MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmetcaulem Structured version   Visualization version   GIF version

Theorem cmetcaulem 25336
Description: Lemma for cmetcau 25337. (Contributed by Mario Carneiro, 14-Oct-2015.)
Hypotheses
Ref Expression
cmetcau.1 𝐽 = (MetOpen‘𝐷)
cmetcau.3 (𝜑𝐷 ∈ (CMet‘𝑋))
cmetcau.4 (𝜑𝑃𝑋)
cmetcau.5 (𝜑𝐹 ∈ (Cau‘𝐷))
cmetcau.6 𝐺 = (𝑥 ∈ ℕ ↦ if(𝑥 ∈ dom 𝐹, (𝐹𝑥), 𝑃))
Assertion
Ref Expression
cmetcaulem (𝜑𝐹 ∈ dom (⇝𝑡𝐽))
Distinct variable groups:   𝑥,𝐷   𝑥,𝐹   𝑥,𝑃   𝑥,𝐽   𝜑,𝑥   𝑥,𝑋
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem cmetcaulem
Dummy variables 𝑗 𝑘 𝑚 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cmetcau.3 . . . . . . . . 9 (𝜑𝐷 ∈ (CMet‘𝑋))
2 cmetmet 25334 . . . . . . . . 9 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
31, 2syl 17 . . . . . . . 8 (𝜑𝐷 ∈ (Met‘𝑋))
4 metxmet 24360 . . . . . . . 8 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
53, 4syl 17 . . . . . . 7 (𝜑𝐷 ∈ (∞Met‘𝑋))
6 cmetcau.1 . . . . . . . 8 𝐽 = (MetOpen‘𝐷)
76mopntopon 24465 . . . . . . 7 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
85, 7syl 17 . . . . . 6 (𝜑𝐽 ∈ (TopOn‘𝑋))
9 1z 12645 . . . . . . . 8 1 ∈ ℤ
10 nnuz 12919 . . . . . . . . 9 ℕ = (ℤ‘1)
1110uzfbas 23922 . . . . . . . 8 (1 ∈ ℤ → (ℤ “ ℕ) ∈ (fBas‘ℕ))
129, 11mp1i 13 . . . . . . 7 (𝜑 → (ℤ “ ℕ) ∈ (fBas‘ℕ))
13 fgcl 23902 . . . . . . 7 ((ℤ “ ℕ) ∈ (fBas‘ℕ) → (ℕfilGen(ℤ “ ℕ)) ∈ (Fil‘ℕ))
1412, 13syl 17 . . . . . 6 (𝜑 → (ℕfilGen(ℤ “ ℕ)) ∈ (Fil‘ℕ))
15 elfvdm 6944 . . . . . . . . . . . 12 (𝐷 ∈ (CMet‘𝑋) → 𝑋 ∈ dom CMet)
161, 15syl 17 . . . . . . . . . . 11 (𝜑𝑋 ∈ dom CMet)
17 cnex 11234 . . . . . . . . . . . 12 ℂ ∈ V
1817a1i 11 . . . . . . . . . . 11 (𝜑 → ℂ ∈ V)
19 cmetcau.5 . . . . . . . . . . . 12 (𝜑𝐹 ∈ (Cau‘𝐷))
20 caufpm 25330 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) → 𝐹 ∈ (𝑋pm ℂ))
215, 19, 20syl2anc 584 . . . . . . . . . . 11 (𝜑𝐹 ∈ (𝑋pm ℂ))
22 elpm2g 8883 . . . . . . . . . . . 12 ((𝑋 ∈ dom CMet ∧ ℂ ∈ V) → (𝐹 ∈ (𝑋pm ℂ) ↔ (𝐹:dom 𝐹𝑋 ∧ dom 𝐹 ⊆ ℂ)))
2322simprbda 498 . . . . . . . . . . 11 (((𝑋 ∈ dom CMet ∧ ℂ ∈ V) ∧ 𝐹 ∈ (𝑋pm ℂ)) → 𝐹:dom 𝐹𝑋)
2416, 18, 21, 23syl21anc 838 . . . . . . . . . 10 (𝜑𝐹:dom 𝐹𝑋)
2524adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → 𝐹:dom 𝐹𝑋)
2625ffvelcdmda 7104 . . . . . . . 8 (((𝜑𝑥 ∈ ℕ) ∧ 𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ 𝑋)
27 cmetcau.4 . . . . . . . . 9 (𝜑𝑃𝑋)
2827ad2antrr 726 . . . . . . . 8 (((𝜑𝑥 ∈ ℕ) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑃𝑋)
2926, 28ifclda 4566 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → if(𝑥 ∈ dom 𝐹, (𝐹𝑥), 𝑃) ∈ 𝑋)
30 cmetcau.6 . . . . . . 7 𝐺 = (𝑥 ∈ ℕ ↦ if(𝑥 ∈ dom 𝐹, (𝐹𝑥), 𝑃))
3129, 30fmptd 7134 . . . . . 6 (𝜑𝐺:ℕ⟶𝑋)
32 flfval 24014 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ (ℕfilGen(ℤ “ ℕ)) ∈ (Fil‘ℕ) ∧ 𝐺:ℕ⟶𝑋) → ((𝐽 fLimf (ℕfilGen(ℤ “ ℕ)))‘𝐺) = (𝐽 fLim ((𝑋 FilMap 𝐺)‘(ℕfilGen(ℤ “ ℕ)))))
338, 14, 31, 32syl3anc 1370 . . . . 5 (𝜑 → ((𝐽 fLimf (ℕfilGen(ℤ “ ℕ)))‘𝐺) = (𝐽 fLim ((𝑋 FilMap 𝐺)‘(ℕfilGen(ℤ “ ℕ)))))
34 eqid 2735 . . . . . . . 8 (ℕfilGen(ℤ “ ℕ)) = (ℕfilGen(ℤ “ ℕ))
3534fmfg 23973 . . . . . . 7 ((𝑋 ∈ dom CMet ∧ (ℤ “ ℕ) ∈ (fBas‘ℕ) ∧ 𝐺:ℕ⟶𝑋) → ((𝑋 FilMap 𝐺)‘(ℤ “ ℕ)) = ((𝑋 FilMap 𝐺)‘(ℕfilGen(ℤ “ ℕ))))
3616, 12, 31, 35syl3anc 1370 . . . . . 6 (𝜑 → ((𝑋 FilMap 𝐺)‘(ℤ “ ℕ)) = ((𝑋 FilMap 𝐺)‘(ℕfilGen(ℤ “ ℕ))))
3736oveq2d 7447 . . . . 5 (𝜑 → (𝐽 fLim ((𝑋 FilMap 𝐺)‘(ℤ “ ℕ))) = (𝐽 fLim ((𝑋 FilMap 𝐺)‘(ℕfilGen(ℤ “ ℕ)))))
3833, 37eqtr4d 2778 . . . 4 (𝜑 → ((𝐽 fLimf (ℕfilGen(ℤ “ ℕ)))‘𝐺) = (𝐽 fLim ((𝑋 FilMap 𝐺)‘(ℤ “ ℕ))))
39 biidd 262 . . . . . . . 8 (𝑧 = 1 → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑘 ∈ dom 𝐹 ↔ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑘 ∈ dom 𝐹))
40 1zzd 12646 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℤ)
4110, 5, 40iscau3 25326 . . . . . . . . . . 11 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑤 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑤)) < 𝑧))))
4241simplbda 499 . . . . . . . . . 10 ((𝜑𝐹 ∈ (Cau‘𝐷)) → ∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑤 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑤)) < 𝑧))
4319, 42mpdan 687 . . . . . . . . 9 (𝜑 → ∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑤 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑤)) < 𝑧))
44 simp1 1135 . . . . . . . . . . . 12 ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑤 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑤)) < 𝑧) → 𝑘 ∈ dom 𝐹)
4544ralimi 3081 . . . . . . . . . . 11 (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑤 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑤)) < 𝑧) → ∀𝑘 ∈ (ℤ𝑗)𝑘 ∈ dom 𝐹)
4645reximi 3082 . . . . . . . . . 10 (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑤 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑤)) < 𝑧) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑘 ∈ dom 𝐹)
4746ralimi 3081 . . . . . . . . 9 (∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑤 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑤)) < 𝑧) → ∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑘 ∈ dom 𝐹)
4843, 47syl 17 . . . . . . . 8 (𝜑 → ∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑘 ∈ dom 𝐹)
49 1rp 13036 . . . . . . . . 9 1 ∈ ℝ+
5049a1i 11 . . . . . . . 8 (𝜑 → 1 ∈ ℝ+)
5139, 48, 50rspcdva 3623 . . . . . . 7 (𝜑 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑘 ∈ dom 𝐹)
52 dfss3 3984 . . . . . . . . 9 ((ℤ𝑗) ⊆ dom 𝐹 ↔ ∀𝑘 ∈ (ℤ𝑗)𝑘 ∈ dom 𝐹)
53 nnsscn 12269 . . . . . . . . . . . . . 14 ℕ ⊆ ℂ
5431, 53jctir 520 . . . . . . . . . . . . 13 (𝜑 → (𝐺:ℕ⟶𝑋 ∧ ℕ ⊆ ℂ))
55 elpm2r 8884 . . . . . . . . . . . . 13 (((𝑋 ∈ dom CMet ∧ ℂ ∈ V) ∧ (𝐺:ℕ⟶𝑋 ∧ ℕ ⊆ ℂ)) → 𝐺 ∈ (𝑋pm ℂ))
5616, 18, 54, 55syl21anc 838 . . . . . . . . . . . 12 (𝜑𝐺 ∈ (𝑋pm ℂ))
5756adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) → 𝐺 ∈ (𝑋pm ℂ))
58 eqid 2735 . . . . . . . . . . . . . . 15 (ℤ𝑗) = (ℤ𝑗)
595adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) → 𝐷 ∈ (∞Met‘𝑋))
60 nnz 12632 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ → 𝑗 ∈ ℤ)
6160ad2antrl 728 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) → 𝑗 ∈ ℤ)
62 eqidd 2736 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) = (𝐹𝑘))
63 eqidd 2736 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝑚 ∈ (ℤ𝑗)) → (𝐹𝑚) = (𝐹𝑚))
6458, 59, 61, 62, 63iscau4 25327 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑧 ∈ ℝ+𝑚 ∈ (ℤ𝑗)∀𝑘 ∈ (ℤ𝑚)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧))))
6564simplbda 499 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝐹 ∈ (Cau‘𝐷)) → ∀𝑧 ∈ ℝ+𝑚 ∈ (ℤ𝑗)∀𝑘 ∈ (ℤ𝑚)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧))
6619, 65mpidan 689 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) → ∀𝑧 ∈ ℝ+𝑚 ∈ (ℤ𝑗)∀𝑘 ∈ (ℤ𝑚)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧))
67 simprl 771 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) → 𝑗 ∈ ℕ)
68 eluznn 12958 . . . . . . . . . . . . . . . 16 ((𝑗 ∈ ℕ ∧ 𝑚 ∈ (ℤ𝑗)) → 𝑚 ∈ ℕ)
6967, 68sylan 580 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝑚 ∈ (ℤ𝑗)) → 𝑚 ∈ ℕ)
70 eluznn 12958 . . . . . . . . . . . . . . . . . 18 ((𝑚 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑚)) → 𝑘 ∈ ℕ)
7130, 29dmmptd 6714 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → dom 𝐺 = ℕ)
7271adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) → dom 𝐺 = ℕ)
7372eleq2d 2825 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) → (𝑘 ∈ dom 𝐺𝑘 ∈ ℕ))
7473biimpar 477 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ dom 𝐺)
7574a1d 25 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝑘 ∈ ℕ) → (𝑘 ∈ dom 𝐹𝑘 ∈ dom 𝐺))
76 idd 24 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑘) ∈ 𝑋 → (𝐹𝑘) ∈ 𝑋))
77 idd 24 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝑘 ∈ ℕ) → (((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧 → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧))
7875, 76, 773anim123d 1442 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝑘 ∈ ℕ) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧) → (𝑘 ∈ dom 𝐺 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧)))
7970, 78sylan2 593 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ (𝑚 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑚))) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧) → (𝑘 ∈ dom 𝐺 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧)))
8079anassrs 467 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑚)) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧) → (𝑘 ∈ dom 𝐺 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧)))
8180ralimdva 3165 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝑚 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑚)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧) → ∀𝑘 ∈ (ℤ𝑚)(𝑘 ∈ dom 𝐺 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧)))
8269, 81syldan 591 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝑚 ∈ (ℤ𝑗)) → (∀𝑘 ∈ (ℤ𝑚)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧) → ∀𝑘 ∈ (ℤ𝑚)(𝑘 ∈ dom 𝐺 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧)))
8382reximdva 3166 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) → (∃𝑚 ∈ (ℤ𝑗)∀𝑘 ∈ (ℤ𝑚)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧) → ∃𝑚 ∈ (ℤ𝑗)∀𝑘 ∈ (ℤ𝑚)(𝑘 ∈ dom 𝐺 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧)))
8483ralimdv 3167 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) → (∀𝑧 ∈ ℝ+𝑚 ∈ (ℤ𝑗)∀𝑘 ∈ (ℤ𝑚)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧) → ∀𝑧 ∈ ℝ+𝑚 ∈ (ℤ𝑗)∀𝑘 ∈ (ℤ𝑚)(𝑘 ∈ dom 𝐺 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧)))
8566, 84mpd 15 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) → ∀𝑧 ∈ ℝ+𝑚 ∈ (ℤ𝑗)∀𝑘 ∈ (ℤ𝑚)(𝑘 ∈ dom 𝐺 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧))
86 eluznn 12958 . . . . . . . . . . . . . 14 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
8767, 86sylan 580 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
88 simprr 773 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) → (ℤ𝑗) ⊆ dom 𝐹)
8988sselda 3995 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ dom 𝐹)
90 iftrue 4537 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ dom 𝐹 → if(𝑘 ∈ dom 𝐹, (𝐹𝑘), 𝑃) = (𝐹𝑘))
9190adantl 481 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ ∧ 𝑘 ∈ dom 𝐹) → if(𝑘 ∈ dom 𝐹, (𝐹𝑘), 𝑃) = (𝐹𝑘))
92 fvex 6920 . . . . . . . . . . . . . . . 16 (𝐹𝑘) ∈ V
9391, 92eqeltrdi 2847 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℕ ∧ 𝑘 ∈ dom 𝐹) → if(𝑘 ∈ dom 𝐹, (𝐹𝑘), 𝑃) ∈ V)
94 eleq1w 2822 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑘 → (𝑥 ∈ dom 𝐹𝑘 ∈ dom 𝐹))
95 fveq2 6907 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑘 → (𝐹𝑥) = (𝐹𝑘))
9694, 95ifbieq1d 4555 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑘 → if(𝑥 ∈ dom 𝐹, (𝐹𝑥), 𝑃) = if(𝑘 ∈ dom 𝐹, (𝐹𝑘), 𝑃))
9796, 30fvmptg 7014 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℕ ∧ if(𝑘 ∈ dom 𝐹, (𝐹𝑘), 𝑃) ∈ V) → (𝐺𝑘) = if(𝑘 ∈ dom 𝐹, (𝐹𝑘), 𝑃))
9893, 97syldan 591 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ ∧ 𝑘 ∈ dom 𝐹) → (𝐺𝑘) = if(𝑘 ∈ dom 𝐹, (𝐹𝑘), 𝑃))
9998, 91eqtrd 2775 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ ∧ 𝑘 ∈ dom 𝐹) → (𝐺𝑘) = (𝐹𝑘))
10087, 89, 99syl2anc 584 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐺𝑘) = (𝐹𝑘))
10188sselda 3995 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝑚 ∈ (ℤ𝑗)) → 𝑚 ∈ dom 𝐹)
10269, 101elind 4210 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝑚 ∈ (ℤ𝑗)) → 𝑚 ∈ (ℕ ∩ dom 𝐹))
103 fveq2 6907 . . . . . . . . . . . . . . 15 (𝑘 = 𝑚 → (𝐺𝑘) = (𝐺𝑚))
104 fveq2 6907 . . . . . . . . . . . . . . 15 (𝑘 = 𝑚 → (𝐹𝑘) = (𝐹𝑚))
105103, 104eqeq12d 2751 . . . . . . . . . . . . . 14 (𝑘 = 𝑚 → ((𝐺𝑘) = (𝐹𝑘) ↔ (𝐺𝑚) = (𝐹𝑚)))
106 elin 3979 . . . . . . . . . . . . . . 15 (𝑘 ∈ (ℕ ∩ dom 𝐹) ↔ (𝑘 ∈ ℕ ∧ 𝑘 ∈ dom 𝐹))
107106, 99sylbi 217 . . . . . . . . . . . . . 14 (𝑘 ∈ (ℕ ∩ dom 𝐹) → (𝐺𝑘) = (𝐹𝑘))
108105, 107vtoclga 3577 . . . . . . . . . . . . 13 (𝑚 ∈ (ℕ ∩ dom 𝐹) → (𝐺𝑚) = (𝐹𝑚))
109102, 108syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝑚 ∈ (ℤ𝑗)) → (𝐺𝑚) = (𝐹𝑚))
11058, 59, 61, 100, 109iscau4 25327 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) → (𝐺 ∈ (Cau‘𝐷) ↔ (𝐺 ∈ (𝑋pm ℂ) ∧ ∀𝑧 ∈ ℝ+𝑚 ∈ (ℤ𝑗)∀𝑘 ∈ (ℤ𝑚)(𝑘 ∈ dom 𝐺 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧))))
11157, 85, 110mpbir2and 713 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) → 𝐺 ∈ (Cau‘𝐷))
112111expr 456 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → ((ℤ𝑗) ⊆ dom 𝐹𝐺 ∈ (Cau‘𝐷)))
11352, 112biimtrrid 243 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑗)𝑘 ∈ dom 𝐹𝐺 ∈ (Cau‘𝐷)))
114113rexlimdva 3153 . . . . . . 7 (𝜑 → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑘 ∈ dom 𝐹𝐺 ∈ (Cau‘𝐷)))
11551, 114mpd 15 . . . . . 6 (𝜑𝐺 ∈ (Cau‘𝐷))
116 eqid 2735 . . . . . . . 8 ((𝑋 FilMap 𝐺)‘(ℤ “ ℕ)) = ((𝑋 FilMap 𝐺)‘(ℤ “ ℕ))
11710, 116caucfil 25331 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 1 ∈ ℤ ∧ 𝐺:ℕ⟶𝑋) → (𝐺 ∈ (Cau‘𝐷) ↔ ((𝑋 FilMap 𝐺)‘(ℤ “ ℕ)) ∈ (CauFil‘𝐷)))
1185, 40, 31, 117syl3anc 1370 . . . . . 6 (𝜑 → (𝐺 ∈ (Cau‘𝐷) ↔ ((𝑋 FilMap 𝐺)‘(ℤ “ ℕ)) ∈ (CauFil‘𝐷)))
119115, 118mpbid 232 . . . . 5 (𝜑 → ((𝑋 FilMap 𝐺)‘(ℤ “ ℕ)) ∈ (CauFil‘𝐷))
1206cmetcvg 25333 . . . . 5 ((𝐷 ∈ (CMet‘𝑋) ∧ ((𝑋 FilMap 𝐺)‘(ℤ “ ℕ)) ∈ (CauFil‘𝐷)) → (𝐽 fLim ((𝑋 FilMap 𝐺)‘(ℤ “ ℕ))) ≠ ∅)
1211, 119, 120syl2anc 584 . . . 4 (𝜑 → (𝐽 fLim ((𝑋 FilMap 𝐺)‘(ℤ “ ℕ))) ≠ ∅)
12238, 121eqnetrd 3006 . . 3 (𝜑 → ((𝐽 fLimf (ℕfilGen(ℤ “ ℕ)))‘𝐺) ≠ ∅)
123 n0 4359 . . 3 (((𝐽 fLimf (ℕfilGen(ℤ “ ℕ)))‘𝐺) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ ((𝐽 fLimf (ℕfilGen(ℤ “ ℕ)))‘𝐺))
124122, 123sylib 218 . 2 (𝜑 → ∃𝑦 𝑦 ∈ ((𝐽 fLimf (ℕfilGen(ℤ “ ℕ)))‘𝐺))
12510, 34lmflf 24029 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 1 ∈ ℤ ∧ 𝐺:ℕ⟶𝑋) → (𝐺(⇝𝑡𝐽)𝑦𝑦 ∈ ((𝐽 fLimf (ℕfilGen(ℤ “ ℕ)))‘𝐺)))
1268, 40, 31, 125syl3anc 1370 . . . 4 (𝜑 → (𝐺(⇝𝑡𝐽)𝑦𝑦 ∈ ((𝐽 fLimf (ℕfilGen(ℤ “ ℕ)))‘𝐺)))
12721adantr 480 . . . . . . 7 ((𝜑𝐺(⇝𝑡𝐽)𝑦) → 𝐹 ∈ (𝑋pm ℂ))
128 lmcl 23321 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐺(⇝𝑡𝐽)𝑦) → 𝑦𝑋)
1298, 128sylan 580 . . . . . . 7 ((𝜑𝐺(⇝𝑡𝐽)𝑦) → 𝑦𝑋)
1306, 5, 10, 40lmmbr3 25308 . . . . . . . . . 10 (𝜑 → (𝐺(⇝𝑡𝐽)𝑦 ↔ (𝐺 ∈ (𝑋pm ℂ) ∧ 𝑦𝑋 ∧ ∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧))))
131130biimpa 476 . . . . . . . . 9 ((𝜑𝐺(⇝𝑡𝐽)𝑦) → (𝐺 ∈ (𝑋pm ℂ) ∧ 𝑦𝑋 ∧ ∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧)))
132131simp3d 1143 . . . . . . . 8 ((𝜑𝐺(⇝𝑡𝐽)𝑦) → ∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧))
133 r19.26 3109 . . . . . . . . . . 11 (∀𝑧 ∈ ℝ+ (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑘 ∈ dom 𝐹 ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧)) ↔ (∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑘 ∈ dom 𝐹 ∧ ∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧)))
13410rexanuz2 15385 . . . . . . . . . . . . 13 (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧)) ↔ (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑘 ∈ dom 𝐹 ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧)))
135 simprl 771 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧))) → 𝑘 ∈ dom 𝐹)
13699ad2ant2lr 748 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧))) → (𝐺𝑘) = (𝐹𝑘))
137 simprr2 1221 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧))) → (𝐺𝑘) ∈ 𝑋)
138136, 137eqeltrrd 2840 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧))) → (𝐹𝑘) ∈ 𝑋)
139136oveq1d 7446 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧))) → ((𝐺𝑘)𝐷𝑦) = ((𝐹𝑘)𝐷𝑦))
140 simprr3 1222 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧))) → ((𝐺𝑘)𝐷𝑦) < 𝑧)
141139, 140eqbrtrrd 5172 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧))) → ((𝐹𝑘)𝐷𝑦) < 𝑧)
142135, 138, 1413jca 1127 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧))) → (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑦) < 𝑧))
143142ex 412 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℕ) → ((𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧)) → (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑦) < 𝑧)))
14486, 143sylan2 593 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → ((𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧)) → (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑦) < 𝑧)))
145144anassrs 467 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧)) → (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑦) < 𝑧)))
146145ralimdva 3165 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧)) → ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑦) < 𝑧)))
147146reximdva 3166 . . . . . . . . . . . . 13 (𝜑 → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑦) < 𝑧)))
148134, 147biimtrrid 243 . . . . . . . . . . . 12 (𝜑 → ((∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑘 ∈ dom 𝐹 ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑦) < 𝑧)))
149148ralimdv 3167 . . . . . . . . . . 11 (𝜑 → (∀𝑧 ∈ ℝ+ (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑘 ∈ dom 𝐹 ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧)) → ∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑦) < 𝑧)))
150133, 149biimtrrid 243 . . . . . . . . . 10 (𝜑 → ((∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑘 ∈ dom 𝐹 ∧ ∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧)) → ∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑦) < 𝑧)))
15148, 150mpand 695 . . . . . . . . 9 (𝜑 → (∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧) → ∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑦) < 𝑧)))
152151adantr 480 . . . . . . . 8 ((𝜑𝐺(⇝𝑡𝐽)𝑦) → (∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧) → ∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑦) < 𝑧)))
153132, 152mpd 15 . . . . . . 7 ((𝜑𝐺(⇝𝑡𝐽)𝑦) → ∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑦) < 𝑧))
1545adantr 480 . . . . . . . 8 ((𝜑𝐺(⇝𝑡𝐽)𝑦) → 𝐷 ∈ (∞Met‘𝑋))
155 1zzd 12646 . . . . . . . 8 ((𝜑𝐺(⇝𝑡𝐽)𝑦) → 1 ∈ ℤ)
1566, 154, 10, 155lmmbr3 25308 . . . . . . 7 ((𝜑𝐺(⇝𝑡𝐽)𝑦) → (𝐹(⇝𝑡𝐽)𝑦 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑦𝑋 ∧ ∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑦) < 𝑧))))
157127, 129, 153, 156mpbir3and 1341 . . . . . 6 ((𝜑𝐺(⇝𝑡𝐽)𝑦) → 𝐹(⇝𝑡𝐽)𝑦)
158 lmrel 23254 . . . . . . 7 Rel (⇝𝑡𝐽)
159158releldmi 5962 . . . . . 6 (𝐹(⇝𝑡𝐽)𝑦𝐹 ∈ dom (⇝𝑡𝐽))
160157, 159syl 17 . . . . 5 ((𝜑𝐺(⇝𝑡𝐽)𝑦) → 𝐹 ∈ dom (⇝𝑡𝐽))
161160ex 412 . . . 4 (𝜑 → (𝐺(⇝𝑡𝐽)𝑦𝐹 ∈ dom (⇝𝑡𝐽)))
162126, 161sylbird 260 . . 3 (𝜑 → (𝑦 ∈ ((𝐽 fLimf (ℕfilGen(ℤ “ ℕ)))‘𝐺) → 𝐹 ∈ dom (⇝𝑡𝐽)))
163162exlimdv 1931 . 2 (𝜑 → (∃𝑦 𝑦 ∈ ((𝐽 fLimf (ℕfilGen(ℤ “ ℕ)))‘𝐺) → 𝐹 ∈ dom (⇝𝑡𝐽)))
164124, 163mpd 15 1 (𝜑𝐹 ∈ dom (⇝𝑡𝐽))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wex 1776  wcel 2106  wne 2938  wral 3059  wrex 3068  Vcvv 3478  cin 3962  wss 3963  c0 4339  ifcif 4531   class class class wbr 5148  cmpt 5231  dom cdm 5689  cima 5692  wf 6559  cfv 6563  (class class class)co 7431  pm cpm 8866  cc 11151  1c1 11154   < clt 11293  cn 12264  cz 12611  cuz 12876  +crp 13032  ∞Metcxmet 21367  Metcmet 21368  fBascfbas 21370  filGencfg 21371  MetOpencmopn 21372  TopOnctopon 22932  𝑡clm 23250  Filcfil 23869   FilMap cfm 23957   fLim cflim 23958   fLimf cflf 23959  CauFilccfil 25300  Cauccau 25301  CMetccmet 25302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-map 8867  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-n0 12525  df-z 12612  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ico 13390  df-rest 17469  df-topgen 17490  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-top 22916  df-topon 22933  df-bases 22969  df-ntr 23044  df-nei 23122  df-lm 23253  df-fil 23870  df-fm 23962  df-flim 23963  df-flf 23964  df-cfil 25303  df-cau 25304  df-cmet 25305
This theorem is referenced by:  cmetcau  25337
  Copyright terms: Public domain W3C validator