| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mplmapghm | Structured version Visualization version GIF version | ||
| Description: The function 𝐻 mapping polynomials 𝑝 to their coefficient given a bag of variables 𝐹 is a group homomorphism. (Contributed by SN, 15-Mar-2025.) |
| Ref | Expression |
|---|---|
| mplmapghm.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| mplmapghm.b | ⊢ 𝐵 = (Base‘𝑃) |
| mplmapghm.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
| mplmapghm.h | ⊢ 𝐻 = (𝑝 ∈ 𝐵 ↦ (𝑝‘𝐹)) |
| mplmapghm.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| mplmapghm.r | ⊢ (𝜑 → 𝑅 ∈ Grp) |
| mplmapghm.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
| Ref | Expression |
|---|---|
| mplmapghm | ⊢ (𝜑 → 𝐻 ∈ (𝑃 GrpHom 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplmapghm.b | . 2 ⊢ 𝐵 = (Base‘𝑃) | |
| 2 | eqid 2731 | . 2 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 3 | eqid 2731 | . 2 ⊢ (+g‘𝑃) = (+g‘𝑃) | |
| 4 | eqid 2731 | . 2 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 5 | mplmapghm.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 6 | mplmapghm.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Grp) | |
| 7 | mplmapghm.p | . . . 4 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 8 | 7 | mplgrp 21952 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Grp) → 𝑃 ∈ Grp) |
| 9 | 5, 6, 8 | syl2anc 584 | . 2 ⊢ (𝜑 → 𝑃 ∈ Grp) |
| 10 | mplmapghm.d | . . . . 5 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 11 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → 𝑝 ∈ 𝐵) | |
| 12 | 7, 2, 1, 10, 11 | mplelf 21933 | . . . 4 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → 𝑝:𝐷⟶(Base‘𝑅)) |
| 13 | mplmapghm.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
| 14 | 13 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → 𝐹 ∈ 𝐷) |
| 15 | 12, 14 | ffvelcdmd 7018 | . . 3 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → (𝑝‘𝐹) ∈ (Base‘𝑅)) |
| 16 | mplmapghm.h | . . 3 ⊢ 𝐻 = (𝑝 ∈ 𝐵 ↦ (𝑝‘𝐹)) | |
| 17 | 15, 16 | fmptd 7047 | . 2 ⊢ (𝜑 → 𝐻:𝐵⟶(Base‘𝑅)) |
| 18 | simprl 770 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → 𝑞 ∈ 𝐵) | |
| 19 | simprr 772 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → 𝑟 ∈ 𝐵) | |
| 20 | 7, 1, 4, 3, 18, 19 | mpladd 21944 | . . . . 5 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → (𝑞(+g‘𝑃)𝑟) = (𝑞 ∘f (+g‘𝑅)𝑟)) |
| 21 | 20 | fveq1d 6824 | . . . 4 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → ((𝑞(+g‘𝑃)𝑟)‘𝐹) = ((𝑞 ∘f (+g‘𝑅)𝑟)‘𝐹)) |
| 22 | 7, 2, 1, 10, 18 | mplelf 21933 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → 𝑞:𝐷⟶(Base‘𝑅)) |
| 23 | 22 | ffnd 6652 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → 𝑞 Fn 𝐷) |
| 24 | 7, 2, 1, 10, 19 | mplelf 21933 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → 𝑟:𝐷⟶(Base‘𝑅)) |
| 25 | 24 | ffnd 6652 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → 𝑟 Fn 𝐷) |
| 26 | ovex 7379 | . . . . . . . 8 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
| 27 | 10, 26 | rabex2 5279 | . . . . . . 7 ⊢ 𝐷 ∈ V |
| 28 | 27 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → 𝐷 ∈ V) |
| 29 | inidm 4177 | . . . . . 6 ⊢ (𝐷 ∩ 𝐷) = 𝐷 | |
| 30 | eqidd 2732 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) ∧ 𝐹 ∈ 𝐷) → (𝑞‘𝐹) = (𝑞‘𝐹)) | |
| 31 | eqidd 2732 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) ∧ 𝐹 ∈ 𝐷) → (𝑟‘𝐹) = (𝑟‘𝐹)) | |
| 32 | 23, 25, 28, 28, 29, 30, 31 | ofval 7621 | . . . . 5 ⊢ (((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) ∧ 𝐹 ∈ 𝐷) → ((𝑞 ∘f (+g‘𝑅)𝑟)‘𝐹) = ((𝑞‘𝐹)(+g‘𝑅)(𝑟‘𝐹))) |
| 33 | 13, 32 | mpidan 689 | . . . 4 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → ((𝑞 ∘f (+g‘𝑅)𝑟)‘𝐹) = ((𝑞‘𝐹)(+g‘𝑅)(𝑟‘𝐹))) |
| 34 | 21, 33 | eqtrd 2766 | . . 3 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → ((𝑞(+g‘𝑃)𝑟)‘𝐹) = ((𝑞‘𝐹)(+g‘𝑅)(𝑟‘𝐹))) |
| 35 | fveq1 6821 | . . . 4 ⊢ (𝑝 = (𝑞(+g‘𝑃)𝑟) → (𝑝‘𝐹) = ((𝑞(+g‘𝑃)𝑟)‘𝐹)) | |
| 36 | 9 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → 𝑃 ∈ Grp) |
| 37 | 1, 3, 36, 18, 19 | grpcld 18857 | . . . 4 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → (𝑞(+g‘𝑃)𝑟) ∈ 𝐵) |
| 38 | fvexd 6837 | . . . 4 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → ((𝑞(+g‘𝑃)𝑟)‘𝐹) ∈ V) | |
| 39 | 16, 35, 37, 38 | fvmptd3 6952 | . . 3 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → (𝐻‘(𝑞(+g‘𝑃)𝑟)) = ((𝑞(+g‘𝑃)𝑟)‘𝐹)) |
| 40 | fveq1 6821 | . . . . 5 ⊢ (𝑝 = 𝑞 → (𝑝‘𝐹) = (𝑞‘𝐹)) | |
| 41 | fvexd 6837 | . . . . 5 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → (𝑞‘𝐹) ∈ V) | |
| 42 | 16, 40, 18, 41 | fvmptd3 6952 | . . . 4 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → (𝐻‘𝑞) = (𝑞‘𝐹)) |
| 43 | fveq1 6821 | . . . . 5 ⊢ (𝑝 = 𝑟 → (𝑝‘𝐹) = (𝑟‘𝐹)) | |
| 44 | fvexd 6837 | . . . . 5 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → (𝑟‘𝐹) ∈ V) | |
| 45 | 16, 43, 19, 44 | fvmptd3 6952 | . . . 4 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → (𝐻‘𝑟) = (𝑟‘𝐹)) |
| 46 | 42, 45 | oveq12d 7364 | . . 3 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → ((𝐻‘𝑞)(+g‘𝑅)(𝐻‘𝑟)) = ((𝑞‘𝐹)(+g‘𝑅)(𝑟‘𝐹))) |
| 47 | 34, 39, 46 | 3eqtr4d 2776 | . 2 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → (𝐻‘(𝑞(+g‘𝑃)𝑟)) = ((𝐻‘𝑞)(+g‘𝑅)(𝐻‘𝑟))) |
| 48 | 1, 2, 3, 4, 9, 6, 17, 47 | isghmd 19135 | 1 ⊢ (𝜑 → 𝐻 ∈ (𝑃 GrpHom 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {crab 3395 Vcvv 3436 ↦ cmpt 5172 ◡ccnv 5615 “ cima 5619 ‘cfv 6481 (class class class)co 7346 ∘f cof 7608 ↑m cmap 8750 Fincfn 8869 ℕcn 12122 ℕ0cn0 12378 Basecbs 17117 +gcplusg 17158 Grpcgrp 18843 GrpHom cghm 19122 mPoly cmpl 21841 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-sup 9326 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-uz 12730 df-fz 13405 df-struct 17055 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-mulr 17172 df-sca 17174 df-vsca 17175 df-ip 17176 df-tset 17177 df-ple 17178 df-ds 17180 df-hom 17182 df-cco 17183 df-0g 17342 df-prds 17348 df-pws 17350 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-grp 18846 df-minusg 18847 df-subg 19033 df-ghm 19123 df-psr 21844 df-mpl 21846 |
| This theorem is referenced by: selvvvval 42617 evlselv 42619 |
| Copyright terms: Public domain | W3C validator |