Step | Hyp | Ref
| Expression |
1 | | dvadd.bf |
. . . . . 6
⊢ (𝜑 → 𝐶(𝑆 D 𝐹)𝐾) |
2 | | eqid 2738 |
. . . . . . 7
⊢ (𝐽 ↾t 𝑆) = (𝐽 ↾t 𝑆) |
3 | | dvadd.j |
. . . . . . 7
⊢ 𝐽 =
(TopOpen‘ℂfld) |
4 | | eqid 2738 |
. . . . . . 7
⊢ (𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶))) = (𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶))) |
5 | | dvaddbr.s |
. . . . . . 7
⊢ (𝜑 → 𝑆 ⊆ ℂ) |
6 | | dvadd.f |
. . . . . . 7
⊢ (𝜑 → 𝐹:𝑋⟶ℂ) |
7 | | dvadd.x |
. . . . . . 7
⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
8 | 2, 3, 4, 5, 6, 7 | eldv 25062 |
. . . . . 6
⊢ (𝜑 → (𝐶(𝑆 D 𝐹)𝐾 ↔ (𝐶 ∈ ((int‘(𝐽 ↾t 𝑆))‘𝑋) ∧ 𝐾 ∈ ((𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶)))) |
9 | 1, 8 | mpbid 231 |
. . . . 5
⊢ (𝜑 → (𝐶 ∈ ((int‘(𝐽 ↾t 𝑆))‘𝑋) ∧ 𝐾 ∈ ((𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶))) |
10 | 9 | simpld 495 |
. . . 4
⊢ (𝜑 → 𝐶 ∈ ((int‘(𝐽 ↾t 𝑆))‘𝑋)) |
11 | | dvadd.bg |
. . . . . 6
⊢ (𝜑 → 𝐶(𝑆 D 𝐺)𝐿) |
12 | | eqid 2738 |
. . . . . . 7
⊢ (𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) = (𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) |
13 | | dvadd.g |
. . . . . . 7
⊢ (𝜑 → 𝐺:𝑌⟶ℂ) |
14 | | dvadd.y |
. . . . . . 7
⊢ (𝜑 → 𝑌 ⊆ 𝑆) |
15 | 2, 3, 12, 5, 13, 14 | eldv 25062 |
. . . . . 6
⊢ (𝜑 → (𝐶(𝑆 D 𝐺)𝐿 ↔ (𝐶 ∈ ((int‘(𝐽 ↾t 𝑆))‘𝑌) ∧ 𝐿 ∈ ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶)))) |
16 | 11, 15 | mpbid 231 |
. . . . 5
⊢ (𝜑 → (𝐶 ∈ ((int‘(𝐽 ↾t 𝑆))‘𝑌) ∧ 𝐿 ∈ ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶))) |
17 | 16 | simpld 495 |
. . . 4
⊢ (𝜑 → 𝐶 ∈ ((int‘(𝐽 ↾t 𝑆))‘𝑌)) |
18 | 10, 17 | elind 4128 |
. . 3
⊢ (𝜑 → 𝐶 ∈ (((int‘(𝐽 ↾t 𝑆))‘𝑋) ∩ ((int‘(𝐽 ↾t 𝑆))‘𝑌))) |
19 | 3 | cnfldtopon 23946 |
. . . . . 6
⊢ 𝐽 ∈
(TopOn‘ℂ) |
20 | | resttopon 22312 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘ℂ)
∧ 𝑆 ⊆ ℂ)
→ (𝐽
↾t 𝑆)
∈ (TopOn‘𝑆)) |
21 | 19, 5, 20 | sylancr 587 |
. . . . 5
⊢ (𝜑 → (𝐽 ↾t 𝑆) ∈ (TopOn‘𝑆)) |
22 | | topontop 22062 |
. . . . 5
⊢ ((𝐽 ↾t 𝑆) ∈ (TopOn‘𝑆) → (𝐽 ↾t 𝑆) ∈ Top) |
23 | 21, 22 | syl 17 |
. . . 4
⊢ (𝜑 → (𝐽 ↾t 𝑆) ∈ Top) |
24 | | toponuni 22063 |
. . . . . 6
⊢ ((𝐽 ↾t 𝑆) ∈ (TopOn‘𝑆) → 𝑆 = ∪ (𝐽 ↾t 𝑆)) |
25 | 21, 24 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑆 = ∪ (𝐽 ↾t 𝑆)) |
26 | 7, 25 | sseqtrd 3961 |
. . . 4
⊢ (𝜑 → 𝑋 ⊆ ∪ (𝐽 ↾t 𝑆)) |
27 | 14, 25 | sseqtrd 3961 |
. . . 4
⊢ (𝜑 → 𝑌 ⊆ ∪ (𝐽 ↾t 𝑆)) |
28 | | eqid 2738 |
. . . . 5
⊢ ∪ (𝐽
↾t 𝑆) =
∪ (𝐽 ↾t 𝑆) |
29 | 28 | ntrin 22212 |
. . . 4
⊢ (((𝐽 ↾t 𝑆) ∈ Top ∧ 𝑋 ⊆ ∪ (𝐽
↾t 𝑆)
∧ 𝑌 ⊆ ∪ (𝐽
↾t 𝑆))
→ ((int‘(𝐽
↾t 𝑆))‘(𝑋 ∩ 𝑌)) = (((int‘(𝐽 ↾t 𝑆))‘𝑋) ∩ ((int‘(𝐽 ↾t 𝑆))‘𝑌))) |
30 | 23, 26, 27, 29 | syl3anc 1370 |
. . 3
⊢ (𝜑 → ((int‘(𝐽 ↾t 𝑆))‘(𝑋 ∩ 𝑌)) = (((int‘(𝐽 ↾t 𝑆))‘𝑋) ∩ ((int‘(𝐽 ↾t 𝑆))‘𝑌))) |
31 | 18, 30 | eleqtrrd 2842 |
. 2
⊢ (𝜑 → 𝐶 ∈ ((int‘(𝐽 ↾t 𝑆))‘(𝑋 ∩ 𝑌))) |
32 | 6 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → 𝐹:𝑋⟶ℂ) |
33 | | inss1 4162 |
. . . . . . . . 9
⊢ (𝑋 ∩ 𝑌) ⊆ 𝑋 |
34 | | eldifi 4061 |
. . . . . . . . . 10
⊢ (𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶}) → 𝑧 ∈ (𝑋 ∩ 𝑌)) |
35 | 34 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → 𝑧 ∈ (𝑋 ∩ 𝑌)) |
36 | 33, 35 | sselid 3919 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → 𝑧 ∈ 𝑋) |
37 | 32, 36 | ffvelrnd 6962 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → (𝐹‘𝑧) ∈ ℂ) |
38 | 5, 6, 7 | dvbss 25065 |
. . . . . . . . . 10
⊢ (𝜑 → dom (𝑆 D 𝐹) ⊆ 𝑋) |
39 | | reldv 25034 |
. . . . . . . . . . 11
⊢ Rel
(𝑆 D 𝐹) |
40 | | releldm 5853 |
. . . . . . . . . . 11
⊢ ((Rel
(𝑆 D 𝐹) ∧ 𝐶(𝑆 D 𝐹)𝐾) → 𝐶 ∈ dom (𝑆 D 𝐹)) |
41 | 39, 1, 40 | sylancr 587 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 ∈ dom (𝑆 D 𝐹)) |
42 | 38, 41 | sseldd 3922 |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ∈ 𝑋) |
43 | 6, 42 | ffvelrnd 6962 |
. . . . . . . 8
⊢ (𝜑 → (𝐹‘𝐶) ∈ ℂ) |
44 | 43 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → (𝐹‘𝐶) ∈ ℂ) |
45 | 37, 44 | subcld 11332 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → ((𝐹‘𝑧) − (𝐹‘𝐶)) ∈ ℂ) |
46 | 7, 5 | sstrd 3931 |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 ⊆ ℂ) |
47 | 46 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → 𝑋 ⊆ ℂ) |
48 | 47, 36 | sseldd 3922 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → 𝑧 ∈ ℂ) |
49 | 46, 42 | sseldd 3922 |
. . . . . . . 8
⊢ (𝜑 → 𝐶 ∈ ℂ) |
50 | 49 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → 𝐶 ∈ ℂ) |
51 | 48, 50 | subcld 11332 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → (𝑧 − 𝐶) ∈ ℂ) |
52 | | eldifsni 4723 |
. . . . . . . 8
⊢ (𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶}) → 𝑧 ≠ 𝐶) |
53 | 52 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → 𝑧 ≠ 𝐶) |
54 | 48, 50, 53 | subne0d 11341 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → (𝑧 − 𝐶) ≠ 0) |
55 | 45, 51, 54 | divcld 11751 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → (((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶)) ∈ ℂ) |
56 | 13 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → 𝐺:𝑌⟶ℂ) |
57 | | inss2 4163 |
. . . . . . 7
⊢ (𝑋 ∩ 𝑌) ⊆ 𝑌 |
58 | 57, 35 | sselid 3919 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → 𝑧 ∈ 𝑌) |
59 | 56, 58 | ffvelrnd 6962 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → (𝐺‘𝑧) ∈ ℂ) |
60 | 55, 59 | mulcld 10995 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → ((((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶)) · (𝐺‘𝑧)) ∈ ℂ) |
61 | | ssdif 4074 |
. . . . . . . 8
⊢ ((𝑋 ∩ 𝑌) ⊆ 𝑌 → ((𝑋 ∩ 𝑌) ∖ {𝐶}) ⊆ (𝑌 ∖ {𝐶})) |
62 | 57, 61 | mp1i 13 |
. . . . . . 7
⊢ (𝜑 → ((𝑋 ∩ 𝑌) ∖ {𝐶}) ⊆ (𝑌 ∖ {𝐶})) |
63 | 62 | sselda 3921 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → 𝑧 ∈ (𝑌 ∖ {𝐶})) |
64 | 14, 5 | sstrd 3931 |
. . . . . . 7
⊢ (𝜑 → 𝑌 ⊆ ℂ) |
65 | 5, 13, 14 | dvbss 25065 |
. . . . . . . 8
⊢ (𝜑 → dom (𝑆 D 𝐺) ⊆ 𝑌) |
66 | | reldv 25034 |
. . . . . . . . 9
⊢ Rel
(𝑆 D 𝐺) |
67 | | releldm 5853 |
. . . . . . . . 9
⊢ ((Rel
(𝑆 D 𝐺) ∧ 𝐶(𝑆 D 𝐺)𝐿) → 𝐶 ∈ dom (𝑆 D 𝐺)) |
68 | 66, 11, 67 | sylancr 587 |
. . . . . . . 8
⊢ (𝜑 → 𝐶 ∈ dom (𝑆 D 𝐺)) |
69 | 65, 68 | sseldd 3922 |
. . . . . . 7
⊢ (𝜑 → 𝐶 ∈ 𝑌) |
70 | 13, 64, 69 | dvlem 25060 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑌 ∖ {𝐶})) → (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶)) ∈ ℂ) |
71 | 63, 70 | syldan 591 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶)) ∈ ℂ) |
72 | 71, 44 | mulcld 10995 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → ((((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶)) · (𝐹‘𝐶)) ∈ ℂ) |
73 | | ssidd 3944 |
. . . 4
⊢ (𝜑 → ℂ ⊆
ℂ) |
74 | | txtopon 22742 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘ℂ)
∧ 𝐽 ∈
(TopOn‘ℂ)) → (𝐽 ×t 𝐽) ∈ (TopOn‘(ℂ ×
ℂ))) |
75 | 19, 19, 74 | mp2an 689 |
. . . . 5
⊢ (𝐽 ×t 𝐽) ∈ (TopOn‘(ℂ
× ℂ)) |
76 | 75 | toponrestid 22070 |
. . . 4
⊢ (𝐽 ×t 𝐽) = ((𝐽 ×t 𝐽) ↾t (ℂ ×
ℂ)) |
77 | 9 | simprd 496 |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ ((𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶)) |
78 | 6, 46, 42 | dvlem 25060 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑋 ∖ {𝐶})) → (((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶)) ∈ ℂ) |
79 | 78 | fmpttd 6989 |
. . . . . . . 8
⊢ (𝜑 → (𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶))):(𝑋 ∖ {𝐶})⟶ℂ) |
80 | | ssdif 4074 |
. . . . . . . . 9
⊢ ((𝑋 ∩ 𝑌) ⊆ 𝑋 → ((𝑋 ∩ 𝑌) ∖ {𝐶}) ⊆ (𝑋 ∖ {𝐶})) |
81 | 33, 80 | mp1i 13 |
. . . . . . . 8
⊢ (𝜑 → ((𝑋 ∩ 𝑌) ∖ {𝐶}) ⊆ (𝑋 ∖ {𝐶})) |
82 | 46 | ssdifssd 4077 |
. . . . . . . 8
⊢ (𝜑 → (𝑋 ∖ {𝐶}) ⊆ ℂ) |
83 | | eqid 2738 |
. . . . . . . 8
⊢ (𝐽 ↾t ((𝑋 ∖ {𝐶}) ∪ {𝐶})) = (𝐽 ↾t ((𝑋 ∖ {𝐶}) ∪ {𝐶})) |
84 | 33, 7 | sstrid 3932 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑋 ∩ 𝑌) ⊆ 𝑆) |
85 | 84, 25 | sseqtrd 3961 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑋 ∩ 𝑌) ⊆ ∪
(𝐽 ↾t
𝑆)) |
86 | | difssd 4067 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (∪ (𝐽
↾t 𝑆)
∖ 𝑋) ⊆ ∪ (𝐽
↾t 𝑆)) |
87 | 85, 86 | unssd 4120 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑋 ∩ 𝑌) ∪ (∪ (𝐽 ↾t 𝑆) ∖ 𝑋)) ⊆ ∪
(𝐽 ↾t
𝑆)) |
88 | | ssun1 4106 |
. . . . . . . . . . . . . 14
⊢ (𝑋 ∩ 𝑌) ⊆ ((𝑋 ∩ 𝑌) ∪ (∪ (𝐽 ↾t 𝑆) ∖ 𝑋)) |
89 | 88 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑋 ∩ 𝑌) ⊆ ((𝑋 ∩ 𝑌) ∪ (∪ (𝐽 ↾t 𝑆) ∖ 𝑋))) |
90 | 28 | ntrss 22206 |
. . . . . . . . . . . . 13
⊢ (((𝐽 ↾t 𝑆) ∈ Top ∧ ((𝑋 ∩ 𝑌) ∪ (∪ (𝐽 ↾t 𝑆) ∖ 𝑋)) ⊆ ∪
(𝐽 ↾t
𝑆) ∧ (𝑋 ∩ 𝑌) ⊆ ((𝑋 ∩ 𝑌) ∪ (∪ (𝐽 ↾t 𝑆) ∖ 𝑋))) → ((int‘(𝐽 ↾t 𝑆))‘(𝑋 ∩ 𝑌)) ⊆ ((int‘(𝐽 ↾t 𝑆))‘((𝑋 ∩ 𝑌) ∪ (∪ (𝐽 ↾t 𝑆) ∖ 𝑋)))) |
91 | 23, 87, 89, 90 | syl3anc 1370 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((int‘(𝐽 ↾t 𝑆))‘(𝑋 ∩ 𝑌)) ⊆ ((int‘(𝐽 ↾t 𝑆))‘((𝑋 ∩ 𝑌) ∪ (∪ (𝐽 ↾t 𝑆) ∖ 𝑋)))) |
92 | 91, 31 | sseldd 3922 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐶 ∈ ((int‘(𝐽 ↾t 𝑆))‘((𝑋 ∩ 𝑌) ∪ (∪ (𝐽 ↾t 𝑆) ∖ 𝑋)))) |
93 | 92, 42 | elind 4128 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 ∈ (((int‘(𝐽 ↾t 𝑆))‘((𝑋 ∩ 𝑌) ∪ (∪ (𝐽 ↾t 𝑆) ∖ 𝑋))) ∩ 𝑋)) |
94 | 33 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑋 ∩ 𝑌) ⊆ 𝑋) |
95 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ↾t 𝑆) ↾t 𝑋) = ((𝐽 ↾t 𝑆) ↾t 𝑋) |
96 | 28, 95 | restntr 22333 |
. . . . . . . . . . . 12
⊢ (((𝐽 ↾t 𝑆) ∈ Top ∧ 𝑋 ⊆ ∪ (𝐽
↾t 𝑆)
∧ (𝑋 ∩ 𝑌) ⊆ 𝑋) → ((int‘((𝐽 ↾t 𝑆) ↾t 𝑋))‘(𝑋 ∩ 𝑌)) = (((int‘(𝐽 ↾t 𝑆))‘((𝑋 ∩ 𝑌) ∪ (∪ (𝐽 ↾t 𝑆) ∖ 𝑋))) ∩ 𝑋)) |
97 | 23, 26, 94, 96 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ (𝜑 → ((int‘((𝐽 ↾t 𝑆) ↾t 𝑋))‘(𝑋 ∩ 𝑌)) = (((int‘(𝐽 ↾t 𝑆))‘((𝑋 ∩ 𝑌) ∪ (∪ (𝐽 ↾t 𝑆) ∖ 𝑋))) ∩ 𝑋)) |
98 | 3 | cnfldtop 23947 |
. . . . . . . . . . . . . . 15
⊢ 𝐽 ∈ Top |
99 | 98 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐽 ∈ Top) |
100 | | cnex 10952 |
. . . . . . . . . . . . . . 15
⊢ ℂ
∈ V |
101 | | ssexg 5247 |
. . . . . . . . . . . . . . 15
⊢ ((𝑆 ⊆ ℂ ∧ ℂ
∈ V) → 𝑆 ∈
V) |
102 | 5, 100, 101 | sylancl 586 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑆 ∈ V) |
103 | | restabs 22316 |
. . . . . . . . . . . . . 14
⊢ ((𝐽 ∈ Top ∧ 𝑋 ⊆ 𝑆 ∧ 𝑆 ∈ V) → ((𝐽 ↾t 𝑆) ↾t 𝑋) = (𝐽 ↾t 𝑋)) |
104 | 99, 7, 102, 103 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝐽 ↾t 𝑆) ↾t 𝑋) = (𝐽 ↾t 𝑋)) |
105 | 104 | fveq2d 6778 |
. . . . . . . . . . . 12
⊢ (𝜑 → (int‘((𝐽 ↾t 𝑆) ↾t 𝑋)) = (int‘(𝐽 ↾t 𝑋))) |
106 | 105 | fveq1d 6776 |
. . . . . . . . . . 11
⊢ (𝜑 → ((int‘((𝐽 ↾t 𝑆) ↾t 𝑋))‘(𝑋 ∩ 𝑌)) = ((int‘(𝐽 ↾t 𝑋))‘(𝑋 ∩ 𝑌))) |
107 | 97, 106 | eqtr3d 2780 |
. . . . . . . . . 10
⊢ (𝜑 → (((int‘(𝐽 ↾t 𝑆))‘((𝑋 ∩ 𝑌) ∪ (∪ (𝐽 ↾t 𝑆) ∖ 𝑋))) ∩ 𝑋) = ((int‘(𝐽 ↾t 𝑋))‘(𝑋 ∩ 𝑌))) |
108 | 93, 107 | eleqtrd 2841 |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ∈ ((int‘(𝐽 ↾t 𝑋))‘(𝑋 ∩ 𝑌))) |
109 | | undif1 4409 |
. . . . . . . . . . . . 13
⊢ ((𝑋 ∖ {𝐶}) ∪ {𝐶}) = (𝑋 ∪ {𝐶}) |
110 | 42 | snssd 4742 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → {𝐶} ⊆ 𝑋) |
111 | | ssequn2 4117 |
. . . . . . . . . . . . . 14
⊢ ({𝐶} ⊆ 𝑋 ↔ (𝑋 ∪ {𝐶}) = 𝑋) |
112 | 110, 111 | sylib 217 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑋 ∪ {𝐶}) = 𝑋) |
113 | 109, 112 | eqtrid 2790 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑋 ∖ {𝐶}) ∪ {𝐶}) = 𝑋) |
114 | 113 | oveq2d 7291 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐽 ↾t ((𝑋 ∖ {𝐶}) ∪ {𝐶})) = (𝐽 ↾t 𝑋)) |
115 | 114 | fveq2d 6778 |
. . . . . . . . . 10
⊢ (𝜑 → (int‘(𝐽 ↾t ((𝑋 ∖ {𝐶}) ∪ {𝐶}))) = (int‘(𝐽 ↾t 𝑋))) |
116 | | undif1 4409 |
. . . . . . . . . . 11
⊢ (((𝑋 ∩ 𝑌) ∖ {𝐶}) ∪ {𝐶}) = ((𝑋 ∩ 𝑌) ∪ {𝐶}) |
117 | 42, 69 | elind 4128 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐶 ∈ (𝑋 ∩ 𝑌)) |
118 | 117 | snssd 4742 |
. . . . . . . . . . . 12
⊢ (𝜑 → {𝐶} ⊆ (𝑋 ∩ 𝑌)) |
119 | | ssequn2 4117 |
. . . . . . . . . . . 12
⊢ ({𝐶} ⊆ (𝑋 ∩ 𝑌) ↔ ((𝑋 ∩ 𝑌) ∪ {𝐶}) = (𝑋 ∩ 𝑌)) |
120 | 118, 119 | sylib 217 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑋 ∩ 𝑌) ∪ {𝐶}) = (𝑋 ∩ 𝑌)) |
121 | 116, 120 | eqtrid 2790 |
. . . . . . . . . 10
⊢ (𝜑 → (((𝑋 ∩ 𝑌) ∖ {𝐶}) ∪ {𝐶}) = (𝑋 ∩ 𝑌)) |
122 | 115, 121 | fveq12d 6781 |
. . . . . . . . 9
⊢ (𝜑 → ((int‘(𝐽 ↾t ((𝑋 ∖ {𝐶}) ∪ {𝐶})))‘(((𝑋 ∩ 𝑌) ∖ {𝐶}) ∪ {𝐶})) = ((int‘(𝐽 ↾t 𝑋))‘(𝑋 ∩ 𝑌))) |
123 | 108, 122 | eleqtrrd 2842 |
. . . . . . . 8
⊢ (𝜑 → 𝐶 ∈ ((int‘(𝐽 ↾t ((𝑋 ∖ {𝐶}) ∪ {𝐶})))‘(((𝑋 ∩ 𝑌) ∖ {𝐶}) ∪ {𝐶}))) |
124 | 79, 81, 82, 3, 83, 123 | limcres 25050 |
. . . . . . 7
⊢ (𝜑 → (((𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶))) ↾ ((𝑋 ∩ 𝑌) ∖ {𝐶})) limℂ 𝐶) = ((𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶)) |
125 | 81 | resmptd 5948 |
. . . . . . . 8
⊢ (𝜑 → ((𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶))) ↾ ((𝑋 ∩ 𝑌) ∖ {𝐶})) = (𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶)))) |
126 | 125 | oveq1d 7290 |
. . . . . . 7
⊢ (𝜑 → (((𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶))) ↾ ((𝑋 ∩ 𝑌) ∖ {𝐶})) limℂ 𝐶) = ((𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶)) |
127 | 124, 126 | eqtr3d 2780 |
. . . . . 6
⊢ (𝜑 → ((𝑧 ∈ (𝑋 ∖ {𝐶}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶) = ((𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶)) |
128 | 77, 127 | eleqtrd 2841 |
. . . . 5
⊢ (𝜑 → 𝐾 ∈ ((𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶}) ↦ (((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶)) |
129 | | eqid 2738 |
. . . . . . . . . 10
⊢ (𝐽 ↾t 𝑌) = (𝐽 ↾t 𝑌) |
130 | 129, 3 | dvcnp2 25084 |
. . . . . . . . 9
⊢ (((𝑆 ⊆ ℂ ∧ 𝐺:𝑌⟶ℂ ∧ 𝑌 ⊆ 𝑆) ∧ 𝐶 ∈ dom (𝑆 D 𝐺)) → 𝐺 ∈ (((𝐽 ↾t 𝑌) CnP 𝐽)‘𝐶)) |
131 | 5, 13, 14, 68, 130 | syl31anc 1372 |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ (((𝐽 ↾t 𝑌) CnP 𝐽)‘𝐶)) |
132 | 3, 129 | cnplimc 25051 |
. . . . . . . . 9
⊢ ((𝑌 ⊆ ℂ ∧ 𝐶 ∈ 𝑌) → (𝐺 ∈ (((𝐽 ↾t 𝑌) CnP 𝐽)‘𝐶) ↔ (𝐺:𝑌⟶ℂ ∧ (𝐺‘𝐶) ∈ (𝐺 limℂ 𝐶)))) |
133 | 64, 69, 132 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → (𝐺 ∈ (((𝐽 ↾t 𝑌) CnP 𝐽)‘𝐶) ↔ (𝐺:𝑌⟶ℂ ∧ (𝐺‘𝐶) ∈ (𝐺 limℂ 𝐶)))) |
134 | 131, 133 | mpbid 231 |
. . . . . . 7
⊢ (𝜑 → (𝐺:𝑌⟶ℂ ∧ (𝐺‘𝐶) ∈ (𝐺 limℂ 𝐶))) |
135 | 134 | simprd 496 |
. . . . . 6
⊢ (𝜑 → (𝐺‘𝐶) ∈ (𝐺 limℂ 𝐶)) |
136 | | difss 4066 |
. . . . . . . . . 10
⊢ ((𝑋 ∩ 𝑌) ∖ {𝐶}) ⊆ (𝑋 ∩ 𝑌) |
137 | 136, 57 | sstri 3930 |
. . . . . . . . 9
⊢ ((𝑋 ∩ 𝑌) ∖ {𝐶}) ⊆ 𝑌 |
138 | 137 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → ((𝑋 ∩ 𝑌) ∖ {𝐶}) ⊆ 𝑌) |
139 | | eqid 2738 |
. . . . . . . 8
⊢ (𝐽 ↾t (𝑌 ∪ {𝐶})) = (𝐽 ↾t (𝑌 ∪ {𝐶})) |
140 | | difssd 4067 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (∪ (𝐽
↾t 𝑆)
∖ 𝑌) ⊆ ∪ (𝐽
↾t 𝑆)) |
141 | 85, 140 | unssd 4120 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑋 ∩ 𝑌) ∪ (∪ (𝐽 ↾t 𝑆) ∖ 𝑌)) ⊆ ∪
(𝐽 ↾t
𝑆)) |
142 | | ssun1 4106 |
. . . . . . . . . . . . . 14
⊢ (𝑋 ∩ 𝑌) ⊆ ((𝑋 ∩ 𝑌) ∪ (∪ (𝐽 ↾t 𝑆) ∖ 𝑌)) |
143 | 142 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑋 ∩ 𝑌) ⊆ ((𝑋 ∩ 𝑌) ∪ (∪ (𝐽 ↾t 𝑆) ∖ 𝑌))) |
144 | 28 | ntrss 22206 |
. . . . . . . . . . . . 13
⊢ (((𝐽 ↾t 𝑆) ∈ Top ∧ ((𝑋 ∩ 𝑌) ∪ (∪ (𝐽 ↾t 𝑆) ∖ 𝑌)) ⊆ ∪
(𝐽 ↾t
𝑆) ∧ (𝑋 ∩ 𝑌) ⊆ ((𝑋 ∩ 𝑌) ∪ (∪ (𝐽 ↾t 𝑆) ∖ 𝑌))) → ((int‘(𝐽 ↾t 𝑆))‘(𝑋 ∩ 𝑌)) ⊆ ((int‘(𝐽 ↾t 𝑆))‘((𝑋 ∩ 𝑌) ∪ (∪ (𝐽 ↾t 𝑆) ∖ 𝑌)))) |
145 | 23, 141, 143, 144 | syl3anc 1370 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((int‘(𝐽 ↾t 𝑆))‘(𝑋 ∩ 𝑌)) ⊆ ((int‘(𝐽 ↾t 𝑆))‘((𝑋 ∩ 𝑌) ∪ (∪ (𝐽 ↾t 𝑆) ∖ 𝑌)))) |
146 | 145, 31 | sseldd 3922 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐶 ∈ ((int‘(𝐽 ↾t 𝑆))‘((𝑋 ∩ 𝑌) ∪ (∪ (𝐽 ↾t 𝑆) ∖ 𝑌)))) |
147 | 146, 69 | elind 4128 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 ∈ (((int‘(𝐽 ↾t 𝑆))‘((𝑋 ∩ 𝑌) ∪ (∪ (𝐽 ↾t 𝑆) ∖ 𝑌))) ∩ 𝑌)) |
148 | 57 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑋 ∩ 𝑌) ⊆ 𝑌) |
149 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ↾t 𝑆) ↾t 𝑌) = ((𝐽 ↾t 𝑆) ↾t 𝑌) |
150 | 28, 149 | restntr 22333 |
. . . . . . . . . . . 12
⊢ (((𝐽 ↾t 𝑆) ∈ Top ∧ 𝑌 ⊆ ∪ (𝐽
↾t 𝑆)
∧ (𝑋 ∩ 𝑌) ⊆ 𝑌) → ((int‘((𝐽 ↾t 𝑆) ↾t 𝑌))‘(𝑋 ∩ 𝑌)) = (((int‘(𝐽 ↾t 𝑆))‘((𝑋 ∩ 𝑌) ∪ (∪ (𝐽 ↾t 𝑆) ∖ 𝑌))) ∩ 𝑌)) |
151 | 23, 27, 148, 150 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ (𝜑 → ((int‘((𝐽 ↾t 𝑆) ↾t 𝑌))‘(𝑋 ∩ 𝑌)) = (((int‘(𝐽 ↾t 𝑆))‘((𝑋 ∩ 𝑌) ∪ (∪ (𝐽 ↾t 𝑆) ∖ 𝑌))) ∩ 𝑌)) |
152 | | restabs 22316 |
. . . . . . . . . . . . . 14
⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑆 ∧ 𝑆 ∈ V) → ((𝐽 ↾t 𝑆) ↾t 𝑌) = (𝐽 ↾t 𝑌)) |
153 | 99, 14, 102, 152 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝐽 ↾t 𝑆) ↾t 𝑌) = (𝐽 ↾t 𝑌)) |
154 | 153 | fveq2d 6778 |
. . . . . . . . . . . 12
⊢ (𝜑 → (int‘((𝐽 ↾t 𝑆) ↾t 𝑌)) = (int‘(𝐽 ↾t 𝑌))) |
155 | 154 | fveq1d 6776 |
. . . . . . . . . . 11
⊢ (𝜑 → ((int‘((𝐽 ↾t 𝑆) ↾t 𝑌))‘(𝑋 ∩ 𝑌)) = ((int‘(𝐽 ↾t 𝑌))‘(𝑋 ∩ 𝑌))) |
156 | 151, 155 | eqtr3d 2780 |
. . . . . . . . . 10
⊢ (𝜑 → (((int‘(𝐽 ↾t 𝑆))‘((𝑋 ∩ 𝑌) ∪ (∪ (𝐽 ↾t 𝑆) ∖ 𝑌))) ∩ 𝑌) = ((int‘(𝐽 ↾t 𝑌))‘(𝑋 ∩ 𝑌))) |
157 | 147, 156 | eleqtrd 2841 |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ∈ ((int‘(𝐽 ↾t 𝑌))‘(𝑋 ∩ 𝑌))) |
158 | 69 | snssd 4742 |
. . . . . . . . . . . . 13
⊢ (𝜑 → {𝐶} ⊆ 𝑌) |
159 | | ssequn2 4117 |
. . . . . . . . . . . . 13
⊢ ({𝐶} ⊆ 𝑌 ↔ (𝑌 ∪ {𝐶}) = 𝑌) |
160 | 158, 159 | sylib 217 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑌 ∪ {𝐶}) = 𝑌) |
161 | 160 | oveq2d 7291 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐽 ↾t (𝑌 ∪ {𝐶})) = (𝐽 ↾t 𝑌)) |
162 | 161 | fveq2d 6778 |
. . . . . . . . . 10
⊢ (𝜑 → (int‘(𝐽 ↾t (𝑌 ∪ {𝐶}))) = (int‘(𝐽 ↾t 𝑌))) |
163 | 162, 121 | fveq12d 6781 |
. . . . . . . . 9
⊢ (𝜑 → ((int‘(𝐽 ↾t (𝑌 ∪ {𝐶})))‘(((𝑋 ∩ 𝑌) ∖ {𝐶}) ∪ {𝐶})) = ((int‘(𝐽 ↾t 𝑌))‘(𝑋 ∩ 𝑌))) |
164 | 157, 163 | eleqtrrd 2842 |
. . . . . . . 8
⊢ (𝜑 → 𝐶 ∈ ((int‘(𝐽 ↾t (𝑌 ∪ {𝐶})))‘(((𝑋 ∩ 𝑌) ∖ {𝐶}) ∪ {𝐶}))) |
165 | 13, 138, 64, 3, 139, 164 | limcres 25050 |
. . . . . . 7
⊢ (𝜑 → ((𝐺 ↾ ((𝑋 ∩ 𝑌) ∖ {𝐶})) limℂ 𝐶) = (𝐺 limℂ 𝐶)) |
166 | 13, 138 | feqresmpt 6838 |
. . . . . . . 8
⊢ (𝜑 → (𝐺 ↾ ((𝑋 ∩ 𝑌) ∖ {𝐶})) = (𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶}) ↦ (𝐺‘𝑧))) |
167 | 166 | oveq1d 7290 |
. . . . . . 7
⊢ (𝜑 → ((𝐺 ↾ ((𝑋 ∩ 𝑌) ∖ {𝐶})) limℂ 𝐶) = ((𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶}) ↦ (𝐺‘𝑧)) limℂ 𝐶)) |
168 | 165, 167 | eqtr3d 2780 |
. . . . . 6
⊢ (𝜑 → (𝐺 limℂ 𝐶) = ((𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶}) ↦ (𝐺‘𝑧)) limℂ 𝐶)) |
169 | 135, 168 | eleqtrd 2841 |
. . . . 5
⊢ (𝜑 → (𝐺‘𝐶) ∈ ((𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶}) ↦ (𝐺‘𝑧)) limℂ 𝐶)) |
170 | 3 | mulcn 24030 |
. . . . . 6
⊢ ·
∈ ((𝐽
×t 𝐽) Cn
𝐽) |
171 | 5, 6, 7 | dvcl 25063 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐶(𝑆 D 𝐹)𝐾) → 𝐾 ∈ ℂ) |
172 | 1, 171 | mpdan 684 |
. . . . . . 7
⊢ (𝜑 → 𝐾 ∈ ℂ) |
173 | 13, 69 | ffvelrnd 6962 |
. . . . . . 7
⊢ (𝜑 → (𝐺‘𝐶) ∈ ℂ) |
174 | 172, 173 | opelxpd 5627 |
. . . . . 6
⊢ (𝜑 → 〈𝐾, (𝐺‘𝐶)〉 ∈ (ℂ ×
ℂ)) |
175 | 75 | toponunii 22065 |
. . . . . . 7
⊢ (ℂ
× ℂ) = ∪ (𝐽 ×t 𝐽) |
176 | 175 | cncnpi 22429 |
. . . . . 6
⊢ ((
· ∈ ((𝐽
×t 𝐽) Cn
𝐽) ∧ 〈𝐾, (𝐺‘𝐶)〉 ∈ (ℂ × ℂ))
→ · ∈ (((𝐽
×t 𝐽) CnP
𝐽)‘〈𝐾, (𝐺‘𝐶)〉)) |
177 | 170, 174,
176 | sylancr 587 |
. . . . 5
⊢ (𝜑 → · ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘〈𝐾, (𝐺‘𝐶)〉)) |
178 | 55, 59, 73, 73, 3, 76, 128, 169, 177 | limccnp2 25056 |
. . . 4
⊢ (𝜑 → (𝐾 · (𝐺‘𝐶)) ∈ ((𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶}) ↦ ((((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶)) · (𝐺‘𝑧))) limℂ 𝐶)) |
179 | 16 | simprd 496 |
. . . . . 6
⊢ (𝜑 → 𝐿 ∈ ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶)) |
180 | 70 | fmpttd 6989 |
. . . . . . . 8
⊢ (𝜑 → (𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))):(𝑌 ∖ {𝐶})⟶ℂ) |
181 | 64 | ssdifssd 4077 |
. . . . . . . 8
⊢ (𝜑 → (𝑌 ∖ {𝐶}) ⊆ ℂ) |
182 | | eqid 2738 |
. . . . . . . 8
⊢ (𝐽 ↾t ((𝑌 ∖ {𝐶}) ∪ {𝐶})) = (𝐽 ↾t ((𝑌 ∖ {𝐶}) ∪ {𝐶})) |
183 | | undif1 4409 |
. . . . . . . . . . . . 13
⊢ ((𝑌 ∖ {𝐶}) ∪ {𝐶}) = (𝑌 ∪ {𝐶}) |
184 | 183, 160 | eqtrid 2790 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑌 ∖ {𝐶}) ∪ {𝐶}) = 𝑌) |
185 | 184 | oveq2d 7291 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐽 ↾t ((𝑌 ∖ {𝐶}) ∪ {𝐶})) = (𝐽 ↾t 𝑌)) |
186 | 185 | fveq2d 6778 |
. . . . . . . . . 10
⊢ (𝜑 → (int‘(𝐽 ↾t ((𝑌 ∖ {𝐶}) ∪ {𝐶}))) = (int‘(𝐽 ↾t 𝑌))) |
187 | 186, 121 | fveq12d 6781 |
. . . . . . . . 9
⊢ (𝜑 → ((int‘(𝐽 ↾t ((𝑌 ∖ {𝐶}) ∪ {𝐶})))‘(((𝑋 ∩ 𝑌) ∖ {𝐶}) ∪ {𝐶})) = ((int‘(𝐽 ↾t 𝑌))‘(𝑋 ∩ 𝑌))) |
188 | 157, 187 | eleqtrrd 2842 |
. . . . . . . 8
⊢ (𝜑 → 𝐶 ∈ ((int‘(𝐽 ↾t ((𝑌 ∖ {𝐶}) ∪ {𝐶})))‘(((𝑋 ∩ 𝑌) ∖ {𝐶}) ∪ {𝐶}))) |
189 | 180, 62, 181, 3, 182, 188 | limcres 25050 |
. . . . . . 7
⊢ (𝜑 → (((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) ↾ ((𝑋 ∩ 𝑌) ∖ {𝐶})) limℂ 𝐶) = ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶)) |
190 | 62 | resmptd 5948 |
. . . . . . . 8
⊢ (𝜑 → ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) ↾ ((𝑋 ∩ 𝑌) ∖ {𝐶})) = (𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶}) ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶)))) |
191 | 190 | oveq1d 7290 |
. . . . . . 7
⊢ (𝜑 → (((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) ↾ ((𝑋 ∩ 𝑌) ∖ {𝐶})) limℂ 𝐶) = ((𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶}) ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶)) |
192 | 189, 191 | eqtr3d 2780 |
. . . . . 6
⊢ (𝜑 → ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶) = ((𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶}) ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶)) |
193 | 179, 192 | eleqtrd 2841 |
. . . . 5
⊢ (𝜑 → 𝐿 ∈ ((𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶}) ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶)) |
194 | 84, 5 | sstrd 3931 |
. . . . . . . 8
⊢ (𝜑 → (𝑋 ∩ 𝑌) ⊆ ℂ) |
195 | | cncfmptc 24075 |
. . . . . . . 8
⊢ (((𝐹‘𝐶) ∈ ℂ ∧ (𝑋 ∩ 𝑌) ⊆ ℂ ∧ ℂ ⊆
ℂ) → (𝑧 ∈
(𝑋 ∩ 𝑌) ↦ (𝐹‘𝐶)) ∈ ((𝑋 ∩ 𝑌)–cn→ℂ)) |
196 | 43, 194, 73, 195 | syl3anc 1370 |
. . . . . . 7
⊢ (𝜑 → (𝑧 ∈ (𝑋 ∩ 𝑌) ↦ (𝐹‘𝐶)) ∈ ((𝑋 ∩ 𝑌)–cn→ℂ)) |
197 | | eqidd 2739 |
. . . . . . 7
⊢ (𝑧 = 𝐶 → (𝐹‘𝐶) = (𝐹‘𝐶)) |
198 | 196, 117,
197 | cnmptlimc 25054 |
. . . . . 6
⊢ (𝜑 → (𝐹‘𝐶) ∈ ((𝑧 ∈ (𝑋 ∩ 𝑌) ↦ (𝐹‘𝐶)) limℂ 𝐶)) |
199 | 43 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (𝑋 ∩ 𝑌)) → (𝐹‘𝐶) ∈ ℂ) |
200 | 199 | fmpttd 6989 |
. . . . . . . 8
⊢ (𝜑 → (𝑧 ∈ (𝑋 ∩ 𝑌) ↦ (𝐹‘𝐶)):(𝑋 ∩ 𝑌)⟶ℂ) |
201 | 200 | limcdif 25040 |
. . . . . . 7
⊢ (𝜑 → ((𝑧 ∈ (𝑋 ∩ 𝑌) ↦ (𝐹‘𝐶)) limℂ 𝐶) = (((𝑧 ∈ (𝑋 ∩ 𝑌) ↦ (𝐹‘𝐶)) ↾ ((𝑋 ∩ 𝑌) ∖ {𝐶})) limℂ 𝐶)) |
202 | | resmpt 5945 |
. . . . . . . . 9
⊢ (((𝑋 ∩ 𝑌) ∖ {𝐶}) ⊆ (𝑋 ∩ 𝑌) → ((𝑧 ∈ (𝑋 ∩ 𝑌) ↦ (𝐹‘𝐶)) ↾ ((𝑋 ∩ 𝑌) ∖ {𝐶})) = (𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶}) ↦ (𝐹‘𝐶))) |
203 | 136, 202 | mp1i 13 |
. . . . . . . 8
⊢ (𝜑 → ((𝑧 ∈ (𝑋 ∩ 𝑌) ↦ (𝐹‘𝐶)) ↾ ((𝑋 ∩ 𝑌) ∖ {𝐶})) = (𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶}) ↦ (𝐹‘𝐶))) |
204 | 203 | oveq1d 7290 |
. . . . . . 7
⊢ (𝜑 → (((𝑧 ∈ (𝑋 ∩ 𝑌) ↦ (𝐹‘𝐶)) ↾ ((𝑋 ∩ 𝑌) ∖ {𝐶})) limℂ 𝐶) = ((𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶}) ↦ (𝐹‘𝐶)) limℂ 𝐶)) |
205 | 201, 204 | eqtrd 2778 |
. . . . . 6
⊢ (𝜑 → ((𝑧 ∈ (𝑋 ∩ 𝑌) ↦ (𝐹‘𝐶)) limℂ 𝐶) = ((𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶}) ↦ (𝐹‘𝐶)) limℂ 𝐶)) |
206 | 198, 205 | eleqtrd 2841 |
. . . . 5
⊢ (𝜑 → (𝐹‘𝐶) ∈ ((𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶}) ↦ (𝐹‘𝐶)) limℂ 𝐶)) |
207 | 5, 13, 14 | dvcl 25063 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐶(𝑆 D 𝐺)𝐿) → 𝐿 ∈ ℂ) |
208 | 11, 207 | mpdan 684 |
. . . . . . 7
⊢ (𝜑 → 𝐿 ∈ ℂ) |
209 | 208, 43 | opelxpd 5627 |
. . . . . 6
⊢ (𝜑 → 〈𝐿, (𝐹‘𝐶)〉 ∈ (ℂ ×
ℂ)) |
210 | 175 | cncnpi 22429 |
. . . . . 6
⊢ ((
· ∈ ((𝐽
×t 𝐽) Cn
𝐽) ∧ 〈𝐿, (𝐹‘𝐶)〉 ∈ (ℂ × ℂ))
→ · ∈ (((𝐽
×t 𝐽) CnP
𝐽)‘〈𝐿, (𝐹‘𝐶)〉)) |
211 | 170, 209,
210 | sylancr 587 |
. . . . 5
⊢ (𝜑 → · ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘〈𝐿, (𝐹‘𝐶)〉)) |
212 | 71, 44, 73, 73, 3, 76, 193, 206, 211 | limccnp2 25056 |
. . . 4
⊢ (𝜑 → (𝐿 · (𝐹‘𝐶)) ∈ ((𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶}) ↦ ((((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶)) · (𝐹‘𝐶))) limℂ 𝐶)) |
213 | 3 | addcn 24028 |
. . . . 5
⊢ + ∈
((𝐽 ×t
𝐽) Cn 𝐽) |
214 | 172, 173 | mulcld 10995 |
. . . . . 6
⊢ (𝜑 → (𝐾 · (𝐺‘𝐶)) ∈ ℂ) |
215 | 208, 43 | mulcld 10995 |
. . . . . 6
⊢ (𝜑 → (𝐿 · (𝐹‘𝐶)) ∈ ℂ) |
216 | 214, 215 | opelxpd 5627 |
. . . . 5
⊢ (𝜑 → 〈(𝐾 · (𝐺‘𝐶)), (𝐿 · (𝐹‘𝐶))〉 ∈ (ℂ ×
ℂ)) |
217 | 175 | cncnpi 22429 |
. . . . 5
⊢ (( +
∈ ((𝐽
×t 𝐽) Cn
𝐽) ∧ 〈(𝐾 · (𝐺‘𝐶)), (𝐿 · (𝐹‘𝐶))〉 ∈ (ℂ × ℂ))
→ + ∈ (((𝐽
×t 𝐽) CnP
𝐽)‘〈(𝐾 · (𝐺‘𝐶)), (𝐿 · (𝐹‘𝐶))〉)) |
218 | 213, 216,
217 | sylancr 587 |
. . . 4
⊢ (𝜑 → + ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘〈(𝐾 · (𝐺‘𝐶)), (𝐿 · (𝐹‘𝐶))〉)) |
219 | 60, 72, 73, 73, 3, 76, 178, 212, 218 | limccnp2 25056 |
. . 3
⊢ (𝜑 → ((𝐾 · (𝐺‘𝐶)) + (𝐿 · (𝐹‘𝐶))) ∈ ((𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶}) ↦ (((((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶)) · (𝐺‘𝑧)) + ((((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶)) · (𝐹‘𝐶)))) limℂ 𝐶)) |
220 | 42 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → 𝐶 ∈ 𝑋) |
221 | 32, 220 | ffvelrnd 6962 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → (𝐹‘𝐶) ∈ ℂ) |
222 | 37, 221 | subcld 11332 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → ((𝐹‘𝑧) − (𝐹‘𝐶)) ∈ ℂ) |
223 | 222, 59 | mulcld 10995 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → (((𝐹‘𝑧) − (𝐹‘𝐶)) · (𝐺‘𝑧)) ∈ ℂ) |
224 | 69 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → 𝐶 ∈ 𝑌) |
225 | 56, 224 | ffvelrnd 6962 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → (𝐺‘𝐶) ∈ ℂ) |
226 | 59, 225 | subcld 11332 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → ((𝐺‘𝑧) − (𝐺‘𝐶)) ∈ ℂ) |
227 | 226, 221 | mulcld 10995 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → (((𝐺‘𝑧) − (𝐺‘𝐶)) · (𝐹‘𝐶)) ∈ ℂ) |
228 | 47, 220 | sseldd 3922 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → 𝐶 ∈ ℂ) |
229 | 48, 228 | subcld 11332 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → (𝑧 − 𝐶) ∈ ℂ) |
230 | 223, 227,
229, 54 | divdird 11789 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → (((((𝐹‘𝑧) − (𝐹‘𝐶)) · (𝐺‘𝑧)) + (((𝐺‘𝑧) − (𝐺‘𝐶)) · (𝐹‘𝐶))) / (𝑧 − 𝐶)) = (((((𝐹‘𝑧) − (𝐹‘𝐶)) · (𝐺‘𝑧)) / (𝑧 − 𝐶)) + ((((𝐺‘𝑧) − (𝐺‘𝐶)) · (𝐹‘𝐶)) / (𝑧 − 𝐶)))) |
231 | 37, 59 | mulcld 10995 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → ((𝐹‘𝑧) · (𝐺‘𝑧)) ∈ ℂ) |
232 | 221, 59 | mulcld 10995 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → ((𝐹‘𝐶) · (𝐺‘𝑧)) ∈ ℂ) |
233 | 221, 225 | mulcld 10995 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → ((𝐹‘𝐶) · (𝐺‘𝐶)) ∈ ℂ) |
234 | 231, 232,
233 | npncand 11356 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → ((((𝐹‘𝑧) · (𝐺‘𝑧)) − ((𝐹‘𝐶) · (𝐺‘𝑧))) + (((𝐹‘𝐶) · (𝐺‘𝑧)) − ((𝐹‘𝐶) · (𝐺‘𝐶)))) = (((𝐹‘𝑧) · (𝐺‘𝑧)) − ((𝐹‘𝐶) · (𝐺‘𝐶)))) |
235 | 37, 221, 59 | subdird 11432 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → (((𝐹‘𝑧) − (𝐹‘𝐶)) · (𝐺‘𝑧)) = (((𝐹‘𝑧) · (𝐺‘𝑧)) − ((𝐹‘𝐶) · (𝐺‘𝑧)))) |
236 | 226, 221 | mulcomd 10996 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → (((𝐺‘𝑧) − (𝐺‘𝐶)) · (𝐹‘𝐶)) = ((𝐹‘𝐶) · ((𝐺‘𝑧) − (𝐺‘𝐶)))) |
237 | 221, 59, 225 | subdid 11431 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → ((𝐹‘𝐶) · ((𝐺‘𝑧) − (𝐺‘𝐶))) = (((𝐹‘𝐶) · (𝐺‘𝑧)) − ((𝐹‘𝐶) · (𝐺‘𝐶)))) |
238 | 236, 237 | eqtrd 2778 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → (((𝐺‘𝑧) − (𝐺‘𝐶)) · (𝐹‘𝐶)) = (((𝐹‘𝐶) · (𝐺‘𝑧)) − ((𝐹‘𝐶) · (𝐺‘𝐶)))) |
239 | 235, 238 | oveq12d 7293 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → ((((𝐹‘𝑧) − (𝐹‘𝐶)) · (𝐺‘𝑧)) + (((𝐺‘𝑧) − (𝐺‘𝐶)) · (𝐹‘𝐶))) = ((((𝐹‘𝑧) · (𝐺‘𝑧)) − ((𝐹‘𝐶) · (𝐺‘𝑧))) + (((𝐹‘𝐶) · (𝐺‘𝑧)) − ((𝐹‘𝐶) · (𝐺‘𝐶))))) |
240 | 6 | ffnd 6601 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹 Fn 𝑋) |
241 | 240 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → 𝐹 Fn 𝑋) |
242 | 13 | ffnd 6601 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐺 Fn 𝑌) |
243 | 242 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → 𝐺 Fn 𝑌) |
244 | | ssexg 5247 |
. . . . . . . . . . . . 13
⊢ ((𝑋 ⊆ ℂ ∧ ℂ
∈ V) → 𝑋 ∈
V) |
245 | 46, 100, 244 | sylancl 586 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑋 ∈ V) |
246 | 245 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → 𝑋 ∈ V) |
247 | | ssexg 5247 |
. . . . . . . . . . . . 13
⊢ ((𝑌 ⊆ ℂ ∧ ℂ
∈ V) → 𝑌 ∈
V) |
248 | 64, 100, 247 | sylancl 586 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑌 ∈ V) |
249 | 248 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → 𝑌 ∈ V) |
250 | | eqid 2738 |
. . . . . . . . . . 11
⊢ (𝑋 ∩ 𝑌) = (𝑋 ∩ 𝑌) |
251 | | eqidd 2739 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) ∧ 𝑧 ∈ 𝑋) → (𝐹‘𝑧) = (𝐹‘𝑧)) |
252 | | eqidd 2739 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) ∧ 𝑧 ∈ 𝑌) → (𝐺‘𝑧) = (𝐺‘𝑧)) |
253 | 241, 243,
246, 249, 250, 251, 252 | ofval 7544 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) ∧ 𝑧 ∈ (𝑋 ∩ 𝑌)) → ((𝐹 ∘f · 𝐺)‘𝑧) = ((𝐹‘𝑧) · (𝐺‘𝑧))) |
254 | 35, 253 | mpdan 684 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → ((𝐹 ∘f · 𝐺)‘𝑧) = ((𝐹‘𝑧) · (𝐺‘𝑧))) |
255 | | eqidd 2739 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) ∧ 𝐶 ∈ 𝑋) → (𝐹‘𝐶) = (𝐹‘𝐶)) |
256 | | eqidd 2739 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) ∧ 𝐶 ∈ 𝑌) → (𝐺‘𝐶) = (𝐺‘𝐶)) |
257 | 241, 243,
246, 249, 250, 255, 256 | ofval 7544 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) ∧ 𝐶 ∈ (𝑋 ∩ 𝑌)) → ((𝐹 ∘f · 𝐺)‘𝐶) = ((𝐹‘𝐶) · (𝐺‘𝐶))) |
258 | 117, 257 | mpidan 686 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → ((𝐹 ∘f · 𝐺)‘𝐶) = ((𝐹‘𝐶) · (𝐺‘𝐶))) |
259 | 254, 258 | oveq12d 7293 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → (((𝐹 ∘f · 𝐺)‘𝑧) − ((𝐹 ∘f · 𝐺)‘𝐶)) = (((𝐹‘𝑧) · (𝐺‘𝑧)) − ((𝐹‘𝐶) · (𝐺‘𝐶)))) |
260 | 234, 239,
259 | 3eqtr4d 2788 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → ((((𝐹‘𝑧) − (𝐹‘𝐶)) · (𝐺‘𝑧)) + (((𝐺‘𝑧) − (𝐺‘𝐶)) · (𝐹‘𝐶))) = (((𝐹 ∘f · 𝐺)‘𝑧) − ((𝐹 ∘f · 𝐺)‘𝐶))) |
261 | 260 | oveq1d 7290 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → (((((𝐹‘𝑧) − (𝐹‘𝐶)) · (𝐺‘𝑧)) + (((𝐺‘𝑧) − (𝐺‘𝐶)) · (𝐹‘𝐶))) / (𝑧 − 𝐶)) = ((((𝐹 ∘f · 𝐺)‘𝑧) − ((𝐹 ∘f · 𝐺)‘𝐶)) / (𝑧 − 𝐶))) |
262 | 222, 59, 229, 54 | div23d 11788 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → ((((𝐹‘𝑧) − (𝐹‘𝐶)) · (𝐺‘𝑧)) / (𝑧 − 𝐶)) = ((((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶)) · (𝐺‘𝑧))) |
263 | 226, 221,
229, 54 | div23d 11788 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → ((((𝐺‘𝑧) − (𝐺‘𝐶)) · (𝐹‘𝐶)) / (𝑧 − 𝐶)) = ((((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶)) · (𝐹‘𝐶))) |
264 | 262, 263 | oveq12d 7293 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → (((((𝐹‘𝑧) − (𝐹‘𝐶)) · (𝐺‘𝑧)) / (𝑧 − 𝐶)) + ((((𝐺‘𝑧) − (𝐺‘𝐶)) · (𝐹‘𝐶)) / (𝑧 − 𝐶))) = (((((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶)) · (𝐺‘𝑧)) + ((((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶)) · (𝐹‘𝐶)))) |
265 | 230, 261,
264 | 3eqtr3d 2786 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶})) → ((((𝐹 ∘f · 𝐺)‘𝑧) − ((𝐹 ∘f · 𝐺)‘𝐶)) / (𝑧 − 𝐶)) = (((((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶)) · (𝐺‘𝑧)) + ((((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶)) · (𝐹‘𝐶)))) |
266 | 265 | mpteq2dva 5174 |
. . . 4
⊢ (𝜑 → (𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶}) ↦ ((((𝐹 ∘f · 𝐺)‘𝑧) − ((𝐹 ∘f · 𝐺)‘𝐶)) / (𝑧 − 𝐶))) = (𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶}) ↦ (((((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶)) · (𝐺‘𝑧)) + ((((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶)) · (𝐹‘𝐶))))) |
267 | 266 | oveq1d 7290 |
. . 3
⊢ (𝜑 → ((𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶}) ↦ ((((𝐹 ∘f · 𝐺)‘𝑧) − ((𝐹 ∘f · 𝐺)‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶) = ((𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶}) ↦ (((((𝐹‘𝑧) − (𝐹‘𝐶)) / (𝑧 − 𝐶)) · (𝐺‘𝑧)) + ((((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶)) · (𝐹‘𝐶)))) limℂ 𝐶)) |
268 | 219, 267 | eleqtrrd 2842 |
. 2
⊢ (𝜑 → ((𝐾 · (𝐺‘𝐶)) + (𝐿 · (𝐹‘𝐶))) ∈ ((𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶}) ↦ ((((𝐹 ∘f · 𝐺)‘𝑧) − ((𝐹 ∘f · 𝐺)‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶)) |
269 | | eqid 2738 |
. . 3
⊢ (𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶}) ↦ ((((𝐹 ∘f · 𝐺)‘𝑧) − ((𝐹 ∘f · 𝐺)‘𝐶)) / (𝑧 − 𝐶))) = (𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶}) ↦ ((((𝐹 ∘f · 𝐺)‘𝑧) − ((𝐹 ∘f · 𝐺)‘𝐶)) / (𝑧 − 𝐶))) |
270 | | mulcl 10955 |
. . . . 5
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ) |
271 | 270 | adantl 482 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ) |
272 | 271, 6, 13, 245, 248, 250 | off 7551 |
. . 3
⊢ (𝜑 → (𝐹 ∘f · 𝐺):(𝑋 ∩ 𝑌)⟶ℂ) |
273 | 2, 3, 269, 5, 272, 84 | eldv 25062 |
. 2
⊢ (𝜑 → (𝐶(𝑆 D (𝐹 ∘f · 𝐺))((𝐾 · (𝐺‘𝐶)) + (𝐿 · (𝐹‘𝐶))) ↔ (𝐶 ∈ ((int‘(𝐽 ↾t 𝑆))‘(𝑋 ∩ 𝑌)) ∧ ((𝐾 · (𝐺‘𝐶)) + (𝐿 · (𝐹‘𝐶))) ∈ ((𝑧 ∈ ((𝑋 ∩ 𝑌) ∖ {𝐶}) ↦ ((((𝐹 ∘f · 𝐺)‘𝑧) − ((𝐹 ∘f · 𝐺)‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶)))) |
274 | 31, 268, 273 | mpbir2and 710 |
1
⊢ (𝜑 → 𝐶(𝑆 D (𝐹 ∘f · 𝐺))((𝐾 · (𝐺‘𝐶)) + (𝐿 · (𝐹‘𝐶)))) |