Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mplmapghm Structured version   Visualization version   GIF version

Theorem mplmapghm 42544
Description: The function 𝐻 mapping polynomials 𝑝 to their coefficient given a bag of variables 𝐹 is a group homomorphism. (Contributed by SN, 15-Mar-2025.)
Hypotheses
Ref Expression
mplmapghm.p 𝑃 = (𝐼 mPoly 𝑅)
mplmapghm.b 𝐵 = (Base‘𝑃)
mplmapghm.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
mplmapghm.h 𝐻 = (𝑝𝐵 ↦ (𝑝𝐹))
mplmapghm.i (𝜑𝐼𝑉)
mplmapghm.r (𝜑𝑅 ∈ Grp)
mplmapghm.f (𝜑𝐹𝐷)
Assertion
Ref Expression
mplmapghm (𝜑𝐻 ∈ (𝑃 GrpHom 𝑅))
Distinct variable groups:   𝐵,𝑝   𝑓,𝐼   𝑅,𝑝   𝜑,𝑝   𝑃,𝑝   𝐹,𝑝
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐷(𝑓,𝑝)   𝑃(𝑓)   𝑅(𝑓)   𝐹(𝑓)   𝐻(𝑓,𝑝)   𝐼(𝑝)   𝑉(𝑓,𝑝)

Proof of Theorem mplmapghm
Dummy variables 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mplmapghm.b . 2 𝐵 = (Base‘𝑃)
2 eqid 2729 . 2 (Base‘𝑅) = (Base‘𝑅)
3 eqid 2729 . 2 (+g𝑃) = (+g𝑃)
4 eqid 2729 . 2 (+g𝑅) = (+g𝑅)
5 mplmapghm.i . . 3 (𝜑𝐼𝑉)
6 mplmapghm.r . . 3 (𝜑𝑅 ∈ Grp)
7 mplmapghm.p . . . 4 𝑃 = (𝐼 mPoly 𝑅)
87mplgrp 21926 . . 3 ((𝐼𝑉𝑅 ∈ Grp) → 𝑃 ∈ Grp)
95, 6, 8syl2anc 584 . 2 (𝜑𝑃 ∈ Grp)
10 mplmapghm.d . . . . 5 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
11 simpr 484 . . . . 5 ((𝜑𝑝𝐵) → 𝑝𝐵)
127, 2, 1, 10, 11mplelf 21907 . . . 4 ((𝜑𝑝𝐵) → 𝑝:𝐷⟶(Base‘𝑅))
13 mplmapghm.f . . . . 5 (𝜑𝐹𝐷)
1413adantr 480 . . . 4 ((𝜑𝑝𝐵) → 𝐹𝐷)
1512, 14ffvelcdmd 7057 . . 3 ((𝜑𝑝𝐵) → (𝑝𝐹) ∈ (Base‘𝑅))
16 mplmapghm.h . . 3 𝐻 = (𝑝𝐵 ↦ (𝑝𝐹))
1715, 16fmptd 7086 . 2 (𝜑𝐻:𝐵⟶(Base‘𝑅))
18 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝑞𝐵)
19 simprr 772 . . . . . 6 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝑟𝐵)
207, 1, 4, 3, 18, 19mpladd 21918 . . . . 5 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝑞(+g𝑃)𝑟) = (𝑞f (+g𝑅)𝑟))
2120fveq1d 6860 . . . 4 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → ((𝑞(+g𝑃)𝑟)‘𝐹) = ((𝑞f (+g𝑅)𝑟)‘𝐹))
227, 2, 1, 10, 18mplelf 21907 . . . . . . 7 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝑞:𝐷⟶(Base‘𝑅))
2322ffnd 6689 . . . . . 6 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝑞 Fn 𝐷)
247, 2, 1, 10, 19mplelf 21907 . . . . . . 7 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝑟:𝐷⟶(Base‘𝑅))
2524ffnd 6689 . . . . . 6 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝑟 Fn 𝐷)
26 ovex 7420 . . . . . . . 8 (ℕ0m 𝐼) ∈ V
2710, 26rabex2 5296 . . . . . . 7 𝐷 ∈ V
2827a1i 11 . . . . . 6 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝐷 ∈ V)
29 inidm 4190 . . . . . 6 (𝐷𝐷) = 𝐷
30 eqidd 2730 . . . . . 6 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝐹𝐷) → (𝑞𝐹) = (𝑞𝐹))
31 eqidd 2730 . . . . . 6 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝐹𝐷) → (𝑟𝐹) = (𝑟𝐹))
3223, 25, 28, 28, 29, 30, 31ofval 7664 . . . . 5 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝐹𝐷) → ((𝑞f (+g𝑅)𝑟)‘𝐹) = ((𝑞𝐹)(+g𝑅)(𝑟𝐹)))
3313, 32mpidan 689 . . . 4 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → ((𝑞f (+g𝑅)𝑟)‘𝐹) = ((𝑞𝐹)(+g𝑅)(𝑟𝐹)))
3421, 33eqtrd 2764 . . 3 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → ((𝑞(+g𝑃)𝑟)‘𝐹) = ((𝑞𝐹)(+g𝑅)(𝑟𝐹)))
35 fveq1 6857 . . . 4 (𝑝 = (𝑞(+g𝑃)𝑟) → (𝑝𝐹) = ((𝑞(+g𝑃)𝑟)‘𝐹))
369adantr 480 . . . . 5 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝑃 ∈ Grp)
371, 3, 36, 18, 19grpcld 18879 . . . 4 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝑞(+g𝑃)𝑟) ∈ 𝐵)
38 fvexd 6873 . . . 4 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → ((𝑞(+g𝑃)𝑟)‘𝐹) ∈ V)
3916, 35, 37, 38fvmptd3 6991 . . 3 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐻‘(𝑞(+g𝑃)𝑟)) = ((𝑞(+g𝑃)𝑟)‘𝐹))
40 fveq1 6857 . . . . 5 (𝑝 = 𝑞 → (𝑝𝐹) = (𝑞𝐹))
41 fvexd 6873 . . . . 5 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝑞𝐹) ∈ V)
4216, 40, 18, 41fvmptd3 6991 . . . 4 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐻𝑞) = (𝑞𝐹))
43 fveq1 6857 . . . . 5 (𝑝 = 𝑟 → (𝑝𝐹) = (𝑟𝐹))
44 fvexd 6873 . . . . 5 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝑟𝐹) ∈ V)
4516, 43, 19, 44fvmptd3 6991 . . . 4 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐻𝑟) = (𝑟𝐹))
4642, 45oveq12d 7405 . . 3 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → ((𝐻𝑞)(+g𝑅)(𝐻𝑟)) = ((𝑞𝐹)(+g𝑅)(𝑟𝐹)))
4734, 39, 463eqtr4d 2774 . 2 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐻‘(𝑞(+g𝑃)𝑟)) = ((𝐻𝑞)(+g𝑅)(𝐻𝑟)))
481, 2, 3, 4, 9, 6, 17, 47isghmd 19157 1 (𝜑𝐻 ∈ (𝑃 GrpHom 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3405  Vcvv 3447  cmpt 5188  ccnv 5637  cima 5641  cfv 6511  (class class class)co 7387  f cof 7651  m cmap 8799  Fincfn 8918  cn 12186  0cn0 12442  Basecbs 17179  +gcplusg 17220  Grpcgrp 18865   GrpHom cghm 19144   mPoly cmpl 21815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-hom 17244  df-cco 17245  df-0g 17404  df-prds 17410  df-pws 17412  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-subg 19055  df-ghm 19145  df-psr 21818  df-mpl 21820
This theorem is referenced by:  selvvvval  42573  evlselv  42575
  Copyright terms: Public domain W3C validator