| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mplmapghm | Structured version Visualization version GIF version | ||
| Description: The function 𝐻 mapping polynomials 𝑝 to their coefficient given a bag of variables 𝐹 is a group homomorphism. (Contributed by SN, 15-Mar-2025.) |
| Ref | Expression |
|---|---|
| mplmapghm.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| mplmapghm.b | ⊢ 𝐵 = (Base‘𝑃) |
| mplmapghm.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
| mplmapghm.h | ⊢ 𝐻 = (𝑝 ∈ 𝐵 ↦ (𝑝‘𝐹)) |
| mplmapghm.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| mplmapghm.r | ⊢ (𝜑 → 𝑅 ∈ Grp) |
| mplmapghm.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
| Ref | Expression |
|---|---|
| mplmapghm | ⊢ (𝜑 → 𝐻 ∈ (𝑃 GrpHom 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplmapghm.b | . 2 ⊢ 𝐵 = (Base‘𝑃) | |
| 2 | eqid 2729 | . 2 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 3 | eqid 2729 | . 2 ⊢ (+g‘𝑃) = (+g‘𝑃) | |
| 4 | eqid 2729 | . 2 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 5 | mplmapghm.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 6 | mplmapghm.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Grp) | |
| 7 | mplmapghm.p | . . . 4 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 8 | 7 | mplgrp 21926 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Grp) → 𝑃 ∈ Grp) |
| 9 | 5, 6, 8 | syl2anc 584 | . 2 ⊢ (𝜑 → 𝑃 ∈ Grp) |
| 10 | mplmapghm.d | . . . . 5 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 11 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → 𝑝 ∈ 𝐵) | |
| 12 | 7, 2, 1, 10, 11 | mplelf 21907 | . . . 4 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → 𝑝:𝐷⟶(Base‘𝑅)) |
| 13 | mplmapghm.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
| 14 | 13 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → 𝐹 ∈ 𝐷) |
| 15 | 12, 14 | ffvelcdmd 7057 | . . 3 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → (𝑝‘𝐹) ∈ (Base‘𝑅)) |
| 16 | mplmapghm.h | . . 3 ⊢ 𝐻 = (𝑝 ∈ 𝐵 ↦ (𝑝‘𝐹)) | |
| 17 | 15, 16 | fmptd 7086 | . 2 ⊢ (𝜑 → 𝐻:𝐵⟶(Base‘𝑅)) |
| 18 | simprl 770 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → 𝑞 ∈ 𝐵) | |
| 19 | simprr 772 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → 𝑟 ∈ 𝐵) | |
| 20 | 7, 1, 4, 3, 18, 19 | mpladd 21918 | . . . . 5 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → (𝑞(+g‘𝑃)𝑟) = (𝑞 ∘f (+g‘𝑅)𝑟)) |
| 21 | 20 | fveq1d 6860 | . . . 4 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → ((𝑞(+g‘𝑃)𝑟)‘𝐹) = ((𝑞 ∘f (+g‘𝑅)𝑟)‘𝐹)) |
| 22 | 7, 2, 1, 10, 18 | mplelf 21907 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → 𝑞:𝐷⟶(Base‘𝑅)) |
| 23 | 22 | ffnd 6689 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → 𝑞 Fn 𝐷) |
| 24 | 7, 2, 1, 10, 19 | mplelf 21907 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → 𝑟:𝐷⟶(Base‘𝑅)) |
| 25 | 24 | ffnd 6689 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → 𝑟 Fn 𝐷) |
| 26 | ovex 7420 | . . . . . . . 8 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
| 27 | 10, 26 | rabex2 5296 | . . . . . . 7 ⊢ 𝐷 ∈ V |
| 28 | 27 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → 𝐷 ∈ V) |
| 29 | inidm 4190 | . . . . . 6 ⊢ (𝐷 ∩ 𝐷) = 𝐷 | |
| 30 | eqidd 2730 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) ∧ 𝐹 ∈ 𝐷) → (𝑞‘𝐹) = (𝑞‘𝐹)) | |
| 31 | eqidd 2730 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) ∧ 𝐹 ∈ 𝐷) → (𝑟‘𝐹) = (𝑟‘𝐹)) | |
| 32 | 23, 25, 28, 28, 29, 30, 31 | ofval 7664 | . . . . 5 ⊢ (((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) ∧ 𝐹 ∈ 𝐷) → ((𝑞 ∘f (+g‘𝑅)𝑟)‘𝐹) = ((𝑞‘𝐹)(+g‘𝑅)(𝑟‘𝐹))) |
| 33 | 13, 32 | mpidan 689 | . . . 4 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → ((𝑞 ∘f (+g‘𝑅)𝑟)‘𝐹) = ((𝑞‘𝐹)(+g‘𝑅)(𝑟‘𝐹))) |
| 34 | 21, 33 | eqtrd 2764 | . . 3 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → ((𝑞(+g‘𝑃)𝑟)‘𝐹) = ((𝑞‘𝐹)(+g‘𝑅)(𝑟‘𝐹))) |
| 35 | fveq1 6857 | . . . 4 ⊢ (𝑝 = (𝑞(+g‘𝑃)𝑟) → (𝑝‘𝐹) = ((𝑞(+g‘𝑃)𝑟)‘𝐹)) | |
| 36 | 9 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → 𝑃 ∈ Grp) |
| 37 | 1, 3, 36, 18, 19 | grpcld 18879 | . . . 4 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → (𝑞(+g‘𝑃)𝑟) ∈ 𝐵) |
| 38 | fvexd 6873 | . . . 4 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → ((𝑞(+g‘𝑃)𝑟)‘𝐹) ∈ V) | |
| 39 | 16, 35, 37, 38 | fvmptd3 6991 | . . 3 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → (𝐻‘(𝑞(+g‘𝑃)𝑟)) = ((𝑞(+g‘𝑃)𝑟)‘𝐹)) |
| 40 | fveq1 6857 | . . . . 5 ⊢ (𝑝 = 𝑞 → (𝑝‘𝐹) = (𝑞‘𝐹)) | |
| 41 | fvexd 6873 | . . . . 5 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → (𝑞‘𝐹) ∈ V) | |
| 42 | 16, 40, 18, 41 | fvmptd3 6991 | . . . 4 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → (𝐻‘𝑞) = (𝑞‘𝐹)) |
| 43 | fveq1 6857 | . . . . 5 ⊢ (𝑝 = 𝑟 → (𝑝‘𝐹) = (𝑟‘𝐹)) | |
| 44 | fvexd 6873 | . . . . 5 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → (𝑟‘𝐹) ∈ V) | |
| 45 | 16, 43, 19, 44 | fvmptd3 6991 | . . . 4 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → (𝐻‘𝑟) = (𝑟‘𝐹)) |
| 46 | 42, 45 | oveq12d 7405 | . . 3 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → ((𝐻‘𝑞)(+g‘𝑅)(𝐻‘𝑟)) = ((𝑞‘𝐹)(+g‘𝑅)(𝑟‘𝐹))) |
| 47 | 34, 39, 46 | 3eqtr4d 2774 | . 2 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → (𝐻‘(𝑞(+g‘𝑃)𝑟)) = ((𝐻‘𝑞)(+g‘𝑅)(𝐻‘𝑟))) |
| 48 | 1, 2, 3, 4, 9, 6, 17, 47 | isghmd 19157 | 1 ⊢ (𝜑 → 𝐻 ∈ (𝑃 GrpHom 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3405 Vcvv 3447 ↦ cmpt 5188 ◡ccnv 5637 “ cima 5641 ‘cfv 6511 (class class class)co 7387 ∘f cof 7651 ↑m cmap 8799 Fincfn 8918 ℕcn 12186 ℕ0cn0 12442 Basecbs 17179 +gcplusg 17220 Grpcgrp 18865 GrpHom cghm 19144 mPoly cmpl 21815 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-sup 9393 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-hom 17244 df-cco 17245 df-0g 17404 df-prds 17410 df-pws 17412 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-subg 19055 df-ghm 19145 df-psr 21818 df-mpl 21820 |
| This theorem is referenced by: selvvvval 42573 evlselv 42575 |
| Copyright terms: Public domain | W3C validator |