![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mplmapghm | Structured version Visualization version GIF version |
Description: The function 𝐻 mapping polynomials 𝑝 to their coefficient given a bag of variables 𝐹 is a group homomorphism. (Contributed by SN, 15-Mar-2025.) |
Ref | Expression |
---|---|
mplmapghm.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
mplmapghm.b | ⊢ 𝐵 = (Base‘𝑃) |
mplmapghm.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
mplmapghm.h | ⊢ 𝐻 = (𝑝 ∈ 𝐵 ↦ (𝑝‘𝐹)) |
mplmapghm.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
mplmapghm.r | ⊢ (𝜑 → 𝑅 ∈ Grp) |
mplmapghm.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
Ref | Expression |
---|---|
mplmapghm | ⊢ (𝜑 → 𝐻 ∈ (𝑃 GrpHom 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mplmapghm.b | . 2 ⊢ 𝐵 = (Base‘𝑃) | |
2 | eqid 2740 | . 2 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
3 | eqid 2740 | . 2 ⊢ (+g‘𝑃) = (+g‘𝑃) | |
4 | eqid 2740 | . 2 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
5 | mplmapghm.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
6 | mplmapghm.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Grp) | |
7 | mplmapghm.p | . . . 4 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
8 | 7 | mplgrp 22060 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Grp) → 𝑃 ∈ Grp) |
9 | 5, 6, 8 | syl2anc 583 | . 2 ⊢ (𝜑 → 𝑃 ∈ Grp) |
10 | mplmapghm.d | . . . . 5 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
11 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → 𝑝 ∈ 𝐵) | |
12 | 7, 2, 1, 10, 11 | mplelf 22041 | . . . 4 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → 𝑝:𝐷⟶(Base‘𝑅)) |
13 | mplmapghm.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
14 | 13 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → 𝐹 ∈ 𝐷) |
15 | 12, 14 | ffvelcdmd 7119 | . . 3 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → (𝑝‘𝐹) ∈ (Base‘𝑅)) |
16 | mplmapghm.h | . . 3 ⊢ 𝐻 = (𝑝 ∈ 𝐵 ↦ (𝑝‘𝐹)) | |
17 | 15, 16 | fmptd 7148 | . 2 ⊢ (𝜑 → 𝐻:𝐵⟶(Base‘𝑅)) |
18 | simprl 770 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → 𝑞 ∈ 𝐵) | |
19 | simprr 772 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → 𝑟 ∈ 𝐵) | |
20 | 7, 1, 4, 3, 18, 19 | mpladd 22052 | . . . . 5 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → (𝑞(+g‘𝑃)𝑟) = (𝑞 ∘f (+g‘𝑅)𝑟)) |
21 | 20 | fveq1d 6922 | . . . 4 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → ((𝑞(+g‘𝑃)𝑟)‘𝐹) = ((𝑞 ∘f (+g‘𝑅)𝑟)‘𝐹)) |
22 | 7, 2, 1, 10, 18 | mplelf 22041 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → 𝑞:𝐷⟶(Base‘𝑅)) |
23 | 22 | ffnd 6748 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → 𝑞 Fn 𝐷) |
24 | 7, 2, 1, 10, 19 | mplelf 22041 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → 𝑟:𝐷⟶(Base‘𝑅)) |
25 | 24 | ffnd 6748 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → 𝑟 Fn 𝐷) |
26 | ovex 7481 | . . . . . . . 8 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
27 | 10, 26 | rabex2 5359 | . . . . . . 7 ⊢ 𝐷 ∈ V |
28 | 27 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → 𝐷 ∈ V) |
29 | inidm 4248 | . . . . . 6 ⊢ (𝐷 ∩ 𝐷) = 𝐷 | |
30 | eqidd 2741 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) ∧ 𝐹 ∈ 𝐷) → (𝑞‘𝐹) = (𝑞‘𝐹)) | |
31 | eqidd 2741 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) ∧ 𝐹 ∈ 𝐷) → (𝑟‘𝐹) = (𝑟‘𝐹)) | |
32 | 23, 25, 28, 28, 29, 30, 31 | ofval 7725 | . . . . 5 ⊢ (((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) ∧ 𝐹 ∈ 𝐷) → ((𝑞 ∘f (+g‘𝑅)𝑟)‘𝐹) = ((𝑞‘𝐹)(+g‘𝑅)(𝑟‘𝐹))) |
33 | 13, 32 | mpidan 688 | . . . 4 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → ((𝑞 ∘f (+g‘𝑅)𝑟)‘𝐹) = ((𝑞‘𝐹)(+g‘𝑅)(𝑟‘𝐹))) |
34 | 21, 33 | eqtrd 2780 | . . 3 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → ((𝑞(+g‘𝑃)𝑟)‘𝐹) = ((𝑞‘𝐹)(+g‘𝑅)(𝑟‘𝐹))) |
35 | fveq1 6919 | . . . 4 ⊢ (𝑝 = (𝑞(+g‘𝑃)𝑟) → (𝑝‘𝐹) = ((𝑞(+g‘𝑃)𝑟)‘𝐹)) | |
36 | 9 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → 𝑃 ∈ Grp) |
37 | 1, 3, 36, 18, 19 | grpcld 18987 | . . . 4 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → (𝑞(+g‘𝑃)𝑟) ∈ 𝐵) |
38 | fvexd 6935 | . . . 4 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → ((𝑞(+g‘𝑃)𝑟)‘𝐹) ∈ V) | |
39 | 16, 35, 37, 38 | fvmptd3 7052 | . . 3 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → (𝐻‘(𝑞(+g‘𝑃)𝑟)) = ((𝑞(+g‘𝑃)𝑟)‘𝐹)) |
40 | fveq1 6919 | . . . . 5 ⊢ (𝑝 = 𝑞 → (𝑝‘𝐹) = (𝑞‘𝐹)) | |
41 | fvexd 6935 | . . . . 5 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → (𝑞‘𝐹) ∈ V) | |
42 | 16, 40, 18, 41 | fvmptd3 7052 | . . . 4 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → (𝐻‘𝑞) = (𝑞‘𝐹)) |
43 | fveq1 6919 | . . . . 5 ⊢ (𝑝 = 𝑟 → (𝑝‘𝐹) = (𝑟‘𝐹)) | |
44 | fvexd 6935 | . . . . 5 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → (𝑟‘𝐹) ∈ V) | |
45 | 16, 43, 19, 44 | fvmptd3 7052 | . . . 4 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → (𝐻‘𝑟) = (𝑟‘𝐹)) |
46 | 42, 45 | oveq12d 7466 | . . 3 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → ((𝐻‘𝑞)(+g‘𝑅)(𝐻‘𝑟)) = ((𝑞‘𝐹)(+g‘𝑅)(𝑟‘𝐹))) |
47 | 34, 39, 46 | 3eqtr4d 2790 | . 2 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → (𝐻‘(𝑞(+g‘𝑃)𝑟)) = ((𝐻‘𝑞)(+g‘𝑅)(𝐻‘𝑟))) |
48 | 1, 2, 3, 4, 9, 6, 17, 47 | isghmd 19265 | 1 ⊢ (𝜑 → 𝐻 ∈ (𝑃 GrpHom 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {crab 3443 Vcvv 3488 ↦ cmpt 5249 ◡ccnv 5699 “ cima 5703 ‘cfv 6573 (class class class)co 7448 ∘f cof 7712 ↑m cmap 8884 Fincfn 9003 ℕcn 12293 ℕ0cn0 12553 Basecbs 17258 +gcplusg 17311 Grpcgrp 18973 GrpHom cghm 19252 mPoly cmpl 21949 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-map 8886 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-sup 9511 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-fz 13568 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-hom 17335 df-cco 17336 df-0g 17501 df-prds 17507 df-pws 17509 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 df-subg 19163 df-ghm 19253 df-psr 21952 df-mpl 21954 |
This theorem is referenced by: selvvvval 42540 evlselv 42542 |
Copyright terms: Public domain | W3C validator |