Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mplmapghm Structured version   Visualization version   GIF version

Theorem mplmapghm 42571
Description: The function 𝐻 mapping polynomials 𝑝 to their coefficient given a bag of variables 𝐹 is a group homomorphism. (Contributed by SN, 15-Mar-2025.)
Hypotheses
Ref Expression
mplmapghm.p 𝑃 = (𝐼 mPoly 𝑅)
mplmapghm.b 𝐵 = (Base‘𝑃)
mplmapghm.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
mplmapghm.h 𝐻 = (𝑝𝐵 ↦ (𝑝𝐹))
mplmapghm.i (𝜑𝐼𝑉)
mplmapghm.r (𝜑𝑅 ∈ Grp)
mplmapghm.f (𝜑𝐹𝐷)
Assertion
Ref Expression
mplmapghm (𝜑𝐻 ∈ (𝑃 GrpHom 𝑅))
Distinct variable groups:   𝐵,𝑝   𝑓,𝐼   𝑅,𝑝   𝜑,𝑝   𝑃,𝑝   𝐹,𝑝
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐷(𝑓,𝑝)   𝑃(𝑓)   𝑅(𝑓)   𝐹(𝑓)   𝐻(𝑓,𝑝)   𝐼(𝑝)   𝑉(𝑓,𝑝)

Proof of Theorem mplmapghm
Dummy variables 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mplmapghm.b . 2 𝐵 = (Base‘𝑃)
2 eqid 2736 . 2 (Base‘𝑅) = (Base‘𝑅)
3 eqid 2736 . 2 (+g𝑃) = (+g𝑃)
4 eqid 2736 . 2 (+g𝑅) = (+g𝑅)
5 mplmapghm.i . . 3 (𝜑𝐼𝑉)
6 mplmapghm.r . . 3 (𝜑𝑅 ∈ Grp)
7 mplmapghm.p . . . 4 𝑃 = (𝐼 mPoly 𝑅)
87mplgrp 22038 . . 3 ((𝐼𝑉𝑅 ∈ Grp) → 𝑃 ∈ Grp)
95, 6, 8syl2anc 584 . 2 (𝜑𝑃 ∈ Grp)
10 mplmapghm.d . . . . 5 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
11 simpr 484 . . . . 5 ((𝜑𝑝𝐵) → 𝑝𝐵)
127, 2, 1, 10, 11mplelf 22019 . . . 4 ((𝜑𝑝𝐵) → 𝑝:𝐷⟶(Base‘𝑅))
13 mplmapghm.f . . . . 5 (𝜑𝐹𝐷)
1413adantr 480 . . . 4 ((𝜑𝑝𝐵) → 𝐹𝐷)
1512, 14ffvelcdmd 7104 . . 3 ((𝜑𝑝𝐵) → (𝑝𝐹) ∈ (Base‘𝑅))
16 mplmapghm.h . . 3 𝐻 = (𝑝𝐵 ↦ (𝑝𝐹))
1715, 16fmptd 7133 . 2 (𝜑𝐻:𝐵⟶(Base‘𝑅))
18 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝑞𝐵)
19 simprr 772 . . . . . 6 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝑟𝐵)
207, 1, 4, 3, 18, 19mpladd 22030 . . . . 5 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝑞(+g𝑃)𝑟) = (𝑞f (+g𝑅)𝑟))
2120fveq1d 6907 . . . 4 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → ((𝑞(+g𝑃)𝑟)‘𝐹) = ((𝑞f (+g𝑅)𝑟)‘𝐹))
227, 2, 1, 10, 18mplelf 22019 . . . . . . 7 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝑞:𝐷⟶(Base‘𝑅))
2322ffnd 6736 . . . . . 6 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝑞 Fn 𝐷)
247, 2, 1, 10, 19mplelf 22019 . . . . . . 7 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝑟:𝐷⟶(Base‘𝑅))
2524ffnd 6736 . . . . . 6 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝑟 Fn 𝐷)
26 ovex 7465 . . . . . . . 8 (ℕ0m 𝐼) ∈ V
2710, 26rabex2 5340 . . . . . . 7 𝐷 ∈ V
2827a1i 11 . . . . . 6 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝐷 ∈ V)
29 inidm 4226 . . . . . 6 (𝐷𝐷) = 𝐷
30 eqidd 2737 . . . . . 6 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝐹𝐷) → (𝑞𝐹) = (𝑞𝐹))
31 eqidd 2737 . . . . . 6 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝐹𝐷) → (𝑟𝐹) = (𝑟𝐹))
3223, 25, 28, 28, 29, 30, 31ofval 7709 . . . . 5 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝐹𝐷) → ((𝑞f (+g𝑅)𝑟)‘𝐹) = ((𝑞𝐹)(+g𝑅)(𝑟𝐹)))
3313, 32mpidan 689 . . . 4 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → ((𝑞f (+g𝑅)𝑟)‘𝐹) = ((𝑞𝐹)(+g𝑅)(𝑟𝐹)))
3421, 33eqtrd 2776 . . 3 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → ((𝑞(+g𝑃)𝑟)‘𝐹) = ((𝑞𝐹)(+g𝑅)(𝑟𝐹)))
35 fveq1 6904 . . . 4 (𝑝 = (𝑞(+g𝑃)𝑟) → (𝑝𝐹) = ((𝑞(+g𝑃)𝑟)‘𝐹))
369adantr 480 . . . . 5 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝑃 ∈ Grp)
371, 3, 36, 18, 19grpcld 18966 . . . 4 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝑞(+g𝑃)𝑟) ∈ 𝐵)
38 fvexd 6920 . . . 4 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → ((𝑞(+g𝑃)𝑟)‘𝐹) ∈ V)
3916, 35, 37, 38fvmptd3 7038 . . 3 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐻‘(𝑞(+g𝑃)𝑟)) = ((𝑞(+g𝑃)𝑟)‘𝐹))
40 fveq1 6904 . . . . 5 (𝑝 = 𝑞 → (𝑝𝐹) = (𝑞𝐹))
41 fvexd 6920 . . . . 5 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝑞𝐹) ∈ V)
4216, 40, 18, 41fvmptd3 7038 . . . 4 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐻𝑞) = (𝑞𝐹))
43 fveq1 6904 . . . . 5 (𝑝 = 𝑟 → (𝑝𝐹) = (𝑟𝐹))
44 fvexd 6920 . . . . 5 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝑟𝐹) ∈ V)
4516, 43, 19, 44fvmptd3 7038 . . . 4 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐻𝑟) = (𝑟𝐹))
4642, 45oveq12d 7450 . . 3 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → ((𝐻𝑞)(+g𝑅)(𝐻𝑟)) = ((𝑞𝐹)(+g𝑅)(𝑟𝐹)))
4734, 39, 463eqtr4d 2786 . 2 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐻‘(𝑞(+g𝑃)𝑟)) = ((𝐻𝑞)(+g𝑅)(𝐻𝑟)))
481, 2, 3, 4, 9, 6, 17, 47isghmd 19244 1 (𝜑𝐻 ∈ (𝑃 GrpHom 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  {crab 3435  Vcvv 3479  cmpt 5224  ccnv 5683  cima 5687  cfv 6560  (class class class)co 7432  f cof 7696  m cmap 8867  Fincfn 8986  cn 12267  0cn0 12528  Basecbs 17248  +gcplusg 17298  Grpcgrp 18952   GrpHom cghm 19231   mPoly cmpl 21927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-map 8869  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-sup 9483  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-fz 13549  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-0g 17487  df-prds 17493  df-pws 17495  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-grp 18955  df-minusg 18956  df-subg 19142  df-ghm 19232  df-psr 21930  df-mpl 21932
This theorem is referenced by:  selvvvval  42600  evlselv  42602
  Copyright terms: Public domain W3C validator