MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmetcaulem Structured version   Visualization version   GIF version

Theorem cmetcaulem 25260
Description: Lemma for cmetcau 25261. (Contributed by Mario Carneiro, 14-Oct-2015.)
Hypotheses
Ref Expression
cmetcau.1 𝐽 = (MetOpen‘𝐷)
cmetcau.3 (𝜑𝐷 ∈ (CMet‘𝑋))
cmetcau.4 (𝜑𝑃𝑋)
cmetcau.5 (𝜑𝐹 ∈ (Cau‘𝐷))
cmetcau.6 𝐺 = (𝑥 ∈ ℕ ↦ if(𝑥 ∈ dom 𝐹, (𝐹𝑥), 𝑃))
Assertion
Ref Expression
cmetcaulem (𝜑𝐹 ∈ dom (⇝𝑡𝐽))
Distinct variable groups:   𝑥,𝐷   𝑥,𝐹   𝑥,𝑃   𝑥,𝐽   𝜑,𝑥   𝑥,𝑋
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem cmetcaulem
Dummy variables 𝑗 𝑘 𝑚 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cmetcau.3 . . . . . . . . 9 (𝜑𝐷 ∈ (CMet‘𝑋))
2 cmetmet 25258 . . . . . . . . 9 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
31, 2syl 17 . . . . . . . 8 (𝜑𝐷 ∈ (Met‘𝑋))
4 metxmet 24284 . . . . . . . 8 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
53, 4syl 17 . . . . . . 7 (𝜑𝐷 ∈ (∞Met‘𝑋))
6 cmetcau.1 . . . . . . . 8 𝐽 = (MetOpen‘𝐷)
76mopntopon 24389 . . . . . . 7 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
85, 7syl 17 . . . . . 6 (𝜑𝐽 ∈ (TopOn‘𝑋))
9 1z 12625 . . . . . . . 8 1 ∈ ℤ
10 nnuz 12898 . . . . . . . . 9 ℕ = (ℤ‘1)
1110uzfbas 23846 . . . . . . . 8 (1 ∈ ℤ → (ℤ “ ℕ) ∈ (fBas‘ℕ))
129, 11mp1i 13 . . . . . . 7 (𝜑 → (ℤ “ ℕ) ∈ (fBas‘ℕ))
13 fgcl 23826 . . . . . . 7 ((ℤ “ ℕ) ∈ (fBas‘ℕ) → (ℕfilGen(ℤ “ ℕ)) ∈ (Fil‘ℕ))
1412, 13syl 17 . . . . . 6 (𝜑 → (ℕfilGen(ℤ “ ℕ)) ∈ (Fil‘ℕ))
15 elfvdm 6933 . . . . . . . . . . . 12 (𝐷 ∈ (CMet‘𝑋) → 𝑋 ∈ dom CMet)
161, 15syl 17 . . . . . . . . . . 11 (𝜑𝑋 ∈ dom CMet)
17 cnex 11221 . . . . . . . . . . . 12 ℂ ∈ V
1817a1i 11 . . . . . . . . . . 11 (𝜑 → ℂ ∈ V)
19 cmetcau.5 . . . . . . . . . . . 12 (𝜑𝐹 ∈ (Cau‘𝐷))
20 caufpm 25254 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) → 𝐹 ∈ (𝑋pm ℂ))
215, 19, 20syl2anc 582 . . . . . . . . . . 11 (𝜑𝐹 ∈ (𝑋pm ℂ))
22 elpm2g 8863 . . . . . . . . . . . 12 ((𝑋 ∈ dom CMet ∧ ℂ ∈ V) → (𝐹 ∈ (𝑋pm ℂ) ↔ (𝐹:dom 𝐹𝑋 ∧ dom 𝐹 ⊆ ℂ)))
2322simprbda 497 . . . . . . . . . . 11 (((𝑋 ∈ dom CMet ∧ ℂ ∈ V) ∧ 𝐹 ∈ (𝑋pm ℂ)) → 𝐹:dom 𝐹𝑋)
2416, 18, 21, 23syl21anc 836 . . . . . . . . . 10 (𝜑𝐹:dom 𝐹𝑋)
2524adantr 479 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → 𝐹:dom 𝐹𝑋)
2625ffvelcdmda 7093 . . . . . . . 8 (((𝜑𝑥 ∈ ℕ) ∧ 𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ 𝑋)
27 cmetcau.4 . . . . . . . . 9 (𝜑𝑃𝑋)
2827ad2antrr 724 . . . . . . . 8 (((𝜑𝑥 ∈ ℕ) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑃𝑋)
2926, 28ifclda 4565 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → if(𝑥 ∈ dom 𝐹, (𝐹𝑥), 𝑃) ∈ 𝑋)
30 cmetcau.6 . . . . . . 7 𝐺 = (𝑥 ∈ ℕ ↦ if(𝑥 ∈ dom 𝐹, (𝐹𝑥), 𝑃))
3129, 30fmptd 7123 . . . . . 6 (𝜑𝐺:ℕ⟶𝑋)
32 flfval 23938 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ (ℕfilGen(ℤ “ ℕ)) ∈ (Fil‘ℕ) ∧ 𝐺:ℕ⟶𝑋) → ((𝐽 fLimf (ℕfilGen(ℤ “ ℕ)))‘𝐺) = (𝐽 fLim ((𝑋 FilMap 𝐺)‘(ℕfilGen(ℤ “ ℕ)))))
338, 14, 31, 32syl3anc 1368 . . . . 5 (𝜑 → ((𝐽 fLimf (ℕfilGen(ℤ “ ℕ)))‘𝐺) = (𝐽 fLim ((𝑋 FilMap 𝐺)‘(ℕfilGen(ℤ “ ℕ)))))
34 eqid 2725 . . . . . . . 8 (ℕfilGen(ℤ “ ℕ)) = (ℕfilGen(ℤ “ ℕ))
3534fmfg 23897 . . . . . . 7 ((𝑋 ∈ dom CMet ∧ (ℤ “ ℕ) ∈ (fBas‘ℕ) ∧ 𝐺:ℕ⟶𝑋) → ((𝑋 FilMap 𝐺)‘(ℤ “ ℕ)) = ((𝑋 FilMap 𝐺)‘(ℕfilGen(ℤ “ ℕ))))
3616, 12, 31, 35syl3anc 1368 . . . . . 6 (𝜑 → ((𝑋 FilMap 𝐺)‘(ℤ “ ℕ)) = ((𝑋 FilMap 𝐺)‘(ℕfilGen(ℤ “ ℕ))))
3736oveq2d 7435 . . . . 5 (𝜑 → (𝐽 fLim ((𝑋 FilMap 𝐺)‘(ℤ “ ℕ))) = (𝐽 fLim ((𝑋 FilMap 𝐺)‘(ℕfilGen(ℤ “ ℕ)))))
3833, 37eqtr4d 2768 . . . 4 (𝜑 → ((𝐽 fLimf (ℕfilGen(ℤ “ ℕ)))‘𝐺) = (𝐽 fLim ((𝑋 FilMap 𝐺)‘(ℤ “ ℕ))))
39 biidd 261 . . . . . . . 8 (𝑧 = 1 → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑘 ∈ dom 𝐹 ↔ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑘 ∈ dom 𝐹))
40 1zzd 12626 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℤ)
4110, 5, 40iscau3 25250 . . . . . . . . . . 11 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑤 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑤)) < 𝑧))))
4241simplbda 498 . . . . . . . . . 10 ((𝜑𝐹 ∈ (Cau‘𝐷)) → ∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑤 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑤)) < 𝑧))
4319, 42mpdan 685 . . . . . . . . 9 (𝜑 → ∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑤 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑤)) < 𝑧))
44 simp1 1133 . . . . . . . . . . . 12 ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑤 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑤)) < 𝑧) → 𝑘 ∈ dom 𝐹)
4544ralimi 3072 . . . . . . . . . . 11 (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑤 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑤)) < 𝑧) → ∀𝑘 ∈ (ℤ𝑗)𝑘 ∈ dom 𝐹)
4645reximi 3073 . . . . . . . . . 10 (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑤 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑤)) < 𝑧) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑘 ∈ dom 𝐹)
4746ralimi 3072 . . . . . . . . 9 (∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑤 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑤)) < 𝑧) → ∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑘 ∈ dom 𝐹)
4843, 47syl 17 . . . . . . . 8 (𝜑 → ∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑘 ∈ dom 𝐹)
49 1rp 13013 . . . . . . . . 9 1 ∈ ℝ+
5049a1i 11 . . . . . . . 8 (𝜑 → 1 ∈ ℝ+)
5139, 48, 50rspcdva 3607 . . . . . . 7 (𝜑 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑘 ∈ dom 𝐹)
52 dfss3 3965 . . . . . . . . 9 ((ℤ𝑗) ⊆ dom 𝐹 ↔ ∀𝑘 ∈ (ℤ𝑗)𝑘 ∈ dom 𝐹)
53 nnsscn 12250 . . . . . . . . . . . . . 14 ℕ ⊆ ℂ
5431, 53jctir 519 . . . . . . . . . . . . 13 (𝜑 → (𝐺:ℕ⟶𝑋 ∧ ℕ ⊆ ℂ))
55 elpm2r 8864 . . . . . . . . . . . . 13 (((𝑋 ∈ dom CMet ∧ ℂ ∈ V) ∧ (𝐺:ℕ⟶𝑋 ∧ ℕ ⊆ ℂ)) → 𝐺 ∈ (𝑋pm ℂ))
5616, 18, 54, 55syl21anc 836 . . . . . . . . . . . 12 (𝜑𝐺 ∈ (𝑋pm ℂ))
5756adantr 479 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) → 𝐺 ∈ (𝑋pm ℂ))
58 eqid 2725 . . . . . . . . . . . . . . 15 (ℤ𝑗) = (ℤ𝑗)
595adantr 479 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) → 𝐷 ∈ (∞Met‘𝑋))
60 nnz 12612 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ → 𝑗 ∈ ℤ)
6160ad2antrl 726 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) → 𝑗 ∈ ℤ)
62 eqidd 2726 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) = (𝐹𝑘))
63 eqidd 2726 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝑚 ∈ (ℤ𝑗)) → (𝐹𝑚) = (𝐹𝑚))
6458, 59, 61, 62, 63iscau4 25251 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑧 ∈ ℝ+𝑚 ∈ (ℤ𝑗)∀𝑘 ∈ (ℤ𝑚)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧))))
6564simplbda 498 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝐹 ∈ (Cau‘𝐷)) → ∀𝑧 ∈ ℝ+𝑚 ∈ (ℤ𝑗)∀𝑘 ∈ (ℤ𝑚)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧))
6619, 65mpidan 687 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) → ∀𝑧 ∈ ℝ+𝑚 ∈ (ℤ𝑗)∀𝑘 ∈ (ℤ𝑚)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧))
67 simprl 769 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) → 𝑗 ∈ ℕ)
68 eluznn 12935 . . . . . . . . . . . . . . . 16 ((𝑗 ∈ ℕ ∧ 𝑚 ∈ (ℤ𝑗)) → 𝑚 ∈ ℕ)
6967, 68sylan 578 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝑚 ∈ (ℤ𝑗)) → 𝑚 ∈ ℕ)
70 eluznn 12935 . . . . . . . . . . . . . . . . . 18 ((𝑚 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑚)) → 𝑘 ∈ ℕ)
7130, 29dmmptd 6701 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → dom 𝐺 = ℕ)
7271adantr 479 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) → dom 𝐺 = ℕ)
7372eleq2d 2811 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) → (𝑘 ∈ dom 𝐺𝑘 ∈ ℕ))
7473biimpar 476 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ dom 𝐺)
7574a1d 25 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝑘 ∈ ℕ) → (𝑘 ∈ dom 𝐹𝑘 ∈ dom 𝐺))
76 idd 24 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑘) ∈ 𝑋 → (𝐹𝑘) ∈ 𝑋))
77 idd 24 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝑘 ∈ ℕ) → (((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧 → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧))
7875, 76, 773anim123d 1439 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝑘 ∈ ℕ) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧) → (𝑘 ∈ dom 𝐺 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧)))
7970, 78sylan2 591 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ (𝑚 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑚))) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧) → (𝑘 ∈ dom 𝐺 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧)))
8079anassrs 466 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑚)) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧) → (𝑘 ∈ dom 𝐺 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧)))
8180ralimdva 3156 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝑚 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑚)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧) → ∀𝑘 ∈ (ℤ𝑚)(𝑘 ∈ dom 𝐺 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧)))
8269, 81syldan 589 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝑚 ∈ (ℤ𝑗)) → (∀𝑘 ∈ (ℤ𝑚)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧) → ∀𝑘 ∈ (ℤ𝑚)(𝑘 ∈ dom 𝐺 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧)))
8382reximdva 3157 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) → (∃𝑚 ∈ (ℤ𝑗)∀𝑘 ∈ (ℤ𝑚)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧) → ∃𝑚 ∈ (ℤ𝑗)∀𝑘 ∈ (ℤ𝑚)(𝑘 ∈ dom 𝐺 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧)))
8483ralimdv 3158 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) → (∀𝑧 ∈ ℝ+𝑚 ∈ (ℤ𝑗)∀𝑘 ∈ (ℤ𝑚)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧) → ∀𝑧 ∈ ℝ+𝑚 ∈ (ℤ𝑗)∀𝑘 ∈ (ℤ𝑚)(𝑘 ∈ dom 𝐺 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧)))
8566, 84mpd 15 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) → ∀𝑧 ∈ ℝ+𝑚 ∈ (ℤ𝑗)∀𝑘 ∈ (ℤ𝑚)(𝑘 ∈ dom 𝐺 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧))
86 eluznn 12935 . . . . . . . . . . . . . 14 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
8767, 86sylan 578 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
88 simprr 771 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) → (ℤ𝑗) ⊆ dom 𝐹)
8988sselda 3976 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ dom 𝐹)
90 iftrue 4536 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ dom 𝐹 → if(𝑘 ∈ dom 𝐹, (𝐹𝑘), 𝑃) = (𝐹𝑘))
9190adantl 480 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ ∧ 𝑘 ∈ dom 𝐹) → if(𝑘 ∈ dom 𝐹, (𝐹𝑘), 𝑃) = (𝐹𝑘))
92 fvex 6909 . . . . . . . . . . . . . . . 16 (𝐹𝑘) ∈ V
9391, 92eqeltrdi 2833 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℕ ∧ 𝑘 ∈ dom 𝐹) → if(𝑘 ∈ dom 𝐹, (𝐹𝑘), 𝑃) ∈ V)
94 eleq1w 2808 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑘 → (𝑥 ∈ dom 𝐹𝑘 ∈ dom 𝐹))
95 fveq2 6896 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑘 → (𝐹𝑥) = (𝐹𝑘))
9694, 95ifbieq1d 4554 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑘 → if(𝑥 ∈ dom 𝐹, (𝐹𝑥), 𝑃) = if(𝑘 ∈ dom 𝐹, (𝐹𝑘), 𝑃))
9796, 30fvmptg 7002 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℕ ∧ if(𝑘 ∈ dom 𝐹, (𝐹𝑘), 𝑃) ∈ V) → (𝐺𝑘) = if(𝑘 ∈ dom 𝐹, (𝐹𝑘), 𝑃))
9893, 97syldan 589 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ ∧ 𝑘 ∈ dom 𝐹) → (𝐺𝑘) = if(𝑘 ∈ dom 𝐹, (𝐹𝑘), 𝑃))
9998, 91eqtrd 2765 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ ∧ 𝑘 ∈ dom 𝐹) → (𝐺𝑘) = (𝐹𝑘))
10087, 89, 99syl2anc 582 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐺𝑘) = (𝐹𝑘))
10188sselda 3976 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝑚 ∈ (ℤ𝑗)) → 𝑚 ∈ dom 𝐹)
10269, 101elind 4192 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝑚 ∈ (ℤ𝑗)) → 𝑚 ∈ (ℕ ∩ dom 𝐹))
103 fveq2 6896 . . . . . . . . . . . . . . 15 (𝑘 = 𝑚 → (𝐺𝑘) = (𝐺𝑚))
104 fveq2 6896 . . . . . . . . . . . . . . 15 (𝑘 = 𝑚 → (𝐹𝑘) = (𝐹𝑚))
105103, 104eqeq12d 2741 . . . . . . . . . . . . . 14 (𝑘 = 𝑚 → ((𝐺𝑘) = (𝐹𝑘) ↔ (𝐺𝑚) = (𝐹𝑚)))
106 elin 3960 . . . . . . . . . . . . . . 15 (𝑘 ∈ (ℕ ∩ dom 𝐹) ↔ (𝑘 ∈ ℕ ∧ 𝑘 ∈ dom 𝐹))
107106, 99sylbi 216 . . . . . . . . . . . . . 14 (𝑘 ∈ (ℕ ∩ dom 𝐹) → (𝐺𝑘) = (𝐹𝑘))
108105, 107vtoclga 3556 . . . . . . . . . . . . 13 (𝑚 ∈ (ℕ ∩ dom 𝐹) → (𝐺𝑚) = (𝐹𝑚))
109102, 108syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝑚 ∈ (ℤ𝑗)) → (𝐺𝑚) = (𝐹𝑚))
11058, 59, 61, 100, 109iscau4 25251 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) → (𝐺 ∈ (Cau‘𝐷) ↔ (𝐺 ∈ (𝑋pm ℂ) ∧ ∀𝑧 ∈ ℝ+𝑚 ∈ (ℤ𝑗)∀𝑘 ∈ (ℤ𝑚)(𝑘 ∈ dom 𝐺 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧))))
11157, 85, 110mpbir2and 711 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) → 𝐺 ∈ (Cau‘𝐷))
112111expr 455 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → ((ℤ𝑗) ⊆ dom 𝐹𝐺 ∈ (Cau‘𝐷)))
11352, 112biimtrrid 242 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑗)𝑘 ∈ dom 𝐹𝐺 ∈ (Cau‘𝐷)))
114113rexlimdva 3144 . . . . . . 7 (𝜑 → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑘 ∈ dom 𝐹𝐺 ∈ (Cau‘𝐷)))
11551, 114mpd 15 . . . . . 6 (𝜑𝐺 ∈ (Cau‘𝐷))
116 eqid 2725 . . . . . . . 8 ((𝑋 FilMap 𝐺)‘(ℤ “ ℕ)) = ((𝑋 FilMap 𝐺)‘(ℤ “ ℕ))
11710, 116caucfil 25255 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 1 ∈ ℤ ∧ 𝐺:ℕ⟶𝑋) → (𝐺 ∈ (Cau‘𝐷) ↔ ((𝑋 FilMap 𝐺)‘(ℤ “ ℕ)) ∈ (CauFil‘𝐷)))
1185, 40, 31, 117syl3anc 1368 . . . . . 6 (𝜑 → (𝐺 ∈ (Cau‘𝐷) ↔ ((𝑋 FilMap 𝐺)‘(ℤ “ ℕ)) ∈ (CauFil‘𝐷)))
119115, 118mpbid 231 . . . . 5 (𝜑 → ((𝑋 FilMap 𝐺)‘(ℤ “ ℕ)) ∈ (CauFil‘𝐷))
1206cmetcvg 25257 . . . . 5 ((𝐷 ∈ (CMet‘𝑋) ∧ ((𝑋 FilMap 𝐺)‘(ℤ “ ℕ)) ∈ (CauFil‘𝐷)) → (𝐽 fLim ((𝑋 FilMap 𝐺)‘(ℤ “ ℕ))) ≠ ∅)
1211, 119, 120syl2anc 582 . . . 4 (𝜑 → (𝐽 fLim ((𝑋 FilMap 𝐺)‘(ℤ “ ℕ))) ≠ ∅)
12238, 121eqnetrd 2997 . . 3 (𝜑 → ((𝐽 fLimf (ℕfilGen(ℤ “ ℕ)))‘𝐺) ≠ ∅)
123 n0 4346 . . 3 (((𝐽 fLimf (ℕfilGen(ℤ “ ℕ)))‘𝐺) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ ((𝐽 fLimf (ℕfilGen(ℤ “ ℕ)))‘𝐺))
124122, 123sylib 217 . 2 (𝜑 → ∃𝑦 𝑦 ∈ ((𝐽 fLimf (ℕfilGen(ℤ “ ℕ)))‘𝐺))
12510, 34lmflf 23953 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 1 ∈ ℤ ∧ 𝐺:ℕ⟶𝑋) → (𝐺(⇝𝑡𝐽)𝑦𝑦 ∈ ((𝐽 fLimf (ℕfilGen(ℤ “ ℕ)))‘𝐺)))
1268, 40, 31, 125syl3anc 1368 . . . 4 (𝜑 → (𝐺(⇝𝑡𝐽)𝑦𝑦 ∈ ((𝐽 fLimf (ℕfilGen(ℤ “ ℕ)))‘𝐺)))
12721adantr 479 . . . . . . 7 ((𝜑𝐺(⇝𝑡𝐽)𝑦) → 𝐹 ∈ (𝑋pm ℂ))
128 lmcl 23245 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐺(⇝𝑡𝐽)𝑦) → 𝑦𝑋)
1298, 128sylan 578 . . . . . . 7 ((𝜑𝐺(⇝𝑡𝐽)𝑦) → 𝑦𝑋)
1306, 5, 10, 40lmmbr3 25232 . . . . . . . . . 10 (𝜑 → (𝐺(⇝𝑡𝐽)𝑦 ↔ (𝐺 ∈ (𝑋pm ℂ) ∧ 𝑦𝑋 ∧ ∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧))))
131130biimpa 475 . . . . . . . . 9 ((𝜑𝐺(⇝𝑡𝐽)𝑦) → (𝐺 ∈ (𝑋pm ℂ) ∧ 𝑦𝑋 ∧ ∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧)))
132131simp3d 1141 . . . . . . . 8 ((𝜑𝐺(⇝𝑡𝐽)𝑦) → ∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧))
133 r19.26 3100 . . . . . . . . . . 11 (∀𝑧 ∈ ℝ+ (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑘 ∈ dom 𝐹 ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧)) ↔ (∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑘 ∈ dom 𝐹 ∧ ∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧)))
13410rexanuz2 15332 . . . . . . . . . . . . 13 (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧)) ↔ (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑘 ∈ dom 𝐹 ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧)))
135 simprl 769 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧))) → 𝑘 ∈ dom 𝐹)
13699ad2ant2lr 746 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧))) → (𝐺𝑘) = (𝐹𝑘))
137 simprr2 1219 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧))) → (𝐺𝑘) ∈ 𝑋)
138136, 137eqeltrrd 2826 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧))) → (𝐹𝑘) ∈ 𝑋)
139136oveq1d 7434 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧))) → ((𝐺𝑘)𝐷𝑦) = ((𝐹𝑘)𝐷𝑦))
140 simprr3 1220 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧))) → ((𝐺𝑘)𝐷𝑦) < 𝑧)
141139, 140eqbrtrrd 5173 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧))) → ((𝐹𝑘)𝐷𝑦) < 𝑧)
142135, 138, 1413jca 1125 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧))) → (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑦) < 𝑧))
143142ex 411 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℕ) → ((𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧)) → (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑦) < 𝑧)))
14486, 143sylan2 591 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → ((𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧)) → (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑦) < 𝑧)))
145144anassrs 466 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧)) → (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑦) < 𝑧)))
146145ralimdva 3156 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧)) → ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑦) < 𝑧)))
147146reximdva 3157 . . . . . . . . . . . . 13 (𝜑 → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑦) < 𝑧)))
148134, 147biimtrrid 242 . . . . . . . . . . . 12 (𝜑 → ((∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑘 ∈ dom 𝐹 ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑦) < 𝑧)))
149148ralimdv 3158 . . . . . . . . . . 11 (𝜑 → (∀𝑧 ∈ ℝ+ (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑘 ∈ dom 𝐹 ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧)) → ∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑦) < 𝑧)))
150133, 149biimtrrid 242 . . . . . . . . . 10 (𝜑 → ((∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑘 ∈ dom 𝐹 ∧ ∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧)) → ∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑦) < 𝑧)))
15148, 150mpand 693 . . . . . . . . 9 (𝜑 → (∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧) → ∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑦) < 𝑧)))
152151adantr 479 . . . . . . . 8 ((𝜑𝐺(⇝𝑡𝐽)𝑦) → (∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧) → ∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑦) < 𝑧)))
153132, 152mpd 15 . . . . . . 7 ((𝜑𝐺(⇝𝑡𝐽)𝑦) → ∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑦) < 𝑧))
1545adantr 479 . . . . . . . 8 ((𝜑𝐺(⇝𝑡𝐽)𝑦) → 𝐷 ∈ (∞Met‘𝑋))
155 1zzd 12626 . . . . . . . 8 ((𝜑𝐺(⇝𝑡𝐽)𝑦) → 1 ∈ ℤ)
1566, 154, 10, 155lmmbr3 25232 . . . . . . 7 ((𝜑𝐺(⇝𝑡𝐽)𝑦) → (𝐹(⇝𝑡𝐽)𝑦 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑦𝑋 ∧ ∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑦) < 𝑧))))
157127, 129, 153, 156mpbir3and 1339 . . . . . 6 ((𝜑𝐺(⇝𝑡𝐽)𝑦) → 𝐹(⇝𝑡𝐽)𝑦)
158 lmrel 23178 . . . . . . 7 Rel (⇝𝑡𝐽)
159158releldmi 5950 . . . . . 6 (𝐹(⇝𝑡𝐽)𝑦𝐹 ∈ dom (⇝𝑡𝐽))
160157, 159syl 17 . . . . 5 ((𝜑𝐺(⇝𝑡𝐽)𝑦) → 𝐹 ∈ dom (⇝𝑡𝐽))
161160ex 411 . . . 4 (𝜑 → (𝐺(⇝𝑡𝐽)𝑦𝐹 ∈ dom (⇝𝑡𝐽)))
162126, 161sylbird 259 . . 3 (𝜑 → (𝑦 ∈ ((𝐽 fLimf (ℕfilGen(ℤ “ ℕ)))‘𝐺) → 𝐹 ∈ dom (⇝𝑡𝐽)))
163162exlimdv 1928 . 2 (𝜑 → (∃𝑦 𝑦 ∈ ((𝐽 fLimf (ℕfilGen(ℤ “ ℕ)))‘𝐺) → 𝐹 ∈ dom (⇝𝑡𝐽)))
164124, 163mpd 15 1 (𝜑𝐹 ∈ dom (⇝𝑡𝐽))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wex 1773  wcel 2098  wne 2929  wral 3050  wrex 3059  Vcvv 3461  cin 3943  wss 3944  c0 4322  ifcif 4530   class class class wbr 5149  cmpt 5232  dom cdm 5678  cima 5681  wf 6545  cfv 6549  (class class class)co 7419  pm cpm 8846  cc 11138  1c1 11141   < clt 11280  cn 12245  cz 12591  cuz 12855  +crp 13009  ∞Metcxmet 21281  Metcmet 21282  fBascfbas 21284  filGencfg 21285  MetOpencmopn 21286  TopOnctopon 22856  𝑡clm 23174  Filcfil 23793   FilMap cfm 23881   fLim cflim 23882   fLimf cflf 23883  CauFilccfil 25224  Cauccau 25225  CMetccmet 25226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9467  df-inf 9468  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-n0 12506  df-z 12592  df-uz 12856  df-q 12966  df-rp 13010  df-xneg 13127  df-xadd 13128  df-xmul 13129  df-ico 13365  df-rest 17407  df-topgen 17428  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-fbas 21293  df-fg 21294  df-top 22840  df-topon 22857  df-bases 22893  df-ntr 22968  df-nei 23046  df-lm 23177  df-fil 23794  df-fm 23886  df-flim 23887  df-flf 23888  df-cfil 25227  df-cau 25228  df-cmet 25229
This theorem is referenced by:  cmetcau  25261
  Copyright terms: Public domain W3C validator