘𝐹) ∈ V) | |
45 | 16, 43, 19, 44 | fvmptd3 7021 | . . . 4 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → (𝐻‘𝑟) = (𝑟‘𝐹)) |
46 | 42, 45 | oveq12d 7426 | . . 3 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → ((𝐻‘𝑞)(+g‘𝑅)(𝐻‘𝑟)) = ((𝑞‘𝐹)(+g‘𝑅)(𝑟‘𝐹))) |
47 | 34, 39, 46 | 3eqtr4d 2782 | . 2 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → (𝐻‘(𝑞(+g‘𝑃)𝑟)) = ((𝐻‘𝑞)(+g‘𝑅)(𝐻‘𝑟))) |
48 | 1, 2, 3, 4, 9, 6, 17, 47 | isghmd 19100 | 1 ⊢ (𝜑 → 𝐻 ∈ (𝑃 GrpHom 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 {crab 3432 Vcvv 3474 ↦ cmpt 5231 ◡ccnv 5675 “ cima 5679 ‘cfv 6543 (class class class)co 7408 ∘f cof 7667 ↑m cmap 8819 Fincfn 8938 ℕcn 12211 ℕ0cn0 12471 Basecbs 17143 +gcplusg 17196 Grpcgrp 18818 GrpHom cghm 19088 mPoly cmpl 21458 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-of 7669 df-om 7855 df-1st 7974 df-2nd 7975 df-supp 8146 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-map 8821 df-ixp 8891 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-fsupp 9361 df-sup 9436 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-z 12558 df-dec 12677 df-uz 12822 df-fz 13484 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-hom 17220 df-cco 17221 df-0g 17386 df-prds 17392 df-pws 17394 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-grp 18821 df-minusg 18822 df-subg 19002 df-ghm 19089 df-psr 21461 df-mpl 21463 |
This theorem is referenced by: selvvvval 41159 evlselv 41161 |
Copyright terms: Public domain | W3C validator |