Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mplmapghm Structured version   Visualization version   GIF version

Theorem mplmapghm 42543
Description: The function 𝐻 mapping polynomials 𝑝 to their coefficient given a bag of variables 𝐹 is a group homomorphism. (Contributed by SN, 15-Mar-2025.)
Hypotheses
Ref Expression
mplmapghm.p 𝑃 = (𝐼 mPoly 𝑅)
mplmapghm.b 𝐵 = (Base‘𝑃)
mplmapghm.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
mplmapghm.h 𝐻 = (𝑝𝐵 ↦ (𝑝𝐹))
mplmapghm.i (𝜑𝐼𝑉)
mplmapghm.r (𝜑𝑅 ∈ Grp)
mplmapghm.f (𝜑𝐹𝐷)
Assertion
Ref Expression
mplmapghm (𝜑𝐻 ∈ (𝑃 GrpHom 𝑅))
Distinct variable groups:   𝐵,𝑝   𝑓,𝐼   𝑅,𝑝   𝜑,𝑝   𝑃,𝑝   𝐹,𝑝
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐷(𝑓,𝑝)   𝑃(𝑓)   𝑅(𝑓)   𝐹(𝑓)   𝐻(𝑓,𝑝)   𝐼(𝑝)   𝑉(𝑓,𝑝)

Proof of Theorem mplmapghm
Dummy variables 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mplmapghm.b . 2 𝐵 = (Base‘𝑃)
2 eqid 2735 . 2 (Base‘𝑅) = (Base‘𝑅)
3 eqid 2735 . 2 (+g𝑃) = (+g𝑃)
4 eqid 2735 . 2 (+g𝑅) = (+g𝑅)
5 mplmapghm.i . . 3 (𝜑𝐼𝑉)
6 mplmapghm.r . . 3 (𝜑𝑅 ∈ Grp)
7 mplmapghm.p . . . 4 𝑃 = (𝐼 mPoly 𝑅)
87mplgrp 22055 . . 3 ((𝐼𝑉𝑅 ∈ Grp) → 𝑃 ∈ Grp)
95, 6, 8syl2anc 584 . 2 (𝜑𝑃 ∈ Grp)
10 mplmapghm.d . . . . 5 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
11 simpr 484 . . . . 5 ((𝜑𝑝𝐵) → 𝑝𝐵)
127, 2, 1, 10, 11mplelf 22036 . . . 4 ((𝜑𝑝𝐵) → 𝑝:𝐷⟶(Base‘𝑅))
13 mplmapghm.f . . . . 5 (𝜑𝐹𝐷)
1413adantr 480 . . . 4 ((𝜑𝑝𝐵) → 𝐹𝐷)
1512, 14ffvelcdmd 7105 . . 3 ((𝜑𝑝𝐵) → (𝑝𝐹) ∈ (Base‘𝑅))
16 mplmapghm.h . . 3 𝐻 = (𝑝𝐵 ↦ (𝑝𝐹))
1715, 16fmptd 7134 . 2 (𝜑𝐻:𝐵⟶(Base‘𝑅))
18 simprl 771 . . . . . 6 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝑞𝐵)
19 simprr 773 . . . . . 6 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝑟𝐵)
207, 1, 4, 3, 18, 19mpladd 22047 . . . . 5 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝑞(+g𝑃)𝑟) = (𝑞f (+g𝑅)𝑟))
2120fveq1d 6909 . . . 4 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → ((𝑞(+g𝑃)𝑟)‘𝐹) = ((𝑞f (+g𝑅)𝑟)‘𝐹))
227, 2, 1, 10, 18mplelf 22036 . . . . . . 7 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝑞:𝐷⟶(Base‘𝑅))
2322ffnd 6738 . . . . . 6 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝑞 Fn 𝐷)
247, 2, 1, 10, 19mplelf 22036 . . . . . . 7 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝑟:𝐷⟶(Base‘𝑅))
2524ffnd 6738 . . . . . 6 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝑟 Fn 𝐷)
26 ovex 7464 . . . . . . . 8 (ℕ0m 𝐼) ∈ V
2710, 26rabex2 5347 . . . . . . 7 𝐷 ∈ V
2827a1i 11 . . . . . 6 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝐷 ∈ V)
29 inidm 4235 . . . . . 6 (𝐷𝐷) = 𝐷
30 eqidd 2736 . . . . . 6 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝐹𝐷) → (𝑞𝐹) = (𝑞𝐹))
31 eqidd 2736 . . . . . 6 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝐹𝐷) → (𝑟𝐹) = (𝑟𝐹))
3223, 25, 28, 28, 29, 30, 31ofval 7708 . . . . 5 (((𝜑 ∧ (𝑞𝐵𝑟𝐵)) ∧ 𝐹𝐷) → ((𝑞f (+g𝑅)𝑟)‘𝐹) = ((𝑞𝐹)(+g𝑅)(𝑟𝐹)))
3313, 32mpidan 689 . . . 4 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → ((𝑞f (+g𝑅)𝑟)‘𝐹) = ((𝑞𝐹)(+g𝑅)(𝑟𝐹)))
3421, 33eqtrd 2775 . . 3 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → ((𝑞(+g𝑃)𝑟)‘𝐹) = ((𝑞𝐹)(+g𝑅)(𝑟𝐹)))
35 fveq1 6906 . . . 4 (𝑝 = (𝑞(+g𝑃)𝑟) → (𝑝𝐹) = ((𝑞(+g𝑃)𝑟)‘𝐹))
369adantr 480 . . . . 5 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → 𝑃 ∈ Grp)
371, 3, 36, 18, 19grpcld 18978 . . . 4 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝑞(+g𝑃)𝑟) ∈ 𝐵)
38 fvexd 6922 . . . 4 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → ((𝑞(+g𝑃)𝑟)‘𝐹) ∈ V)
3916, 35, 37, 38fvmptd3 7039 . . 3 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐻‘(𝑞(+g𝑃)𝑟)) = ((𝑞(+g𝑃)𝑟)‘𝐹))
40 fveq1 6906 . . . . 5 (𝑝 = 𝑞 → (𝑝𝐹) = (𝑞𝐹))
41 fvexd 6922 . . . . 5 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝑞𝐹) ∈ V)
4216, 40, 18, 41fvmptd3 7039 . . . 4 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐻𝑞) = (𝑞𝐹))
43 fveq1 6906 . . . . 5 (𝑝 = 𝑟 → (𝑝𝐹) = (𝑟𝐹))
44 fvexd 6922 . . . . 5 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝑟𝐹) ∈ V)
4516, 43, 19, 44fvmptd3 7039 . . . 4 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐻𝑟) = (𝑟𝐹))
4642, 45oveq12d 7449 . . 3 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → ((𝐻𝑞)(+g𝑅)(𝐻𝑟)) = ((𝑞𝐹)(+g𝑅)(𝑟𝐹)))
4734, 39, 463eqtr4d 2785 . 2 ((𝜑 ∧ (𝑞𝐵𝑟𝐵)) → (𝐻‘(𝑞(+g𝑃)𝑟)) = ((𝐻𝑞)(+g𝑅)(𝐻𝑟)))
481, 2, 3, 4, 9, 6, 17, 47isghmd 19256 1 (𝜑𝐻 ∈ (𝑃 GrpHom 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  {crab 3433  Vcvv 3478  cmpt 5231  ccnv 5688  cima 5692  cfv 6563  (class class class)co 7431  f cof 7695  m cmap 8865  Fincfn 8984  cn 12264  0cn0 12524  Basecbs 17245  +gcplusg 17298  Grpcgrp 18964   GrpHom cghm 19243   mPoly cmpl 21944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-0g 17488  df-prds 17494  df-pws 17496  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-subg 19154  df-ghm 19244  df-psr 21947  df-mpl 21949
This theorem is referenced by:  selvvvval  42572  evlselv  42574
  Copyright terms: Public domain W3C validator