MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmetcaulem Structured version   Visualization version   GIF version

Theorem cmetcaulem 25238
Description: Lemma for cmetcau 25239. (Contributed by Mario Carneiro, 14-Oct-2015.)
Hypotheses
Ref Expression
cmetcau.1 𝐽 = (MetOpen‘𝐷)
cmetcau.3 (𝜑𝐷 ∈ (CMet‘𝑋))
cmetcau.4 (𝜑𝑃𝑋)
cmetcau.5 (𝜑𝐹 ∈ (Cau‘𝐷))
cmetcau.6 𝐺 = (𝑥 ∈ ℕ ↦ if(𝑥 ∈ dom 𝐹, (𝐹𝑥), 𝑃))
Assertion
Ref Expression
cmetcaulem (𝜑𝐹 ∈ dom (⇝𝑡𝐽))
Distinct variable groups:   𝑥,𝐷   𝑥,𝐹   𝑥,𝑃   𝑥,𝐽   𝜑,𝑥   𝑥,𝑋
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem cmetcaulem
Dummy variables 𝑗 𝑘 𝑚 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cmetcau.3 . . . . . . . . 9 (𝜑𝐷 ∈ (CMet‘𝑋))
2 cmetmet 25236 . . . . . . . . 9 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
31, 2syl 17 . . . . . . . 8 (𝜑𝐷 ∈ (Met‘𝑋))
4 metxmet 24271 . . . . . . . 8 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
53, 4syl 17 . . . . . . 7 (𝜑𝐷 ∈ (∞Met‘𝑋))
6 cmetcau.1 . . . . . . . 8 𝐽 = (MetOpen‘𝐷)
76mopntopon 24376 . . . . . . 7 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
85, 7syl 17 . . . . . 6 (𝜑𝐽 ∈ (TopOn‘𝑋))
9 1z 12620 . . . . . . . 8 1 ∈ ℤ
10 nnuz 12893 . . . . . . . . 9 ℕ = (ℤ‘1)
1110uzfbas 23834 . . . . . . . 8 (1 ∈ ℤ → (ℤ “ ℕ) ∈ (fBas‘ℕ))
129, 11mp1i 13 . . . . . . 7 (𝜑 → (ℤ “ ℕ) ∈ (fBas‘ℕ))
13 fgcl 23814 . . . . . . 7 ((ℤ “ ℕ) ∈ (fBas‘ℕ) → (ℕfilGen(ℤ “ ℕ)) ∈ (Fil‘ℕ))
1412, 13syl 17 . . . . . 6 (𝜑 → (ℕfilGen(ℤ “ ℕ)) ∈ (Fil‘ℕ))
15 elfvdm 6912 . . . . . . . . . . . 12 (𝐷 ∈ (CMet‘𝑋) → 𝑋 ∈ dom CMet)
161, 15syl 17 . . . . . . . . . . 11 (𝜑𝑋 ∈ dom CMet)
17 cnex 11208 . . . . . . . . . . . 12 ℂ ∈ V
1817a1i 11 . . . . . . . . . . 11 (𝜑 → ℂ ∈ V)
19 cmetcau.5 . . . . . . . . . . . 12 (𝜑𝐹 ∈ (Cau‘𝐷))
20 caufpm 25232 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) → 𝐹 ∈ (𝑋pm ℂ))
215, 19, 20syl2anc 584 . . . . . . . . . . 11 (𝜑𝐹 ∈ (𝑋pm ℂ))
22 elpm2g 8856 . . . . . . . . . . . 12 ((𝑋 ∈ dom CMet ∧ ℂ ∈ V) → (𝐹 ∈ (𝑋pm ℂ) ↔ (𝐹:dom 𝐹𝑋 ∧ dom 𝐹 ⊆ ℂ)))
2322simprbda 498 . . . . . . . . . . 11 (((𝑋 ∈ dom CMet ∧ ℂ ∈ V) ∧ 𝐹 ∈ (𝑋pm ℂ)) → 𝐹:dom 𝐹𝑋)
2416, 18, 21, 23syl21anc 837 . . . . . . . . . 10 (𝜑𝐹:dom 𝐹𝑋)
2524adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → 𝐹:dom 𝐹𝑋)
2625ffvelcdmda 7073 . . . . . . . 8 (((𝜑𝑥 ∈ ℕ) ∧ 𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ 𝑋)
27 cmetcau.4 . . . . . . . . 9 (𝜑𝑃𝑋)
2827ad2antrr 726 . . . . . . . 8 (((𝜑𝑥 ∈ ℕ) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑃𝑋)
2926, 28ifclda 4536 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → if(𝑥 ∈ dom 𝐹, (𝐹𝑥), 𝑃) ∈ 𝑋)
30 cmetcau.6 . . . . . . 7 𝐺 = (𝑥 ∈ ℕ ↦ if(𝑥 ∈ dom 𝐹, (𝐹𝑥), 𝑃))
3129, 30fmptd 7103 . . . . . 6 (𝜑𝐺:ℕ⟶𝑋)
32 flfval 23926 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ (ℕfilGen(ℤ “ ℕ)) ∈ (Fil‘ℕ) ∧ 𝐺:ℕ⟶𝑋) → ((𝐽 fLimf (ℕfilGen(ℤ “ ℕ)))‘𝐺) = (𝐽 fLim ((𝑋 FilMap 𝐺)‘(ℕfilGen(ℤ “ ℕ)))))
338, 14, 31, 32syl3anc 1373 . . . . 5 (𝜑 → ((𝐽 fLimf (ℕfilGen(ℤ “ ℕ)))‘𝐺) = (𝐽 fLim ((𝑋 FilMap 𝐺)‘(ℕfilGen(ℤ “ ℕ)))))
34 eqid 2735 . . . . . . . 8 (ℕfilGen(ℤ “ ℕ)) = (ℕfilGen(ℤ “ ℕ))
3534fmfg 23885 . . . . . . 7 ((𝑋 ∈ dom CMet ∧ (ℤ “ ℕ) ∈ (fBas‘ℕ) ∧ 𝐺:ℕ⟶𝑋) → ((𝑋 FilMap 𝐺)‘(ℤ “ ℕ)) = ((𝑋 FilMap 𝐺)‘(ℕfilGen(ℤ “ ℕ))))
3616, 12, 31, 35syl3anc 1373 . . . . . 6 (𝜑 → ((𝑋 FilMap 𝐺)‘(ℤ “ ℕ)) = ((𝑋 FilMap 𝐺)‘(ℕfilGen(ℤ “ ℕ))))
3736oveq2d 7419 . . . . 5 (𝜑 → (𝐽 fLim ((𝑋 FilMap 𝐺)‘(ℤ “ ℕ))) = (𝐽 fLim ((𝑋 FilMap 𝐺)‘(ℕfilGen(ℤ “ ℕ)))))
3833, 37eqtr4d 2773 . . . 4 (𝜑 → ((𝐽 fLimf (ℕfilGen(ℤ “ ℕ)))‘𝐺) = (𝐽 fLim ((𝑋 FilMap 𝐺)‘(ℤ “ ℕ))))
39 biidd 262 . . . . . . . 8 (𝑧 = 1 → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑘 ∈ dom 𝐹 ↔ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑘 ∈ dom 𝐹))
40 1zzd 12621 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℤ)
4110, 5, 40iscau3 25228 . . . . . . . . . . 11 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑤 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑤)) < 𝑧))))
4241simplbda 499 . . . . . . . . . 10 ((𝜑𝐹 ∈ (Cau‘𝐷)) → ∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑤 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑤)) < 𝑧))
4319, 42mpdan 687 . . . . . . . . 9 (𝜑 → ∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑤 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑤)) < 𝑧))
44 simp1 1136 . . . . . . . . . . . 12 ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑤 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑤)) < 𝑧) → 𝑘 ∈ dom 𝐹)
4544ralimi 3073 . . . . . . . . . . 11 (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑤 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑤)) < 𝑧) → ∀𝑘 ∈ (ℤ𝑗)𝑘 ∈ dom 𝐹)
4645reximi 3074 . . . . . . . . . 10 (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑤 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑤)) < 𝑧) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑘 ∈ dom 𝐹)
4746ralimi 3073 . . . . . . . . 9 (∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑤 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑤)) < 𝑧) → ∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑘 ∈ dom 𝐹)
4843, 47syl 17 . . . . . . . 8 (𝜑 → ∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑘 ∈ dom 𝐹)
49 1rp 13010 . . . . . . . . 9 1 ∈ ℝ+
5049a1i 11 . . . . . . . 8 (𝜑 → 1 ∈ ℝ+)
5139, 48, 50rspcdva 3602 . . . . . . 7 (𝜑 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑘 ∈ dom 𝐹)
52 dfss3 3947 . . . . . . . . 9 ((ℤ𝑗) ⊆ dom 𝐹 ↔ ∀𝑘 ∈ (ℤ𝑗)𝑘 ∈ dom 𝐹)
53 nnsscn 12243 . . . . . . . . . . . . . 14 ℕ ⊆ ℂ
5431, 53jctir 520 . . . . . . . . . . . . 13 (𝜑 → (𝐺:ℕ⟶𝑋 ∧ ℕ ⊆ ℂ))
55 elpm2r 8857 . . . . . . . . . . . . 13 (((𝑋 ∈ dom CMet ∧ ℂ ∈ V) ∧ (𝐺:ℕ⟶𝑋 ∧ ℕ ⊆ ℂ)) → 𝐺 ∈ (𝑋pm ℂ))
5616, 18, 54, 55syl21anc 837 . . . . . . . . . . . 12 (𝜑𝐺 ∈ (𝑋pm ℂ))
5756adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) → 𝐺 ∈ (𝑋pm ℂ))
58 eqid 2735 . . . . . . . . . . . . . . 15 (ℤ𝑗) = (ℤ𝑗)
595adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) → 𝐷 ∈ (∞Met‘𝑋))
60 nnz 12607 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ → 𝑗 ∈ ℤ)
6160ad2antrl 728 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) → 𝑗 ∈ ℤ)
62 eqidd 2736 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) = (𝐹𝑘))
63 eqidd 2736 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝑚 ∈ (ℤ𝑗)) → (𝐹𝑚) = (𝐹𝑚))
6458, 59, 61, 62, 63iscau4 25229 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑧 ∈ ℝ+𝑚 ∈ (ℤ𝑗)∀𝑘 ∈ (ℤ𝑚)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧))))
6564simplbda 499 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝐹 ∈ (Cau‘𝐷)) → ∀𝑧 ∈ ℝ+𝑚 ∈ (ℤ𝑗)∀𝑘 ∈ (ℤ𝑚)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧))
6619, 65mpidan 689 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) → ∀𝑧 ∈ ℝ+𝑚 ∈ (ℤ𝑗)∀𝑘 ∈ (ℤ𝑚)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧))
67 simprl 770 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) → 𝑗 ∈ ℕ)
68 eluznn 12932 . . . . . . . . . . . . . . . 16 ((𝑗 ∈ ℕ ∧ 𝑚 ∈ (ℤ𝑗)) → 𝑚 ∈ ℕ)
6967, 68sylan 580 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝑚 ∈ (ℤ𝑗)) → 𝑚 ∈ ℕ)
70 eluznn 12932 . . . . . . . . . . . . . . . . . 18 ((𝑚 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑚)) → 𝑘 ∈ ℕ)
7130, 29dmmptd 6682 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → dom 𝐺 = ℕ)
7271adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) → dom 𝐺 = ℕ)
7372eleq2d 2820 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) → (𝑘 ∈ dom 𝐺𝑘 ∈ ℕ))
7473biimpar 477 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ dom 𝐺)
7574a1d 25 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝑘 ∈ ℕ) → (𝑘 ∈ dom 𝐹𝑘 ∈ dom 𝐺))
76 idd 24 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑘) ∈ 𝑋 → (𝐹𝑘) ∈ 𝑋))
77 idd 24 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝑘 ∈ ℕ) → (((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧 → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧))
7875, 76, 773anim123d 1445 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝑘 ∈ ℕ) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧) → (𝑘 ∈ dom 𝐺 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧)))
7970, 78sylan2 593 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ (𝑚 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑚))) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧) → (𝑘 ∈ dom 𝐺 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧)))
8079anassrs 467 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑚)) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧) → (𝑘 ∈ dom 𝐺 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧)))
8180ralimdva 3152 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝑚 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑚)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧) → ∀𝑘 ∈ (ℤ𝑚)(𝑘 ∈ dom 𝐺 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧)))
8269, 81syldan 591 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝑚 ∈ (ℤ𝑗)) → (∀𝑘 ∈ (ℤ𝑚)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧) → ∀𝑘 ∈ (ℤ𝑚)(𝑘 ∈ dom 𝐺 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧)))
8382reximdva 3153 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) → (∃𝑚 ∈ (ℤ𝑗)∀𝑘 ∈ (ℤ𝑚)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧) → ∃𝑚 ∈ (ℤ𝑗)∀𝑘 ∈ (ℤ𝑚)(𝑘 ∈ dom 𝐺 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧)))
8483ralimdv 3154 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) → (∀𝑧 ∈ ℝ+𝑚 ∈ (ℤ𝑗)∀𝑘 ∈ (ℤ𝑚)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧) → ∀𝑧 ∈ ℝ+𝑚 ∈ (ℤ𝑗)∀𝑘 ∈ (ℤ𝑚)(𝑘 ∈ dom 𝐺 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧)))
8566, 84mpd 15 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) → ∀𝑧 ∈ ℝ+𝑚 ∈ (ℤ𝑗)∀𝑘 ∈ (ℤ𝑚)(𝑘 ∈ dom 𝐺 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧))
86 eluznn 12932 . . . . . . . . . . . . . 14 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
8767, 86sylan 580 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
88 simprr 772 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) → (ℤ𝑗) ⊆ dom 𝐹)
8988sselda 3958 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ dom 𝐹)
90 iftrue 4506 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ dom 𝐹 → if(𝑘 ∈ dom 𝐹, (𝐹𝑘), 𝑃) = (𝐹𝑘))
9190adantl 481 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ ∧ 𝑘 ∈ dom 𝐹) → if(𝑘 ∈ dom 𝐹, (𝐹𝑘), 𝑃) = (𝐹𝑘))
92 fvex 6888 . . . . . . . . . . . . . . . 16 (𝐹𝑘) ∈ V
9391, 92eqeltrdi 2842 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℕ ∧ 𝑘 ∈ dom 𝐹) → if(𝑘 ∈ dom 𝐹, (𝐹𝑘), 𝑃) ∈ V)
94 eleq1w 2817 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑘 → (𝑥 ∈ dom 𝐹𝑘 ∈ dom 𝐹))
95 fveq2 6875 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑘 → (𝐹𝑥) = (𝐹𝑘))
9694, 95ifbieq1d 4525 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑘 → if(𝑥 ∈ dom 𝐹, (𝐹𝑥), 𝑃) = if(𝑘 ∈ dom 𝐹, (𝐹𝑘), 𝑃))
9796, 30fvmptg 6983 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℕ ∧ if(𝑘 ∈ dom 𝐹, (𝐹𝑘), 𝑃) ∈ V) → (𝐺𝑘) = if(𝑘 ∈ dom 𝐹, (𝐹𝑘), 𝑃))
9893, 97syldan 591 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ ∧ 𝑘 ∈ dom 𝐹) → (𝐺𝑘) = if(𝑘 ∈ dom 𝐹, (𝐹𝑘), 𝑃))
9998, 91eqtrd 2770 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ ∧ 𝑘 ∈ dom 𝐹) → (𝐺𝑘) = (𝐹𝑘))
10087, 89, 99syl2anc 584 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐺𝑘) = (𝐹𝑘))
10188sselda 3958 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝑚 ∈ (ℤ𝑗)) → 𝑚 ∈ dom 𝐹)
10269, 101elind 4175 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝑚 ∈ (ℤ𝑗)) → 𝑚 ∈ (ℕ ∩ dom 𝐹))
103 fveq2 6875 . . . . . . . . . . . . . . 15 (𝑘 = 𝑚 → (𝐺𝑘) = (𝐺𝑚))
104 fveq2 6875 . . . . . . . . . . . . . . 15 (𝑘 = 𝑚 → (𝐹𝑘) = (𝐹𝑚))
105103, 104eqeq12d 2751 . . . . . . . . . . . . . 14 (𝑘 = 𝑚 → ((𝐺𝑘) = (𝐹𝑘) ↔ (𝐺𝑚) = (𝐹𝑚)))
106 elin 3942 . . . . . . . . . . . . . . 15 (𝑘 ∈ (ℕ ∩ dom 𝐹) ↔ (𝑘 ∈ ℕ ∧ 𝑘 ∈ dom 𝐹))
107106, 99sylbi 217 . . . . . . . . . . . . . 14 (𝑘 ∈ (ℕ ∩ dom 𝐹) → (𝐺𝑘) = (𝐹𝑘))
108105, 107vtoclga 3556 . . . . . . . . . . . . 13 (𝑚 ∈ (ℕ ∩ dom 𝐹) → (𝐺𝑚) = (𝐹𝑚))
109102, 108syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝑚 ∈ (ℤ𝑗)) → (𝐺𝑚) = (𝐹𝑚))
11058, 59, 61, 100, 109iscau4 25229 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) → (𝐺 ∈ (Cau‘𝐷) ↔ (𝐺 ∈ (𝑋pm ℂ) ∧ ∀𝑧 ∈ ℝ+𝑚 ∈ (ℤ𝑗)∀𝑘 ∈ (ℤ𝑚)(𝑘 ∈ dom 𝐺 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧))))
11157, 85, 110mpbir2and 713 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) → 𝐺 ∈ (Cau‘𝐷))
112111expr 456 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → ((ℤ𝑗) ⊆ dom 𝐹𝐺 ∈ (Cau‘𝐷)))
11352, 112biimtrrid 243 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑗)𝑘 ∈ dom 𝐹𝐺 ∈ (Cau‘𝐷)))
114113rexlimdva 3141 . . . . . . 7 (𝜑 → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑘 ∈ dom 𝐹𝐺 ∈ (Cau‘𝐷)))
11551, 114mpd 15 . . . . . 6 (𝜑𝐺 ∈ (Cau‘𝐷))
116 eqid 2735 . . . . . . . 8 ((𝑋 FilMap 𝐺)‘(ℤ “ ℕ)) = ((𝑋 FilMap 𝐺)‘(ℤ “ ℕ))
11710, 116caucfil 25233 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 1 ∈ ℤ ∧ 𝐺:ℕ⟶𝑋) → (𝐺 ∈ (Cau‘𝐷) ↔ ((𝑋 FilMap 𝐺)‘(ℤ “ ℕ)) ∈ (CauFil‘𝐷)))
1185, 40, 31, 117syl3anc 1373 . . . . . 6 (𝜑 → (𝐺 ∈ (Cau‘𝐷) ↔ ((𝑋 FilMap 𝐺)‘(ℤ “ ℕ)) ∈ (CauFil‘𝐷)))
119115, 118mpbid 232 . . . . 5 (𝜑 → ((𝑋 FilMap 𝐺)‘(ℤ “ ℕ)) ∈ (CauFil‘𝐷))
1206cmetcvg 25235 . . . . 5 ((𝐷 ∈ (CMet‘𝑋) ∧ ((𝑋 FilMap 𝐺)‘(ℤ “ ℕ)) ∈ (CauFil‘𝐷)) → (𝐽 fLim ((𝑋 FilMap 𝐺)‘(ℤ “ ℕ))) ≠ ∅)
1211, 119, 120syl2anc 584 . . . 4 (𝜑 → (𝐽 fLim ((𝑋 FilMap 𝐺)‘(ℤ “ ℕ))) ≠ ∅)
12238, 121eqnetrd 2999 . . 3 (𝜑 → ((𝐽 fLimf (ℕfilGen(ℤ “ ℕ)))‘𝐺) ≠ ∅)
123 n0 4328 . . 3 (((𝐽 fLimf (ℕfilGen(ℤ “ ℕ)))‘𝐺) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ ((𝐽 fLimf (ℕfilGen(ℤ “ ℕ)))‘𝐺))
124122, 123sylib 218 . 2 (𝜑 → ∃𝑦 𝑦 ∈ ((𝐽 fLimf (ℕfilGen(ℤ “ ℕ)))‘𝐺))
12510, 34lmflf 23941 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 1 ∈ ℤ ∧ 𝐺:ℕ⟶𝑋) → (𝐺(⇝𝑡𝐽)𝑦𝑦 ∈ ((𝐽 fLimf (ℕfilGen(ℤ “ ℕ)))‘𝐺)))
1268, 40, 31, 125syl3anc 1373 . . . 4 (𝜑 → (𝐺(⇝𝑡𝐽)𝑦𝑦 ∈ ((𝐽 fLimf (ℕfilGen(ℤ “ ℕ)))‘𝐺)))
12721adantr 480 . . . . . . 7 ((𝜑𝐺(⇝𝑡𝐽)𝑦) → 𝐹 ∈ (𝑋pm ℂ))
128 lmcl 23233 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐺(⇝𝑡𝐽)𝑦) → 𝑦𝑋)
1298, 128sylan 580 . . . . . . 7 ((𝜑𝐺(⇝𝑡𝐽)𝑦) → 𝑦𝑋)
1306, 5, 10, 40lmmbr3 25210 . . . . . . . . . 10 (𝜑 → (𝐺(⇝𝑡𝐽)𝑦 ↔ (𝐺 ∈ (𝑋pm ℂ) ∧ 𝑦𝑋 ∧ ∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧))))
131130biimpa 476 . . . . . . . . 9 ((𝜑𝐺(⇝𝑡𝐽)𝑦) → (𝐺 ∈ (𝑋pm ℂ) ∧ 𝑦𝑋 ∧ ∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧)))
132131simp3d 1144 . . . . . . . 8 ((𝜑𝐺(⇝𝑡𝐽)𝑦) → ∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧))
133 r19.26 3098 . . . . . . . . . . 11 (∀𝑧 ∈ ℝ+ (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑘 ∈ dom 𝐹 ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧)) ↔ (∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑘 ∈ dom 𝐹 ∧ ∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧)))
13410rexanuz2 15366 . . . . . . . . . . . . 13 (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧)) ↔ (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑘 ∈ dom 𝐹 ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧)))
135 simprl 770 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧))) → 𝑘 ∈ dom 𝐹)
13699ad2ant2lr 748 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧))) → (𝐺𝑘) = (𝐹𝑘))
137 simprr2 1223 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧))) → (𝐺𝑘) ∈ 𝑋)
138136, 137eqeltrrd 2835 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧))) → (𝐹𝑘) ∈ 𝑋)
139136oveq1d 7418 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧))) → ((𝐺𝑘)𝐷𝑦) = ((𝐹𝑘)𝐷𝑦))
140 simprr3 1224 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧))) → ((𝐺𝑘)𝐷𝑦) < 𝑧)
141139, 140eqbrtrrd 5143 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧))) → ((𝐹𝑘)𝐷𝑦) < 𝑧)
142135, 138, 1413jca 1128 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧))) → (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑦) < 𝑧))
143142ex 412 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℕ) → ((𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧)) → (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑦) < 𝑧)))
14486, 143sylan2 593 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → ((𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧)) → (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑦) < 𝑧)))
145144anassrs 467 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧)) → (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑦) < 𝑧)))
146145ralimdva 3152 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧)) → ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑦) < 𝑧)))
147146reximdva 3153 . . . . . . . . . . . . 13 (𝜑 → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑦) < 𝑧)))
148134, 147biimtrrid 243 . . . . . . . . . . . 12 (𝜑 → ((∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑘 ∈ dom 𝐹 ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑦) < 𝑧)))
149148ralimdv 3154 . . . . . . . . . . 11 (𝜑 → (∀𝑧 ∈ ℝ+ (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑘 ∈ dom 𝐹 ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧)) → ∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑦) < 𝑧)))
150133, 149biimtrrid 243 . . . . . . . . . 10 (𝜑 → ((∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑘 ∈ dom 𝐹 ∧ ∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧)) → ∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑦) < 𝑧)))
15148, 150mpand 695 . . . . . . . . 9 (𝜑 → (∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧) → ∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑦) < 𝑧)))
152151adantr 480 . . . . . . . 8 ((𝜑𝐺(⇝𝑡𝐽)𝑦) → (∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧) → ∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑦) < 𝑧)))
153132, 152mpd 15 . . . . . . 7 ((𝜑𝐺(⇝𝑡𝐽)𝑦) → ∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑦) < 𝑧))
1545adantr 480 . . . . . . . 8 ((𝜑𝐺(⇝𝑡𝐽)𝑦) → 𝐷 ∈ (∞Met‘𝑋))
155 1zzd 12621 . . . . . . . 8 ((𝜑𝐺(⇝𝑡𝐽)𝑦) → 1 ∈ ℤ)
1566, 154, 10, 155lmmbr3 25210 . . . . . . 7 ((𝜑𝐺(⇝𝑡𝐽)𝑦) → (𝐹(⇝𝑡𝐽)𝑦 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑦𝑋 ∧ ∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑦) < 𝑧))))
157127, 129, 153, 156mpbir3and 1343 . . . . . 6 ((𝜑𝐺(⇝𝑡𝐽)𝑦) → 𝐹(⇝𝑡𝐽)𝑦)
158 lmrel 23166 . . . . . . 7 Rel (⇝𝑡𝐽)
159158releldmi 5928 . . . . . 6 (𝐹(⇝𝑡𝐽)𝑦𝐹 ∈ dom (⇝𝑡𝐽))
160157, 159syl 17 . . . . 5 ((𝜑𝐺(⇝𝑡𝐽)𝑦) → 𝐹 ∈ dom (⇝𝑡𝐽))
161160ex 412 . . . 4 (𝜑 → (𝐺(⇝𝑡𝐽)𝑦𝐹 ∈ dom (⇝𝑡𝐽)))
162126, 161sylbird 260 . . 3 (𝜑 → (𝑦 ∈ ((𝐽 fLimf (ℕfilGen(ℤ “ ℕ)))‘𝐺) → 𝐹 ∈ dom (⇝𝑡𝐽)))
163162exlimdv 1933 . 2 (𝜑 → (∃𝑦 𝑦 ∈ ((𝐽 fLimf (ℕfilGen(ℤ “ ℕ)))‘𝐺) → 𝐹 ∈ dom (⇝𝑡𝐽)))
164124, 163mpd 15 1 (𝜑𝐹 ∈ dom (⇝𝑡𝐽))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2108  wne 2932  wral 3051  wrex 3060  Vcvv 3459  cin 3925  wss 3926  c0 4308  ifcif 4500   class class class wbr 5119  cmpt 5201  dom cdm 5654  cima 5657  wf 6526  cfv 6530  (class class class)co 7403  pm cpm 8839  cc 11125  1c1 11128   < clt 11267  cn 12238  cz 12586  cuz 12850  +crp 13006  ∞Metcxmet 21298  Metcmet 21299  fBascfbas 21301  filGencfg 21302  MetOpencmopn 21303  TopOnctopon 22846  𝑡clm 23162  Filcfil 23781   FilMap cfm 23869   fLim cflim 23870   fLimf cflf 23871  CauFilccfil 25202  Cauccau 25203  CMetccmet 25204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-er 8717  df-map 8840  df-pm 8841  df-en 8958  df-dom 8959  df-sdom 8960  df-sup 9452  df-inf 9453  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-n0 12500  df-z 12587  df-uz 12851  df-q 12963  df-rp 13007  df-xneg 13126  df-xadd 13127  df-xmul 13128  df-ico 13366  df-rest 17434  df-topgen 17455  df-psmet 21305  df-xmet 21306  df-met 21307  df-bl 21308  df-mopn 21309  df-fbas 21310  df-fg 21311  df-top 22830  df-topon 22847  df-bases 22882  df-ntr 22956  df-nei 23034  df-lm 23165  df-fil 23782  df-fm 23874  df-flim 23875  df-flf 23876  df-cfil 25205  df-cau 25206  df-cmet 25207
This theorem is referenced by:  cmetcau  25239
  Copyright terms: Public domain W3C validator