| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mplmapghm | Structured version Visualization version GIF version | ||
| Description: The function 𝐻 mapping polynomials 𝑝 to their coefficient given a bag of variables 𝐹 is a group homomorphism. (Contributed by SN, 15-Mar-2025.) |
| Ref | Expression |
|---|---|
| mplmapghm.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| mplmapghm.b | ⊢ 𝐵 = (Base‘𝑃) |
| mplmapghm.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
| mplmapghm.h | ⊢ 𝐻 = (𝑝 ∈ 𝐵 ↦ (𝑝‘𝐹)) |
| mplmapghm.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| mplmapghm.r | ⊢ (𝜑 → 𝑅 ∈ Grp) |
| mplmapghm.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
| Ref | Expression |
|---|---|
| mplmapghm | ⊢ (𝜑 → 𝐻 ∈ (𝑃 GrpHom 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplmapghm.b | . 2 ⊢ 𝐵 = (Base‘𝑃) | |
| 2 | eqid 2733 | . 2 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 3 | eqid 2733 | . 2 ⊢ (+g‘𝑃) = (+g‘𝑃) | |
| 4 | eqid 2733 | . 2 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 5 | mplmapghm.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 6 | mplmapghm.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Grp) | |
| 7 | mplmapghm.p | . . . 4 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 8 | 7 | mplgrp 21955 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Grp) → 𝑃 ∈ Grp) |
| 9 | 5, 6, 8 | syl2anc 584 | . 2 ⊢ (𝜑 → 𝑃 ∈ Grp) |
| 10 | mplmapghm.d | . . . . 5 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 11 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → 𝑝 ∈ 𝐵) | |
| 12 | 7, 2, 1, 10, 11 | mplelf 21936 | . . . 4 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → 𝑝:𝐷⟶(Base‘𝑅)) |
| 13 | mplmapghm.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
| 14 | 13 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → 𝐹 ∈ 𝐷) |
| 15 | 12, 14 | ffvelcdmd 7024 | . . 3 ⊢ ((𝜑 ∧ 𝑝 ∈ 𝐵) → (𝑝‘𝐹) ∈ (Base‘𝑅)) |
| 16 | mplmapghm.h | . . 3 ⊢ 𝐻 = (𝑝 ∈ 𝐵 ↦ (𝑝‘𝐹)) | |
| 17 | 15, 16 | fmptd 7053 | . 2 ⊢ (𝜑 → 𝐻:𝐵⟶(Base‘𝑅)) |
| 18 | simprl 770 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → 𝑞 ∈ 𝐵) | |
| 19 | simprr 772 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → 𝑟 ∈ 𝐵) | |
| 20 | 7, 1, 4, 3, 18, 19 | mpladd 21947 | . . . . 5 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → (𝑞(+g‘𝑃)𝑟) = (𝑞 ∘f (+g‘𝑅)𝑟)) |
| 21 | 20 | fveq1d 6830 | . . . 4 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → ((𝑞(+g‘𝑃)𝑟)‘𝐹) = ((𝑞 ∘f (+g‘𝑅)𝑟)‘𝐹)) |
| 22 | 7, 2, 1, 10, 18 | mplelf 21936 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → 𝑞:𝐷⟶(Base‘𝑅)) |
| 23 | 22 | ffnd 6657 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → 𝑞 Fn 𝐷) |
| 24 | 7, 2, 1, 10, 19 | mplelf 21936 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → 𝑟:𝐷⟶(Base‘𝑅)) |
| 25 | 24 | ffnd 6657 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → 𝑟 Fn 𝐷) |
| 26 | ovex 7385 | . . . . . . . 8 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
| 27 | 10, 26 | rabex2 5281 | . . . . . . 7 ⊢ 𝐷 ∈ V |
| 28 | 27 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → 𝐷 ∈ V) |
| 29 | inidm 4176 | . . . . . 6 ⊢ (𝐷 ∩ 𝐷) = 𝐷 | |
| 30 | eqidd 2734 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) ∧ 𝐹 ∈ 𝐷) → (𝑞‘𝐹) = (𝑞‘𝐹)) | |
| 31 | eqidd 2734 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) ∧ 𝐹 ∈ 𝐷) → (𝑟‘𝐹) = (𝑟‘𝐹)) | |
| 32 | 23, 25, 28, 28, 29, 30, 31 | ofval 7627 | . . . . 5 ⊢ (((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) ∧ 𝐹 ∈ 𝐷) → ((𝑞 ∘f (+g‘𝑅)𝑟)‘𝐹) = ((𝑞‘𝐹)(+g‘𝑅)(𝑟‘𝐹))) |
| 33 | 13, 32 | mpidan 689 | . . . 4 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → ((𝑞 ∘f (+g‘𝑅)𝑟)‘𝐹) = ((𝑞‘𝐹)(+g‘𝑅)(𝑟‘𝐹))) |
| 34 | 21, 33 | eqtrd 2768 | . . 3 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → ((𝑞(+g‘𝑃)𝑟)‘𝐹) = ((𝑞‘𝐹)(+g‘𝑅)(𝑟‘𝐹))) |
| 35 | fveq1 6827 | . . . 4 ⊢ (𝑝 = (𝑞(+g‘𝑃)𝑟) → (𝑝‘𝐹) = ((𝑞(+g‘𝑃)𝑟)‘𝐹)) | |
| 36 | 9 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → 𝑃 ∈ Grp) |
| 37 | 1, 3, 36, 18, 19 | grpcld 18862 | . . . 4 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → (𝑞(+g‘𝑃)𝑟) ∈ 𝐵) |
| 38 | fvexd 6843 | . . . 4 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → ((𝑞(+g‘𝑃)𝑟)‘𝐹) ∈ V) | |
| 39 | 16, 35, 37, 38 | fvmptd3 6958 | . . 3 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → (𝐻‘(𝑞(+g‘𝑃)𝑟)) = ((𝑞(+g‘𝑃)𝑟)‘𝐹)) |
| 40 | fveq1 6827 | . . . . 5 ⊢ (𝑝 = 𝑞 → (𝑝‘𝐹) = (𝑞‘𝐹)) | |
| 41 | fvexd 6843 | . . . . 5 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → (𝑞‘𝐹) ∈ V) | |
| 42 | 16, 40, 18, 41 | fvmptd3 6958 | . . . 4 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → (𝐻‘𝑞) = (𝑞‘𝐹)) |
| 43 | fveq1 6827 | . . . . 5 ⊢ (𝑝 = 𝑟 → (𝑝‘𝐹) = (𝑟‘𝐹)) | |
| 44 | fvexd 6843 | . . . . 5 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → (𝑟‘𝐹) ∈ V) | |
| 45 | 16, 43, 19, 44 | fvmptd3 6958 | . . . 4 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → (𝐻‘𝑟) = (𝑟‘𝐹)) |
| 46 | 42, 45 | oveq12d 7370 | . . 3 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → ((𝐻‘𝑞)(+g‘𝑅)(𝐻‘𝑟)) = ((𝑞‘𝐹)(+g‘𝑅)(𝑟‘𝐹))) |
| 47 | 34, 39, 46 | 3eqtr4d 2778 | . 2 ⊢ ((𝜑 ∧ (𝑞 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵)) → (𝐻‘(𝑞(+g‘𝑃)𝑟)) = ((𝐻‘𝑞)(+g‘𝑅)(𝐻‘𝑟))) |
| 48 | 1, 2, 3, 4, 9, 6, 17, 47 | isghmd 19139 | 1 ⊢ (𝜑 → 𝐻 ∈ (𝑃 GrpHom 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {crab 3396 Vcvv 3437 ↦ cmpt 5174 ◡ccnv 5618 “ cima 5622 ‘cfv 6486 (class class class)co 7352 ∘f cof 7614 ↑m cmap 8756 Fincfn 8875 ℕcn 12132 ℕ0cn0 12388 Basecbs 17122 +gcplusg 17163 Grpcgrp 18848 GrpHom cghm 19126 mPoly cmpl 21845 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-om 7803 df-1st 7927 df-2nd 7928 df-supp 8097 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-map 8758 df-ixp 8828 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fsupp 9253 df-sup 9333 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-z 12476 df-dec 12595 df-uz 12739 df-fz 13410 df-struct 17060 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-mulr 17177 df-sca 17179 df-vsca 17180 df-ip 17181 df-tset 17182 df-ple 17183 df-ds 17185 df-hom 17187 df-cco 17188 df-0g 17347 df-prds 17353 df-pws 17355 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-grp 18851 df-minusg 18852 df-subg 19038 df-ghm 19127 df-psr 21848 df-mpl 21850 |
| This theorem is referenced by: selvvvval 42703 evlselv 42705 |
| Copyright terms: Public domain | W3C validator |