Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mplmapghm Structured version   Visualization version   GIF version

Theorem mplmapghm 41854
Description: The function 𝐻 mapping polynomials 𝑝 to their coefficient given a bag of variables 𝐹 is a group homomorphism. (Contributed by SN, 15-Mar-2025.)
Hypotheses
Ref Expression
mplmapghm.p 𝑃 = (𝐼 mPoly 𝑅)
mplmapghm.b 𝐵 = (Base‘𝑃)
mplmapghm.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
mplmapghm.h 𝐻 = (𝑝𝐵 ↦ (𝑝𝐹))
mplmapghm.i (𝜑𝐼𝑉)
mplmapghm.r (𝜑𝑅 ∈ Grp)
mplmapghm.f (𝜑𝐹𝐷)
Assertion
Ref Expression
mplmapghm (𝜑𝐻 ∈ (𝑃 GrpHom 𝑅))
Distinct variable groups:   𝐵,𝑝   𝑓,𝐼   𝑅,𝑝   𝜑,𝑝   𝑃,𝑝   𝐹,𝑝
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐷(𝑓,𝑝)   𝑃(𝑓)   𝑅(𝑓)   𝐹(𝑓)   𝐻(𝑓,𝑝)   𝐼(𝑝)   𝑉(𝑓,𝑝)

Proof of Theorem mplmapghm
Dummy variables 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mplmapghm.b . 2 𝐵 = (Base‘𝑃)
2 eqid 2725 . 2 (Base‘𝑅) = (Base‘𝑅)
3 eqid 2725 . 2 (+g𝑃) = (+g𝑃)
4 eqid 2725 . 2 (+g𝑅) = (+g𝑅)
5 mplmapghm.i . . 3 (𝜑𝐼𝑉)
6 mplmapghm.r . . 3 (𝜑𝑅 ∈ Grp)
7 mplmapghm.p . . . 4 𝑃 = (𝐼 mPoly 𝑅)
87mplgrp 21966 . . 3 ((𝐼𝑉𝑅 ∈ Grp) → 𝑃 ∈ Grp)
95, 6, 8syl2anc 582 . 2 (𝜑𝑃 ∈ Grp)
10 mplmapghm.d . . . . 5 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
11 simpr 483 . . . . 5 ((𝜑𝑝𝐵) → 𝑝𝐵)
127, 2, 1, 10, 11mplelf 21947 . . . 4 ((𝜑𝑝𝐵) → 𝑝:𝐷⟶(Base‘𝑅))
13 mplmapghm.f . . . . 5 (𝜑𝐹𝐷)
1413adantr 479 . . . 4 ((𝜑𝑝𝐵) → 𝐹𝐷)
1512, 14ffvelcdmd 7090 . . 3 ((𝜑𝑝𝐵) → (𝑝𝐹) ∈ (Base‘𝑅))
16 mplmapghm.h . . 3 𝐻 = (𝑝𝐵 ↦ (𝑝𝐹))
1715, 16fmptd 7119 . 2 (𝜑𝐻:𝐵⟶(Base‘𝑅))
18 simprl 769 . . . . . 6 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝑞𝐵)
19 simprr 771 . . . . . 6 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝑟𝐵)
207, 1, 4, 3, 18, 19mpladd 21958 . . . . 5 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝑞(+g𝑃)𝑟) = (𝑞f (+g𝑅)𝑟))
2120fveq1d 6894 . . . 4 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → ((𝑞(+g𝑃)𝑟)‘𝐹) = ((𝑞f (+g𝑅)𝑟)‘𝐹))
227, 2, 1, 10, 18mplelf 21947 . . . . . . 7 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝑞:𝐷⟶(Base‘𝑅))
2322ffnd 6718 . . . . . 6 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝑞 Fn 𝐷)
247, 2, 1, 10, 19mplelf 21947 . . . . . . 7 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝑟:𝐷⟶(Base‘𝑅))
2524ffnd 6718 . . . . . 6 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝑟 Fn 𝐷)
26 ovex 7449 . . . . . . . 8 (ℕ0m 𝐼) ∈ V
2710, 26rabex2 5331 . . . . . . 7 𝐷 ∈ V
2827a1i 11 . . . . . 6 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝐷 ∈ V)
29 inidm 4213 . . . . . 6 (𝐷𝐷) = 𝐷
30 eqidd 2726 . . . . . 6 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝐹𝐷) → (𝑞𝐹) = (𝑞𝐹))
31 eqidd 2726 . . . . . 6 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝐹𝐷) → (𝑟𝐹) = (𝑟𝐹))
3223, 25, 28, 28, 29, 30, 31ofval 7693 . . . . 5 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝐹𝐷) → ((𝑞f (+g𝑅)𝑟)‘𝐹) = ((𝑞𝐹)(+g𝑅)(𝑟𝐹)))
3313, 32mpidan 687 . . . 4 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → ((𝑞f (+g𝑅)𝑟)‘𝐹) = ((𝑞𝐹)(+g𝑅)(𝑟𝐹)))
3421, 33eqtrd 2765 . . 3 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → ((𝑞(+g𝑃)𝑟)‘𝐹) = ((𝑞𝐹)(+g𝑅)(𝑟𝐹)))
35 fveq1 6891 . . . 4 (𝑝 = (𝑞(+g𝑃)𝑟) → (𝑝𝐹) = ((𝑞(+g𝑃)𝑟)‘𝐹))
369adantr 479 . . . . 5 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝑃 ∈ Grp)
371, 3, 36, 18, 19grpcld 18908 . . . 4 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝑞(+g𝑃)𝑟) ∈ 𝐵)
38 fvexd 6907 . . . 4 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → ((𝑞(+g𝑃)𝑟)‘𝐹) ∈ V)
3916, 35, 37, 38fvmptd3 7023 . . 3 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐻‘(𝑞(+g𝑃)𝑟)) = ((𝑞(+g𝑃)𝑟)‘𝐹))
40 fveq1 6891 . . . . 5 (𝑝 = 𝑞 → (𝑝𝐹) = (𝑞𝐹))
41 fvexd 6907 . . . . 5 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝑞𝐹) ∈ V)
4216, 40, 18, 41fvmptd3 7023 . . . 4 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐻𝑞) = (𝑞𝐹))
43 fveq1 6891 . . . . 5 (𝑝 = 𝑟 → (𝑝𝐹) = (𝑟𝐹))
44 fvexd 6907 . . . . 5 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝑟𝐹) ∈ V)
4516, 43, 19, 44fvmptd3 7023 . . . 4 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐻𝑟) = (𝑟𝐹))
4642, 45oveq12d 7434 . . 3 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → ((𝐻𝑞)(+g𝑅)(𝐻𝑟)) = ((𝑞𝐹)(+g𝑅)(𝑟𝐹)))
4734, 39, 463eqtr4d 2775 . 2 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐻‘(𝑞(+g𝑃)𝑟)) = ((𝐻𝑞)(+g𝑅)(𝐻𝑟)))
481, 2, 3, 4, 9, 6, 17, 47isghmd 19183 1 (𝜑𝐻 ∈ (𝑃 GrpHom 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  {crab 3419  Vcvv 3463  cmpt 5226  ccnv 5671  cima 5675  cfv 6543  (class class class)co 7416  f cof 7680  m cmap 8843  Fincfn 8962  cn 12242  0cn0 12502  Basecbs 17179  +gcplusg 17232  Grpcgrp 18894   GrpHom cghm 19171   mPoly cmpl 21843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3959  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-of 7682  df-om 7869  df-1st 7991  df-2nd 7992  df-supp 8164  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8723  df-map 8845  df-ixp 8915  df-en 8963  df-dom 8964  df-sdom 8965  df-fin 8966  df-fsupp 9386  df-sup 9465  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-2 12305  df-3 12306  df-4 12307  df-5 12308  df-6 12309  df-7 12310  df-8 12311  df-9 12312  df-n0 12503  df-z 12589  df-dec 12708  df-uz 12853  df-fz 13517  df-struct 17115  df-sets 17132  df-slot 17150  df-ndx 17162  df-base 17180  df-ress 17209  df-plusg 17245  df-mulr 17246  df-sca 17248  df-vsca 17249  df-ip 17250  df-tset 17251  df-ple 17252  df-ds 17254  df-hom 17256  df-cco 17257  df-0g 17422  df-prds 17428  df-pws 17430  df-mgm 18599  df-sgrp 18678  df-mnd 18694  df-grp 18897  df-minusg 18898  df-subg 19082  df-ghm 19172  df-psr 21846  df-mpl 21848
This theorem is referenced by:  selvvvval  41883  evlselv  41885
  Copyright terms: Public domain W3C validator