Step | Hyp | Ref
| Expression |
1 | | cmetcau.3 |
. . . . . . . . 9
⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) |
2 | | cmetmet 24450 |
. . . . . . . . 9
⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋)) |
3 | 1, 2 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) |
4 | | metxmet 23487 |
. . . . . . . 8
⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
5 | 3, 4 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
6 | | cmetcau.1 |
. . . . . . . 8
⊢ 𝐽 = (MetOpen‘𝐷) |
7 | 6 | mopntopon 23592 |
. . . . . . 7
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
8 | 5, 7 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
9 | | 1z 12350 |
. . . . . . . 8
⊢ 1 ∈
ℤ |
10 | | nnuz 12621 |
. . . . . . . . 9
⊢ ℕ =
(ℤ≥‘1) |
11 | 10 | uzfbas 23049 |
. . . . . . . 8
⊢ (1 ∈
ℤ → (ℤ≥ “ ℕ) ∈
(fBas‘ℕ)) |
12 | 9, 11 | mp1i 13 |
. . . . . . 7
⊢ (𝜑 → (ℤ≥
“ ℕ) ∈ (fBas‘ℕ)) |
13 | | fgcl 23029 |
. . . . . . 7
⊢
((ℤ≥ “ ℕ) ∈ (fBas‘ℕ)
→ (ℕfilGen(ℤ≥ “ ℕ)) ∈
(Fil‘ℕ)) |
14 | 12, 13 | syl 17 |
. . . . . 6
⊢ (𝜑 →
(ℕfilGen(ℤ≥ “ ℕ)) ∈
(Fil‘ℕ)) |
15 | | elfvdm 6806 |
. . . . . . . . . . . 12
⊢ (𝐷 ∈ (CMet‘𝑋) → 𝑋 ∈ dom CMet) |
16 | 1, 15 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑋 ∈ dom CMet) |
17 | | cnex 10952 |
. . . . . . . . . . . 12
⊢ ℂ
∈ V |
18 | 17 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → ℂ ∈
V) |
19 | | cmetcau.5 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹 ∈ (Cau‘𝐷)) |
20 | | caufpm 24446 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) → 𝐹 ∈ (𝑋 ↑pm
ℂ)) |
21 | 5, 19, 20 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 ∈ (𝑋 ↑pm
ℂ)) |
22 | | elpm2g 8632 |
. . . . . . . . . . . 12
⊢ ((𝑋 ∈ dom CMet ∧ ℂ
∈ V) → (𝐹 ∈
(𝑋 ↑pm
ℂ) ↔ (𝐹:dom
𝐹⟶𝑋 ∧ dom 𝐹 ⊆ ℂ))) |
23 | 22 | simprbda 499 |
. . . . . . . . . . 11
⊢ (((𝑋 ∈ dom CMet ∧ ℂ
∈ V) ∧ 𝐹 ∈
(𝑋 ↑pm
ℂ)) → 𝐹:dom
𝐹⟶𝑋) |
24 | 16, 18, 21, 23 | syl21anc 835 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:dom 𝐹⟶𝑋) |
25 | 24 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ) → 𝐹:dom 𝐹⟶𝑋) |
26 | 25 | ffvelrnda 6961 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ 𝑋) |
27 | | cmetcau.4 |
. . . . . . . . 9
⊢ (𝜑 → 𝑃 ∈ 𝑋) |
28 | 27 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℕ) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑃 ∈ 𝑋) |
29 | 26, 28 | ifclda 4494 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℕ) → if(𝑥 ∈ dom 𝐹, (𝐹‘𝑥), 𝑃) ∈ 𝑋) |
30 | | cmetcau.6 |
. . . . . . 7
⊢ 𝐺 = (𝑥 ∈ ℕ ↦ if(𝑥 ∈ dom 𝐹, (𝐹‘𝑥), 𝑃)) |
31 | 29, 30 | fmptd 6988 |
. . . . . 6
⊢ (𝜑 → 𝐺:ℕ⟶𝑋) |
32 | | flfval 23141 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧
(ℕfilGen(ℤ≥ “ ℕ)) ∈
(Fil‘ℕ) ∧ 𝐺:ℕ⟶𝑋) → ((𝐽 fLimf (ℕfilGen(ℤ≥
“ ℕ)))‘𝐺)
= (𝐽 fLim ((𝑋 FilMap 𝐺)‘(ℕfilGen(ℤ≥
“ ℕ))))) |
33 | 8, 14, 31, 32 | syl3anc 1370 |
. . . . 5
⊢ (𝜑 → ((𝐽 fLimf (ℕfilGen(ℤ≥
“ ℕ)))‘𝐺)
= (𝐽 fLim ((𝑋 FilMap 𝐺)‘(ℕfilGen(ℤ≥
“ ℕ))))) |
34 | | eqid 2738 |
. . . . . . . 8
⊢
(ℕfilGen(ℤ≥ “ ℕ)) =
(ℕfilGen(ℤ≥ “ ℕ)) |
35 | 34 | fmfg 23100 |
. . . . . . 7
⊢ ((𝑋 ∈ dom CMet ∧
(ℤ≥ “ ℕ) ∈ (fBas‘ℕ) ∧
𝐺:ℕ⟶𝑋) → ((𝑋 FilMap 𝐺)‘(ℤ≥ “
ℕ)) = ((𝑋 FilMap
𝐺)‘(ℕfilGen(ℤ≥
“ ℕ)))) |
36 | 16, 12, 31, 35 | syl3anc 1370 |
. . . . . 6
⊢ (𝜑 → ((𝑋 FilMap 𝐺)‘(ℤ≥ “
ℕ)) = ((𝑋 FilMap
𝐺)‘(ℕfilGen(ℤ≥
“ ℕ)))) |
37 | 36 | oveq2d 7291 |
. . . . 5
⊢ (𝜑 → (𝐽 fLim ((𝑋 FilMap 𝐺)‘(ℤ≥ “
ℕ))) = (𝐽 fLim
((𝑋 FilMap 𝐺)‘(ℕfilGen(ℤ≥
“ ℕ))))) |
38 | 33, 37 | eqtr4d 2781 |
. . . 4
⊢ (𝜑 → ((𝐽 fLimf (ℕfilGen(ℤ≥
“ ℕ)))‘𝐺)
= (𝐽 fLim ((𝑋 FilMap 𝐺)‘(ℤ≥ “
ℕ)))) |
39 | | biidd 261 |
. . . . . . . 8
⊢ (𝑧 = 1 → (∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)𝑘 ∈ dom 𝐹 ↔ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)𝑘 ∈ dom 𝐹)) |
40 | | 1zzd 12351 |
. . . . . . . . . . . 12
⊢ (𝜑 → 1 ∈
ℤ) |
41 | 10, 5, 40 | iscau3 24442 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧
∀𝑧 ∈
ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ∀𝑤 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑤)) < 𝑧)))) |
42 | 41 | simplbda 500 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐹 ∈ (Cau‘𝐷)) → ∀𝑧 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ∀𝑤 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑤)) < 𝑧)) |
43 | 19, 42 | mpdan 684 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑧 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ∀𝑤 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑤)) < 𝑧)) |
44 | | simp1 1135 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ∀𝑤 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑤)) < 𝑧) → 𝑘 ∈ dom 𝐹) |
45 | 44 | ralimi 3087 |
. . . . . . . . . . 11
⊢
(∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ∀𝑤 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑤)) < 𝑧) → ∀𝑘 ∈ (ℤ≥‘𝑗)𝑘 ∈ dom 𝐹) |
46 | 45 | reximi 3178 |
. . . . . . . . . 10
⊢
(∃𝑗 ∈
ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ∀𝑤 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑤)) < 𝑧) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)𝑘 ∈ dom 𝐹) |
47 | 46 | ralimi 3087 |
. . . . . . . . 9
⊢
(∀𝑧 ∈
ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ∀𝑤 ∈ (ℤ≥‘𝑘)((𝐹‘𝑘)𝐷(𝐹‘𝑤)) < 𝑧) → ∀𝑧 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)𝑘 ∈ dom 𝐹) |
48 | 43, 47 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑧 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)𝑘 ∈ dom 𝐹) |
49 | | 1rp 12734 |
. . . . . . . . 9
⊢ 1 ∈
ℝ+ |
50 | 49 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 1 ∈
ℝ+) |
51 | 39, 48, 50 | rspcdva 3562 |
. . . . . . 7
⊢ (𝜑 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)𝑘 ∈ dom 𝐹) |
52 | | dfss3 3909 |
. . . . . . . . 9
⊢
((ℤ≥‘𝑗) ⊆ dom 𝐹 ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)𝑘 ∈ dom 𝐹) |
53 | | nnsscn 11978 |
. . . . . . . . . . . . . 14
⊢ ℕ
⊆ ℂ |
54 | 31, 53 | jctir 521 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐺:ℕ⟶𝑋 ∧ ℕ ⊆
ℂ)) |
55 | | elpm2r 8633 |
. . . . . . . . . . . . 13
⊢ (((𝑋 ∈ dom CMet ∧ ℂ
∈ V) ∧ (𝐺:ℕ⟶𝑋 ∧ ℕ ⊆ ℂ)) →
𝐺 ∈ (𝑋 ↑pm
ℂ)) |
56 | 16, 18, 54, 55 | syl21anc 835 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐺 ∈ (𝑋 ↑pm
ℂ)) |
57 | 56 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧
(ℤ≥‘𝑗) ⊆ dom 𝐹)) → 𝐺 ∈ (𝑋 ↑pm
ℂ)) |
58 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢
(ℤ≥‘𝑗) = (ℤ≥‘𝑗) |
59 | 5 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧
(ℤ≥‘𝑗) ⊆ dom 𝐹)) → 𝐷 ∈ (∞Met‘𝑋)) |
60 | | nnz 12342 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ ℕ → 𝑗 ∈
ℤ) |
61 | 60 | ad2antrl 725 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧
(ℤ≥‘𝑗) ⊆ dom 𝐹)) → 𝑗 ∈ ℤ) |
62 | | eqidd 2739 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧
(ℤ≥‘𝑗) ⊆ dom 𝐹)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝐹‘𝑘) = (𝐹‘𝑘)) |
63 | | eqidd 2739 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧
(ℤ≥‘𝑗) ⊆ dom 𝐹)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → (𝐹‘𝑚) = (𝐹‘𝑚)) |
64 | 58, 59, 61, 62, 63 | iscau4 24443 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧
(ℤ≥‘𝑗) ⊆ dom 𝐹)) → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧
∀𝑧 ∈
ℝ+ ∃𝑚 ∈ (ℤ≥‘𝑗)∀𝑘 ∈ (ℤ≥‘𝑚)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑧)))) |
65 | 64 | simplbda 500 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧
(ℤ≥‘𝑗) ⊆ dom 𝐹)) ∧ 𝐹 ∈ (Cau‘𝐷)) → ∀𝑧 ∈ ℝ+ ∃𝑚 ∈
(ℤ≥‘𝑗)∀𝑘 ∈ (ℤ≥‘𝑚)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑧)) |
66 | 19, 65 | mpidan 686 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧
(ℤ≥‘𝑗) ⊆ dom 𝐹)) → ∀𝑧 ∈ ℝ+ ∃𝑚 ∈
(ℤ≥‘𝑗)∀𝑘 ∈ (ℤ≥‘𝑚)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑧)) |
67 | | simprl 768 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧
(ℤ≥‘𝑗) ⊆ dom 𝐹)) → 𝑗 ∈ ℕ) |
68 | | eluznn 12658 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑗 ∈ ℕ ∧ 𝑚 ∈
(ℤ≥‘𝑗)) → 𝑚 ∈ ℕ) |
69 | 67, 68 | sylan 580 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧
(ℤ≥‘𝑗) ⊆ dom 𝐹)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → 𝑚 ∈ ℕ) |
70 | | eluznn 12658 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑚 ∈ ℕ ∧ 𝑘 ∈
(ℤ≥‘𝑚)) → 𝑘 ∈ ℕ) |
71 | 30, 29 | dmmptd 6578 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → dom 𝐺 = ℕ) |
72 | 71 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧
(ℤ≥‘𝑗) ⊆ dom 𝐹)) → dom 𝐺 = ℕ) |
73 | 72 | eleq2d 2824 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧
(ℤ≥‘𝑗) ⊆ dom 𝐹)) → (𝑘 ∈ dom 𝐺 ↔ 𝑘 ∈ ℕ)) |
74 | 73 | biimpar 478 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧
(ℤ≥‘𝑗) ⊆ dom 𝐹)) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ dom 𝐺) |
75 | 74 | a1d 25 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧
(ℤ≥‘𝑗) ⊆ dom 𝐹)) ∧ 𝑘 ∈ ℕ) → (𝑘 ∈ dom 𝐹 → 𝑘 ∈ dom 𝐺)) |
76 | | idd 24 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧
(ℤ≥‘𝑗) ⊆ dom 𝐹)) ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑘) ∈ 𝑋 → (𝐹‘𝑘) ∈ 𝑋)) |
77 | | idd 24 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧
(ℤ≥‘𝑗) ⊆ dom 𝐹)) ∧ 𝑘 ∈ ℕ) → (((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑧 → ((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑧)) |
78 | 75, 76, 77 | 3anim123d 1442 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧
(ℤ≥‘𝑗) ⊆ dom 𝐹)) ∧ 𝑘 ∈ ℕ) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑧) → (𝑘 ∈ dom 𝐺 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑧))) |
79 | 70, 78 | sylan2 593 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧
(ℤ≥‘𝑗) ⊆ dom 𝐹)) ∧ (𝑚 ∈ ℕ ∧ 𝑘 ∈ (ℤ≥‘𝑚))) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑧) → (𝑘 ∈ dom 𝐺 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑧))) |
80 | 79 | anassrs 468 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑗 ∈ ℕ ∧
(ℤ≥‘𝑗) ⊆ dom 𝐹)) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑚)) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑧) → (𝑘 ∈ dom 𝐺 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑧))) |
81 | 80 | ralimdva 3108 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧
(ℤ≥‘𝑗) ⊆ dom 𝐹)) ∧ 𝑚 ∈ ℕ) → (∀𝑘 ∈
(ℤ≥‘𝑚)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑧) → ∀𝑘 ∈ (ℤ≥‘𝑚)(𝑘 ∈ dom 𝐺 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑧))) |
82 | 69, 81 | syldan 591 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧
(ℤ≥‘𝑗) ⊆ dom 𝐹)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → (∀𝑘 ∈
(ℤ≥‘𝑚)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑧) → ∀𝑘 ∈ (ℤ≥‘𝑚)(𝑘 ∈ dom 𝐺 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑧))) |
83 | 82 | reximdva 3203 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧
(ℤ≥‘𝑗) ⊆ dom 𝐹)) → (∃𝑚 ∈ (ℤ≥‘𝑗)∀𝑘 ∈ (ℤ≥‘𝑚)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑧) → ∃𝑚 ∈ (ℤ≥‘𝑗)∀𝑘 ∈ (ℤ≥‘𝑚)(𝑘 ∈ dom 𝐺 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑧))) |
84 | 83 | ralimdv 3109 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧
(ℤ≥‘𝑗) ⊆ dom 𝐹)) → (∀𝑧 ∈ ℝ+ ∃𝑚 ∈
(ℤ≥‘𝑗)∀𝑘 ∈ (ℤ≥‘𝑚)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑧) → ∀𝑧 ∈ ℝ+ ∃𝑚 ∈
(ℤ≥‘𝑗)∀𝑘 ∈ (ℤ≥‘𝑚)(𝑘 ∈ dom 𝐺 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑧))) |
85 | 66, 84 | mpd 15 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧
(ℤ≥‘𝑗) ⊆ dom 𝐹)) → ∀𝑧 ∈ ℝ+ ∃𝑚 ∈
(ℤ≥‘𝑗)∀𝑘 ∈ (ℤ≥‘𝑚)(𝑘 ∈ dom 𝐺 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑧)) |
86 | | eluznn 12658 |
. . . . . . . . . . . . . 14
⊢ ((𝑗 ∈ ℕ ∧ 𝑘 ∈
(ℤ≥‘𝑗)) → 𝑘 ∈ ℕ) |
87 | 67, 86 | sylan 580 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧
(ℤ≥‘𝑗) ⊆ dom 𝐹)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ ℕ) |
88 | | simprr 770 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧
(ℤ≥‘𝑗) ⊆ dom 𝐹)) →
(ℤ≥‘𝑗) ⊆ dom 𝐹) |
89 | 88 | sselda 3921 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧
(ℤ≥‘𝑗) ⊆ dom 𝐹)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ dom 𝐹) |
90 | | iftrue 4465 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ dom 𝐹 → if(𝑘 ∈ dom 𝐹, (𝐹‘𝑘), 𝑃) = (𝐹‘𝑘)) |
91 | 90 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ ℕ ∧ 𝑘 ∈ dom 𝐹) → if(𝑘 ∈ dom 𝐹, (𝐹‘𝑘), 𝑃) = (𝐹‘𝑘)) |
92 | | fvex 6787 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹‘𝑘) ∈ V |
93 | 91, 92 | eqeltrdi 2847 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ ℕ ∧ 𝑘 ∈ dom 𝐹) → if(𝑘 ∈ dom 𝐹, (𝐹‘𝑘), 𝑃) ∈ V) |
94 | | eleq1w 2821 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑘 → (𝑥 ∈ dom 𝐹 ↔ 𝑘 ∈ dom 𝐹)) |
95 | | fveq2 6774 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑘 → (𝐹‘𝑥) = (𝐹‘𝑘)) |
96 | 94, 95 | ifbieq1d 4483 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑘 → if(𝑥 ∈ dom 𝐹, (𝐹‘𝑥), 𝑃) = if(𝑘 ∈ dom 𝐹, (𝐹‘𝑘), 𝑃)) |
97 | 96, 30 | fvmptg 6873 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ ℕ ∧ if(𝑘 ∈ dom 𝐹, (𝐹‘𝑘), 𝑃) ∈ V) → (𝐺‘𝑘) = if(𝑘 ∈ dom 𝐹, (𝐹‘𝑘), 𝑃)) |
98 | 93, 97 | syldan 591 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ ℕ ∧ 𝑘 ∈ dom 𝐹) → (𝐺‘𝑘) = if(𝑘 ∈ dom 𝐹, (𝐹‘𝑘), 𝑃)) |
99 | 98, 91 | eqtrd 2778 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ ℕ ∧ 𝑘 ∈ dom 𝐹) → (𝐺‘𝑘) = (𝐹‘𝑘)) |
100 | 87, 89, 99 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧
(ℤ≥‘𝑗) ⊆ dom 𝐹)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝐺‘𝑘) = (𝐹‘𝑘)) |
101 | 88 | sselda 3921 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧
(ℤ≥‘𝑗) ⊆ dom 𝐹)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → 𝑚 ∈ dom 𝐹) |
102 | 69, 101 | elind 4128 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧
(ℤ≥‘𝑗) ⊆ dom 𝐹)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → 𝑚 ∈ (ℕ ∩ dom 𝐹)) |
103 | | fveq2 6774 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑚 → (𝐺‘𝑘) = (𝐺‘𝑚)) |
104 | | fveq2 6774 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑚 → (𝐹‘𝑘) = (𝐹‘𝑚)) |
105 | 103, 104 | eqeq12d 2754 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑚 → ((𝐺‘𝑘) = (𝐹‘𝑘) ↔ (𝐺‘𝑚) = (𝐹‘𝑚))) |
106 | | elin 3903 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (ℕ ∩ dom 𝐹) ↔ (𝑘 ∈ ℕ ∧ 𝑘 ∈ dom 𝐹)) |
107 | 106, 99 | sylbi 216 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (ℕ ∩ dom 𝐹) → (𝐺‘𝑘) = (𝐹‘𝑘)) |
108 | 105, 107 | vtoclga 3513 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∈ (ℕ ∩ dom 𝐹) → (𝐺‘𝑚) = (𝐹‘𝑚)) |
109 | 102, 108 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧
(ℤ≥‘𝑗) ⊆ dom 𝐹)) ∧ 𝑚 ∈ (ℤ≥‘𝑗)) → (𝐺‘𝑚) = (𝐹‘𝑚)) |
110 | 58, 59, 61, 100, 109 | iscau4 24443 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧
(ℤ≥‘𝑗) ⊆ dom 𝐹)) → (𝐺 ∈ (Cau‘𝐷) ↔ (𝐺 ∈ (𝑋 ↑pm ℂ) ∧
∀𝑧 ∈
ℝ+ ∃𝑚 ∈ (ℤ≥‘𝑗)∀𝑘 ∈ (ℤ≥‘𝑚)(𝑘 ∈ dom 𝐺 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷(𝐹‘𝑚)) < 𝑧)))) |
111 | 57, 85, 110 | mpbir2and 710 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧
(ℤ≥‘𝑗) ⊆ dom 𝐹)) → 𝐺 ∈ (Cau‘𝐷)) |
112 | 111 | expr 457 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) →
((ℤ≥‘𝑗) ⊆ dom 𝐹 → 𝐺 ∈ (Cau‘𝐷))) |
113 | 52, 112 | syl5bir 242 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈
(ℤ≥‘𝑗)𝑘 ∈ dom 𝐹 → 𝐺 ∈ (Cau‘𝐷))) |
114 | 113 | rexlimdva 3213 |
. . . . . . 7
⊢ (𝜑 → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)𝑘 ∈ dom 𝐹 → 𝐺 ∈ (Cau‘𝐷))) |
115 | 51, 114 | mpd 15 |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ (Cau‘𝐷)) |
116 | | eqid 2738 |
. . . . . . . 8
⊢ ((𝑋 FilMap 𝐺)‘(ℤ≥ “
ℕ)) = ((𝑋 FilMap
𝐺)‘(ℤ≥ “
ℕ)) |
117 | 10, 116 | caucfil 24447 |
. . . . . . 7
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 1 ∈ ℤ ∧
𝐺:ℕ⟶𝑋) → (𝐺 ∈ (Cau‘𝐷) ↔ ((𝑋 FilMap 𝐺)‘(ℤ≥ “
ℕ)) ∈ (CauFil‘𝐷))) |
118 | 5, 40, 31, 117 | syl3anc 1370 |
. . . . . 6
⊢ (𝜑 → (𝐺 ∈ (Cau‘𝐷) ↔ ((𝑋 FilMap 𝐺)‘(ℤ≥ “
ℕ)) ∈ (CauFil‘𝐷))) |
119 | 115, 118 | mpbid 231 |
. . . . 5
⊢ (𝜑 → ((𝑋 FilMap 𝐺)‘(ℤ≥ “
ℕ)) ∈ (CauFil‘𝐷)) |
120 | 6 | cmetcvg 24449 |
. . . . 5
⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ ((𝑋 FilMap 𝐺)‘(ℤ≥ “
ℕ)) ∈ (CauFil‘𝐷)) → (𝐽 fLim ((𝑋 FilMap 𝐺)‘(ℤ≥ “
ℕ))) ≠ ∅) |
121 | 1, 119, 120 | syl2anc 584 |
. . . 4
⊢ (𝜑 → (𝐽 fLim ((𝑋 FilMap 𝐺)‘(ℤ≥ “
ℕ))) ≠ ∅) |
122 | 38, 121 | eqnetrd 3011 |
. . 3
⊢ (𝜑 → ((𝐽 fLimf (ℕfilGen(ℤ≥
“ ℕ)))‘𝐺)
≠ ∅) |
123 | | n0 4280 |
. . 3
⊢ (((𝐽 fLimf
(ℕfilGen(ℤ≥ “ ℕ)))‘𝐺) ≠ ∅ ↔
∃𝑦 𝑦 ∈ ((𝐽 fLimf (ℕfilGen(ℤ≥
“ ℕ)))‘𝐺)) |
124 | 122, 123 | sylib 217 |
. 2
⊢ (𝜑 → ∃𝑦 𝑦 ∈ ((𝐽 fLimf (ℕfilGen(ℤ≥
“ ℕ)))‘𝐺)) |
125 | 10, 34 | lmflf 23156 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 1 ∈ ℤ ∧
𝐺:ℕ⟶𝑋) → (𝐺(⇝𝑡‘𝐽)𝑦 ↔ 𝑦 ∈ ((𝐽 fLimf (ℕfilGen(ℤ≥
“ ℕ)))‘𝐺))) |
126 | 8, 40, 31, 125 | syl3anc 1370 |
. . . 4
⊢ (𝜑 → (𝐺(⇝𝑡‘𝐽)𝑦 ↔ 𝑦 ∈ ((𝐽 fLimf (ℕfilGen(ℤ≥
“ ℕ)))‘𝐺))) |
127 | 21 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐺(⇝𝑡‘𝐽)𝑦) → 𝐹 ∈ (𝑋 ↑pm
ℂ)) |
128 | | lmcl 22448 |
. . . . . . . 8
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐺(⇝𝑡‘𝐽)𝑦) → 𝑦 ∈ 𝑋) |
129 | 8, 128 | sylan 580 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐺(⇝𝑡‘𝐽)𝑦) → 𝑦 ∈ 𝑋) |
130 | 6, 5, 10, 40 | lmmbr3 24424 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐺(⇝𝑡‘𝐽)𝑦 ↔ (𝐺 ∈ (𝑋 ↑pm ℂ) ∧ 𝑦 ∈ 𝑋 ∧ ∀𝑧 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐺 ∧ (𝐺‘𝑘) ∈ 𝑋 ∧ ((𝐺‘𝑘)𝐷𝑦) < 𝑧)))) |
131 | 130 | biimpa 477 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐺(⇝𝑡‘𝐽)𝑦) → (𝐺 ∈ (𝑋 ↑pm ℂ) ∧ 𝑦 ∈ 𝑋 ∧ ∀𝑧 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐺 ∧ (𝐺‘𝑘) ∈ 𝑋 ∧ ((𝐺‘𝑘)𝐷𝑦) < 𝑧))) |
132 | 131 | simp3d 1143 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐺(⇝𝑡‘𝐽)𝑦) → ∀𝑧 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐺 ∧ (𝐺‘𝑘) ∈ 𝑋 ∧ ((𝐺‘𝑘)𝐷𝑦) < 𝑧)) |
133 | | r19.26 3095 |
. . . . . . . . . . 11
⊢
(∀𝑧 ∈
ℝ+ (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)𝑘 ∈ dom 𝐹 ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐺 ∧ (𝐺‘𝑘) ∈ 𝑋 ∧ ((𝐺‘𝑘)𝐷𝑦) < 𝑧)) ↔ (∀𝑧 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)𝑘 ∈ dom 𝐹 ∧ ∀𝑧 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐺 ∧ (𝐺‘𝑘) ∈ 𝑋 ∧ ((𝐺‘𝑘)𝐷𝑦) < 𝑧))) |
134 | 10 | rexanuz2 15061 |
. . . . . . . . . . . . 13
⊢
(∃𝑗 ∈
ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺‘𝑘) ∈ 𝑋 ∧ ((𝐺‘𝑘)𝐷𝑦) < 𝑧)) ↔ (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)𝑘 ∈ dom 𝐹 ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐺 ∧ (𝐺‘𝑘) ∈ 𝑋 ∧ ((𝐺‘𝑘)𝐷𝑦) < 𝑧))) |
135 | | simprl 768 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺‘𝑘) ∈ 𝑋 ∧ ((𝐺‘𝑘)𝐷𝑦) < 𝑧))) → 𝑘 ∈ dom 𝐹) |
136 | 99 | ad2ant2lr 745 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺‘𝑘) ∈ 𝑋 ∧ ((𝐺‘𝑘)𝐷𝑦) < 𝑧))) → (𝐺‘𝑘) = (𝐹‘𝑘)) |
137 | | simprr2 1221 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺‘𝑘) ∈ 𝑋 ∧ ((𝐺‘𝑘)𝐷𝑦) < 𝑧))) → (𝐺‘𝑘) ∈ 𝑋) |
138 | 136, 137 | eqeltrrd 2840 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺‘𝑘) ∈ 𝑋 ∧ ((𝐺‘𝑘)𝐷𝑦) < 𝑧))) → (𝐹‘𝑘) ∈ 𝑋) |
139 | 136 | oveq1d 7290 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺‘𝑘) ∈ 𝑋 ∧ ((𝐺‘𝑘)𝐷𝑦) < 𝑧))) → ((𝐺‘𝑘)𝐷𝑦) = ((𝐹‘𝑘)𝐷𝑦)) |
140 | | simprr3 1222 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺‘𝑘) ∈ 𝑋 ∧ ((𝐺‘𝑘)𝐷𝑦) < 𝑧))) → ((𝐺‘𝑘)𝐷𝑦) < 𝑧) |
141 | 139, 140 | eqbrtrrd 5098 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺‘𝑘) ∈ 𝑋 ∧ ((𝐺‘𝑘)𝐷𝑦) < 𝑧))) → ((𝐹‘𝑘)𝐷𝑦) < 𝑧) |
142 | 135, 138,
141 | 3jca 1127 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺‘𝑘) ∈ 𝑋 ∧ ((𝐺‘𝑘)𝐷𝑦) < 𝑧))) → (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑦) < 𝑧)) |
143 | 142 | ex 413 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺‘𝑘) ∈ 𝑋 ∧ ((𝐺‘𝑘)𝐷𝑦) < 𝑧)) → (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑦) < 𝑧))) |
144 | 86, 143 | sylan2 593 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → ((𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺‘𝑘) ∈ 𝑋 ∧ ((𝐺‘𝑘)𝐷𝑦) < 𝑧)) → (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑦) < 𝑧))) |
145 | 144 | anassrs 468 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺‘𝑘) ∈ 𝑋 ∧ ((𝐺‘𝑘)𝐷𝑦) < 𝑧)) → (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑦) < 𝑧))) |
146 | 145 | ralimdva 3108 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺‘𝑘) ∈ 𝑋 ∧ ((𝐺‘𝑘)𝐷𝑦) < 𝑧)) → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑦) < 𝑧))) |
147 | 146 | reximdva 3203 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺‘𝑘) ∈ 𝑋 ∧ ((𝐺‘𝑘)𝐷𝑦) < 𝑧)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑦) < 𝑧))) |
148 | 134, 147 | syl5bir 242 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)𝑘 ∈ dom 𝐹 ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐺 ∧ (𝐺‘𝑘) ∈ 𝑋 ∧ ((𝐺‘𝑘)𝐷𝑦) < 𝑧)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑦) < 𝑧))) |
149 | 148 | ralimdv 3109 |
. . . . . . . . . . 11
⊢ (𝜑 → (∀𝑧 ∈ ℝ+
(∃𝑗 ∈ ℕ
∀𝑘 ∈
(ℤ≥‘𝑗)𝑘 ∈ dom 𝐹 ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐺 ∧ (𝐺‘𝑘) ∈ 𝑋 ∧ ((𝐺‘𝑘)𝐷𝑦) < 𝑧)) → ∀𝑧 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑦) < 𝑧))) |
150 | 133, 149 | syl5bir 242 |
. . . . . . . . . 10
⊢ (𝜑 → ((∀𝑧 ∈ ℝ+
∃𝑗 ∈ ℕ
∀𝑘 ∈
(ℤ≥‘𝑗)𝑘 ∈ dom 𝐹 ∧ ∀𝑧 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐺 ∧ (𝐺‘𝑘) ∈ 𝑋 ∧ ((𝐺‘𝑘)𝐷𝑦) < 𝑧)) → ∀𝑧 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑦) < 𝑧))) |
151 | 48, 150 | mpand 692 |
. . . . . . . . 9
⊢ (𝜑 → (∀𝑧 ∈ ℝ+
∃𝑗 ∈ ℕ
∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐺 ∧ (𝐺‘𝑘) ∈ 𝑋 ∧ ((𝐺‘𝑘)𝐷𝑦) < 𝑧) → ∀𝑧 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑦) < 𝑧))) |
152 | 151 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐺(⇝𝑡‘𝐽)𝑦) → (∀𝑧 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐺 ∧ (𝐺‘𝑘) ∈ 𝑋 ∧ ((𝐺‘𝑘)𝐷𝑦) < 𝑧) → ∀𝑧 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑦) < 𝑧))) |
153 | 132, 152 | mpd 15 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐺(⇝𝑡‘𝐽)𝑦) → ∀𝑧 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑦) < 𝑧)) |
154 | 5 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐺(⇝𝑡‘𝐽)𝑦) → 𝐷 ∈ (∞Met‘𝑋)) |
155 | | 1zzd 12351 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐺(⇝𝑡‘𝐽)𝑦) → 1 ∈ ℤ) |
156 | 6, 154, 10, 155 | lmmbr3 24424 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐺(⇝𝑡‘𝐽)𝑦) → (𝐹(⇝𝑡‘𝐽)𝑦 ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧ 𝑦 ∈ 𝑋 ∧ ∀𝑧 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑦) < 𝑧)))) |
157 | 127, 129,
153, 156 | mpbir3and 1341 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐺(⇝𝑡‘𝐽)𝑦) → 𝐹(⇝𝑡‘𝐽)𝑦) |
158 | | lmrel 22381 |
. . . . . . 7
⊢ Rel
(⇝𝑡‘𝐽) |
159 | 158 | releldmi 5857 |
. . . . . 6
⊢ (𝐹(⇝𝑡‘𝐽)𝑦 → 𝐹 ∈ dom
(⇝𝑡‘𝐽)) |
160 | 157, 159 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝐺(⇝𝑡‘𝐽)𝑦) → 𝐹 ∈ dom
(⇝𝑡‘𝐽)) |
161 | 160 | ex 413 |
. . . 4
⊢ (𝜑 → (𝐺(⇝𝑡‘𝐽)𝑦 → 𝐹 ∈ dom
(⇝𝑡‘𝐽))) |
162 | 126, 161 | sylbird 259 |
. . 3
⊢ (𝜑 → (𝑦 ∈ ((𝐽 fLimf (ℕfilGen(ℤ≥
“ ℕ)))‘𝐺)
→ 𝐹 ∈ dom
(⇝𝑡‘𝐽))) |
163 | 162 | exlimdv 1936 |
. 2
⊢ (𝜑 → (∃𝑦 𝑦 ∈ ((𝐽 fLimf (ℕfilGen(ℤ≥
“ ℕ)))‘𝐺)
→ 𝐹 ∈ dom
(⇝𝑡‘𝐽))) |
164 | 124, 163 | mpd 15 |
1
⊢ (𝜑 → 𝐹 ∈ dom
(⇝𝑡‘𝐽)) |