MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmetcaulem Structured version   Visualization version   GIF version

Theorem cmetcaulem 23494
Description: Lemma for cmetcau 23495. (Contributed by Mario Carneiro, 14-Oct-2015.)
Hypotheses
Ref Expression
cmetcau.1 𝐽 = (MetOpen‘𝐷)
cmetcau.3 (𝜑𝐷 ∈ (CMet‘𝑋))
cmetcau.4 (𝜑𝑃𝑋)
cmetcau.5 (𝜑𝐹 ∈ (Cau‘𝐷))
cmetcau.6 𝐺 = (𝑥 ∈ ℕ ↦ if(𝑥 ∈ dom 𝐹, (𝐹𝑥), 𝑃))
Assertion
Ref Expression
cmetcaulem (𝜑𝐹 ∈ dom (⇝𝑡𝐽))
Distinct variable groups:   𝑥,𝐷   𝑥,𝐹   𝑥,𝑃   𝑥,𝐽   𝜑,𝑥   𝑥,𝑋
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem cmetcaulem
Dummy variables 𝑗 𝑘 𝑚 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cmetcau.3 . . . . . . . . 9 (𝜑𝐷 ∈ (CMet‘𝑋))
2 cmetmet 23492 . . . . . . . . 9 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
31, 2syl 17 . . . . . . . 8 (𝜑𝐷 ∈ (Met‘𝑋))
4 metxmet 22547 . . . . . . . 8 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
53, 4syl 17 . . . . . . 7 (𝜑𝐷 ∈ (∞Met‘𝑋))
6 cmetcau.1 . . . . . . . 8 𝐽 = (MetOpen‘𝐷)
76mopntopon 22652 . . . . . . 7 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
85, 7syl 17 . . . . . 6 (𝜑𝐽 ∈ (TopOn‘𝑋))
9 1z 11759 . . . . . . . 8 1 ∈ ℤ
10 nnuz 12029 . . . . . . . . 9 ℕ = (ℤ‘1)
1110uzfbas 22110 . . . . . . . 8 (1 ∈ ℤ → (ℤ “ ℕ) ∈ (fBas‘ℕ))
129, 11mp1i 13 . . . . . . 7 (𝜑 → (ℤ “ ℕ) ∈ (fBas‘ℕ))
13 fgcl 22090 . . . . . . 7 ((ℤ “ ℕ) ∈ (fBas‘ℕ) → (ℕfilGen(ℤ “ ℕ)) ∈ (Fil‘ℕ))
1412, 13syl 17 . . . . . 6 (𝜑 → (ℕfilGen(ℤ “ ℕ)) ∈ (Fil‘ℕ))
15 elfvdm 6478 . . . . . . . . . . . 12 (𝐷 ∈ (CMet‘𝑋) → 𝑋 ∈ dom CMet)
161, 15syl 17 . . . . . . . . . . 11 (𝜑𝑋 ∈ dom CMet)
17 cnex 10353 . . . . . . . . . . . 12 ℂ ∈ V
1817a1i 11 . . . . . . . . . . 11 (𝜑 → ℂ ∈ V)
19 cmetcau.5 . . . . . . . . . . . 12 (𝜑𝐹 ∈ (Cau‘𝐷))
20 caufpm 23488 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Cau‘𝐷)) → 𝐹 ∈ (𝑋pm ℂ))
215, 19, 20syl2anc 579 . . . . . . . . . . 11 (𝜑𝐹 ∈ (𝑋pm ℂ))
22 elpm2g 8157 . . . . . . . . . . . 12 ((𝑋 ∈ dom CMet ∧ ℂ ∈ V) → (𝐹 ∈ (𝑋pm ℂ) ↔ (𝐹:dom 𝐹𝑋 ∧ dom 𝐹 ⊆ ℂ)))
2322simprbda 494 . . . . . . . . . . 11 (((𝑋 ∈ dom CMet ∧ ℂ ∈ V) ∧ 𝐹 ∈ (𝑋pm ℂ)) → 𝐹:dom 𝐹𝑋)
2416, 18, 21, 23syl21anc 828 . . . . . . . . . 10 (𝜑𝐹:dom 𝐹𝑋)
2524adantr 474 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → 𝐹:dom 𝐹𝑋)
2625ffvelrnda 6623 . . . . . . . 8 (((𝜑𝑥 ∈ ℕ) ∧ 𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ 𝑋)
27 cmetcau.4 . . . . . . . . 9 (𝜑𝑃𝑋)
2827ad2antrr 716 . . . . . . . 8 (((𝜑𝑥 ∈ ℕ) ∧ ¬ 𝑥 ∈ dom 𝐹) → 𝑃𝑋)
2926, 28ifclda 4341 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → if(𝑥 ∈ dom 𝐹, (𝐹𝑥), 𝑃) ∈ 𝑋)
30 cmetcau.6 . . . . . . 7 𝐺 = (𝑥 ∈ ℕ ↦ if(𝑥 ∈ dom 𝐹, (𝐹𝑥), 𝑃))
3129, 30fmptd 6648 . . . . . 6 (𝜑𝐺:ℕ⟶𝑋)
32 flfval 22202 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ (ℕfilGen(ℤ “ ℕ)) ∈ (Fil‘ℕ) ∧ 𝐺:ℕ⟶𝑋) → ((𝐽 fLimf (ℕfilGen(ℤ “ ℕ)))‘𝐺) = (𝐽 fLim ((𝑋 FilMap 𝐺)‘(ℕfilGen(ℤ “ ℕ)))))
338, 14, 31, 32syl3anc 1439 . . . . 5 (𝜑 → ((𝐽 fLimf (ℕfilGen(ℤ “ ℕ)))‘𝐺) = (𝐽 fLim ((𝑋 FilMap 𝐺)‘(ℕfilGen(ℤ “ ℕ)))))
34 eqid 2778 . . . . . . . 8 (ℕfilGen(ℤ “ ℕ)) = (ℕfilGen(ℤ “ ℕ))
3534fmfg 22161 . . . . . . 7 ((𝑋 ∈ dom CMet ∧ (ℤ “ ℕ) ∈ (fBas‘ℕ) ∧ 𝐺:ℕ⟶𝑋) → ((𝑋 FilMap 𝐺)‘(ℤ “ ℕ)) = ((𝑋 FilMap 𝐺)‘(ℕfilGen(ℤ “ ℕ))))
3616, 12, 31, 35syl3anc 1439 . . . . . 6 (𝜑 → ((𝑋 FilMap 𝐺)‘(ℤ “ ℕ)) = ((𝑋 FilMap 𝐺)‘(ℕfilGen(ℤ “ ℕ))))
3736oveq2d 6938 . . . . 5 (𝜑 → (𝐽 fLim ((𝑋 FilMap 𝐺)‘(ℤ “ ℕ))) = (𝐽 fLim ((𝑋 FilMap 𝐺)‘(ℕfilGen(ℤ “ ℕ)))))
3833, 37eqtr4d 2817 . . . 4 (𝜑 → ((𝐽 fLimf (ℕfilGen(ℤ “ ℕ)))‘𝐺) = (𝐽 fLim ((𝑋 FilMap 𝐺)‘(ℤ “ ℕ))))
39 biidd 254 . . . . . . . 8 (𝑧 = 1 → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑘 ∈ dom 𝐹 ↔ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑘 ∈ dom 𝐹))
40 1zzd 11760 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℤ)
4110, 5, 40iscau3 23484 . . . . . . . . . . 11 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑤 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑤)) < 𝑧))))
4241simplbda 495 . . . . . . . . . 10 ((𝜑𝐹 ∈ (Cau‘𝐷)) → ∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑤 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑤)) < 𝑧))
4319, 42mpdan 677 . . . . . . . . 9 (𝜑 → ∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑤 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑤)) < 𝑧))
44 simp1 1127 . . . . . . . . . . . 12 ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑤 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑤)) < 𝑧) → 𝑘 ∈ dom 𝐹)
4544ralimi 3134 . . . . . . . . . . 11 (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑤 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑤)) < 𝑧) → ∀𝑘 ∈ (ℤ𝑗)𝑘 ∈ dom 𝐹)
4645reximi 3192 . . . . . . . . . 10 (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑤 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑤)) < 𝑧) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑘 ∈ dom 𝐹)
4746ralimi 3134 . . . . . . . . 9 (∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ∀𝑤 ∈ (ℤ𝑘)((𝐹𝑘)𝐷(𝐹𝑤)) < 𝑧) → ∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑘 ∈ dom 𝐹)
4843, 47syl 17 . . . . . . . 8 (𝜑 → ∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑘 ∈ dom 𝐹)
49 1rp 12141 . . . . . . . . 9 1 ∈ ℝ+
5049a1i 11 . . . . . . . 8 (𝜑 → 1 ∈ ℝ+)
5139, 48, 50rspcdva 3517 . . . . . . 7 (𝜑 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑘 ∈ dom 𝐹)
52 dfss3 3810 . . . . . . . . 9 ((ℤ𝑗) ⊆ dom 𝐹 ↔ ∀𝑘 ∈ (ℤ𝑗)𝑘 ∈ dom 𝐹)
53 nnsscn 11379 . . . . . . . . . . . . . 14 ℕ ⊆ ℂ
5431, 53jctir 516 . . . . . . . . . . . . 13 (𝜑 → (𝐺:ℕ⟶𝑋 ∧ ℕ ⊆ ℂ))
55 elpm2r 8158 . . . . . . . . . . . . 13 (((𝑋 ∈ dom CMet ∧ ℂ ∈ V) ∧ (𝐺:ℕ⟶𝑋 ∧ ℕ ⊆ ℂ)) → 𝐺 ∈ (𝑋pm ℂ))
5616, 18, 54, 55syl21anc 828 . . . . . . . . . . . 12 (𝜑𝐺 ∈ (𝑋pm ℂ))
5756adantr 474 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) → 𝐺 ∈ (𝑋pm ℂ))
58 eqid 2778 . . . . . . . . . . . . . . 15 (ℤ𝑗) = (ℤ𝑗)
595adantr 474 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) → 𝐷 ∈ (∞Met‘𝑋))
60 nnz 11751 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ → 𝑗 ∈ ℤ)
6160ad2antrl 718 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) → 𝑗 ∈ ℤ)
62 eqidd 2779 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) = (𝐹𝑘))
63 eqidd 2779 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝑚 ∈ (ℤ𝑗)) → (𝐹𝑚) = (𝐹𝑚))
6458, 59, 61, 62, 63iscau4 23485 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑧 ∈ ℝ+𝑚 ∈ (ℤ𝑗)∀𝑘 ∈ (ℤ𝑚)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧))))
6564simplbda 495 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝐹 ∈ (Cau‘𝐷)) → ∀𝑧 ∈ ℝ+𝑚 ∈ (ℤ𝑗)∀𝑘 ∈ (ℤ𝑚)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧))
6619, 65mpidan 679 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) → ∀𝑧 ∈ ℝ+𝑚 ∈ (ℤ𝑗)∀𝑘 ∈ (ℤ𝑚)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧))
67 simprl 761 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) → 𝑗 ∈ ℕ)
68 eluznn 12065 . . . . . . . . . . . . . . . 16 ((𝑗 ∈ ℕ ∧ 𝑚 ∈ (ℤ𝑗)) → 𝑚 ∈ ℕ)
6967, 68sylan 575 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝑚 ∈ (ℤ𝑗)) → 𝑚 ∈ ℕ)
70 eluznn 12065 . . . . . . . . . . . . . . . . . 18 ((𝑚 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑚)) → 𝑘 ∈ ℕ)
7130, 29dmmptd 6270 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → dom 𝐺 = ℕ)
7271adantr 474 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) → dom 𝐺 = ℕ)
7372eleq2d 2845 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) → (𝑘 ∈ dom 𝐺𝑘 ∈ ℕ))
7473biimpar 471 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ dom 𝐺)
7574a1d 25 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝑘 ∈ ℕ) → (𝑘 ∈ dom 𝐹𝑘 ∈ dom 𝐺))
76 idd 24 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑘) ∈ 𝑋 → (𝐹𝑘) ∈ 𝑋))
77 idd 24 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝑘 ∈ ℕ) → (((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧 → ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧))
7875, 76, 773anim123d 1516 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝑘 ∈ ℕ) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧) → (𝑘 ∈ dom 𝐺 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧)))
7970, 78sylan2 586 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ (𝑚 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑚))) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧) → (𝑘 ∈ dom 𝐺 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧)))
8079anassrs 461 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑚)) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧) → (𝑘 ∈ dom 𝐺 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧)))
8180ralimdva 3144 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝑚 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑚)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧) → ∀𝑘 ∈ (ℤ𝑚)(𝑘 ∈ dom 𝐺 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧)))
8269, 81syldan 585 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝑚 ∈ (ℤ𝑗)) → (∀𝑘 ∈ (ℤ𝑚)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧) → ∀𝑘 ∈ (ℤ𝑚)(𝑘 ∈ dom 𝐺 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧)))
8382reximdva 3198 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) → (∃𝑚 ∈ (ℤ𝑗)∀𝑘 ∈ (ℤ𝑚)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧) → ∃𝑚 ∈ (ℤ𝑗)∀𝑘 ∈ (ℤ𝑚)(𝑘 ∈ dom 𝐺 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧)))
8483ralimdv 3145 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) → (∀𝑧 ∈ ℝ+𝑚 ∈ (ℤ𝑗)∀𝑘 ∈ (ℤ𝑚)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧) → ∀𝑧 ∈ ℝ+𝑚 ∈ (ℤ𝑗)∀𝑘 ∈ (ℤ𝑚)(𝑘 ∈ dom 𝐺 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧)))
8566, 84mpd 15 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) → ∀𝑧 ∈ ℝ+𝑚 ∈ (ℤ𝑗)∀𝑘 ∈ (ℤ𝑚)(𝑘 ∈ dom 𝐺 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧))
86 eluznn 12065 . . . . . . . . . . . . . 14 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
8767, 86sylan 575 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
88 simprr 763 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) → (ℤ𝑗) ⊆ dom 𝐹)
8988sselda 3821 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ dom 𝐹)
90 iftrue 4313 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ dom 𝐹 → if(𝑘 ∈ dom 𝐹, (𝐹𝑘), 𝑃) = (𝐹𝑘))
9190adantl 475 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ ∧ 𝑘 ∈ dom 𝐹) → if(𝑘 ∈ dom 𝐹, (𝐹𝑘), 𝑃) = (𝐹𝑘))
92 fvex 6459 . . . . . . . . . . . . . . . 16 (𝐹𝑘) ∈ V
9391, 92syl6eqel 2867 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℕ ∧ 𝑘 ∈ dom 𝐹) → if(𝑘 ∈ dom 𝐹, (𝐹𝑘), 𝑃) ∈ V)
94 eleq1w 2842 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑘 → (𝑥 ∈ dom 𝐹𝑘 ∈ dom 𝐹))
95 fveq2 6446 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑘 → (𝐹𝑥) = (𝐹𝑘))
9694, 95ifbieq1d 4330 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑘 → if(𝑥 ∈ dom 𝐹, (𝐹𝑥), 𝑃) = if(𝑘 ∈ dom 𝐹, (𝐹𝑘), 𝑃))
9796, 30fvmptg 6540 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℕ ∧ if(𝑘 ∈ dom 𝐹, (𝐹𝑘), 𝑃) ∈ V) → (𝐺𝑘) = if(𝑘 ∈ dom 𝐹, (𝐹𝑘), 𝑃))
9893, 97syldan 585 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ ∧ 𝑘 ∈ dom 𝐹) → (𝐺𝑘) = if(𝑘 ∈ dom 𝐹, (𝐹𝑘), 𝑃))
9998, 91eqtrd 2814 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ ∧ 𝑘 ∈ dom 𝐹) → (𝐺𝑘) = (𝐹𝑘))
10087, 89, 99syl2anc 579 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐺𝑘) = (𝐹𝑘))
10188sselda 3821 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝑚 ∈ (ℤ𝑗)) → 𝑚 ∈ dom 𝐹)
10269, 101elind 4021 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝑚 ∈ (ℤ𝑗)) → 𝑚 ∈ (ℕ ∩ dom 𝐹))
103 fveq2 6446 . . . . . . . . . . . . . . 15 (𝑘 = 𝑚 → (𝐺𝑘) = (𝐺𝑚))
104 fveq2 6446 . . . . . . . . . . . . . . 15 (𝑘 = 𝑚 → (𝐹𝑘) = (𝐹𝑚))
105103, 104eqeq12d 2793 . . . . . . . . . . . . . 14 (𝑘 = 𝑚 → ((𝐺𝑘) = (𝐹𝑘) ↔ (𝐺𝑚) = (𝐹𝑚)))
106 elin 4019 . . . . . . . . . . . . . . 15 (𝑘 ∈ (ℕ ∩ dom 𝐹) ↔ (𝑘 ∈ ℕ ∧ 𝑘 ∈ dom 𝐹))
107106, 99sylbi 209 . . . . . . . . . . . . . 14 (𝑘 ∈ (ℕ ∩ dom 𝐹) → (𝐺𝑘) = (𝐹𝑘))
108105, 107vtoclga 3474 . . . . . . . . . . . . 13 (𝑚 ∈ (ℕ ∩ dom 𝐹) → (𝐺𝑚) = (𝐹𝑚))
109102, 108syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) ∧ 𝑚 ∈ (ℤ𝑗)) → (𝐺𝑚) = (𝐹𝑚))
11058, 59, 61, 100, 109iscau4 23485 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) → (𝐺 ∈ (Cau‘𝐷) ↔ (𝐺 ∈ (𝑋pm ℂ) ∧ ∀𝑧 ∈ ℝ+𝑚 ∈ (ℤ𝑗)∀𝑘 ∈ (ℤ𝑚)(𝑘 ∈ dom 𝐺 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷(𝐹𝑚)) < 𝑧))))
11157, 85, 110mpbir2and 703 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ (ℤ𝑗) ⊆ dom 𝐹)) → 𝐺 ∈ (Cau‘𝐷))
112111expr 450 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → ((ℤ𝑗) ⊆ dom 𝐹𝐺 ∈ (Cau‘𝐷)))
11352, 112syl5bir 235 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑗)𝑘 ∈ dom 𝐹𝐺 ∈ (Cau‘𝐷)))
114113rexlimdva 3213 . . . . . . 7 (𝜑 → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑘 ∈ dom 𝐹𝐺 ∈ (Cau‘𝐷)))
11551, 114mpd 15 . . . . . 6 (𝜑𝐺 ∈ (Cau‘𝐷))
116 eqid 2778 . . . . . . . 8 ((𝑋 FilMap 𝐺)‘(ℤ “ ℕ)) = ((𝑋 FilMap 𝐺)‘(ℤ “ ℕ))
11710, 116caucfil 23489 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 1 ∈ ℤ ∧ 𝐺:ℕ⟶𝑋) → (𝐺 ∈ (Cau‘𝐷) ↔ ((𝑋 FilMap 𝐺)‘(ℤ “ ℕ)) ∈ (CauFil‘𝐷)))
1185, 40, 31, 117syl3anc 1439 . . . . . 6 (𝜑 → (𝐺 ∈ (Cau‘𝐷) ↔ ((𝑋 FilMap 𝐺)‘(ℤ “ ℕ)) ∈ (CauFil‘𝐷)))
119115, 118mpbid 224 . . . . 5 (𝜑 → ((𝑋 FilMap 𝐺)‘(ℤ “ ℕ)) ∈ (CauFil‘𝐷))
1206cmetcvg 23491 . . . . 5 ((𝐷 ∈ (CMet‘𝑋) ∧ ((𝑋 FilMap 𝐺)‘(ℤ “ ℕ)) ∈ (CauFil‘𝐷)) → (𝐽 fLim ((𝑋 FilMap 𝐺)‘(ℤ “ ℕ))) ≠ ∅)
1211, 119, 120syl2anc 579 . . . 4 (𝜑 → (𝐽 fLim ((𝑋 FilMap 𝐺)‘(ℤ “ ℕ))) ≠ ∅)
12238, 121eqnetrd 3036 . . 3 (𝜑 → ((𝐽 fLimf (ℕfilGen(ℤ “ ℕ)))‘𝐺) ≠ ∅)
123 n0 4159 . . 3 (((𝐽 fLimf (ℕfilGen(ℤ “ ℕ)))‘𝐺) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ ((𝐽 fLimf (ℕfilGen(ℤ “ ℕ)))‘𝐺))
124122, 123sylib 210 . 2 (𝜑 → ∃𝑦 𝑦 ∈ ((𝐽 fLimf (ℕfilGen(ℤ “ ℕ)))‘𝐺))
12510, 34lmflf 22217 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 1 ∈ ℤ ∧ 𝐺:ℕ⟶𝑋) → (𝐺(⇝𝑡𝐽)𝑦𝑦 ∈ ((𝐽 fLimf (ℕfilGen(ℤ “ ℕ)))‘𝐺)))
1268, 40, 31, 125syl3anc 1439 . . . 4 (𝜑 → (𝐺(⇝𝑡𝐽)𝑦𝑦 ∈ ((𝐽 fLimf (ℕfilGen(ℤ “ ℕ)))‘𝐺)))
12721adantr 474 . . . . . . 7 ((𝜑𝐺(⇝𝑡𝐽)𝑦) → 𝐹 ∈ (𝑋pm ℂ))
128 lmcl 21509 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐺(⇝𝑡𝐽)𝑦) → 𝑦𝑋)
1298, 128sylan 575 . . . . . . 7 ((𝜑𝐺(⇝𝑡𝐽)𝑦) → 𝑦𝑋)
1306, 5, 10, 40lmmbr3 23466 . . . . . . . . . 10 (𝜑 → (𝐺(⇝𝑡𝐽)𝑦 ↔ (𝐺 ∈ (𝑋pm ℂ) ∧ 𝑦𝑋 ∧ ∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧))))
131130biimpa 470 . . . . . . . . 9 ((𝜑𝐺(⇝𝑡𝐽)𝑦) → (𝐺 ∈ (𝑋pm ℂ) ∧ 𝑦𝑋 ∧ ∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧)))
132131simp3d 1135 . . . . . . . 8 ((𝜑𝐺(⇝𝑡𝐽)𝑦) → ∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧))
133 r19.26 3250 . . . . . . . . . . 11 (∀𝑧 ∈ ℝ+ (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑘 ∈ dom 𝐹 ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧)) ↔ (∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑘 ∈ dom 𝐹 ∧ ∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧)))
13410rexanuz2 14496 . . . . . . . . . . . . 13 (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧)) ↔ (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑘 ∈ dom 𝐹 ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧)))
135 simprl 761 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧))) → 𝑘 ∈ dom 𝐹)
13699ad2ant2lr 738 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧))) → (𝐺𝑘) = (𝐹𝑘))
137 simprr2 1246 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧))) → (𝐺𝑘) ∈ 𝑋)
138136, 137eqeltrrd 2860 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧))) → (𝐹𝑘) ∈ 𝑋)
139136oveq1d 6937 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧))) → ((𝐺𝑘)𝐷𝑦) = ((𝐹𝑘)𝐷𝑦))
140 simprr3 1248 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧))) → ((𝐺𝑘)𝐷𝑦) < 𝑧)
141139, 140eqbrtrrd 4910 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧))) → ((𝐹𝑘)𝐷𝑦) < 𝑧)
142135, 138, 1413jca 1119 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑘 ∈ ℕ) ∧ (𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧))) → (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑦) < 𝑧))
143142ex 403 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℕ) → ((𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧)) → (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑦) < 𝑧)))
14486, 143sylan2 586 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → ((𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧)) → (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑦) < 𝑧)))
145144anassrs 461 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧)) → (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑦) < 𝑧)))
146145ralimdva 3144 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧)) → ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑦) < 𝑧)))
147146reximdva 3198 . . . . . . . . . . . . 13 (𝜑 → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑦) < 𝑧)))
148134, 147syl5bir 235 . . . . . . . . . . . 12 (𝜑 → ((∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑘 ∈ dom 𝐹 ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑦) < 𝑧)))
149148ralimdv 3145 . . . . . . . . . . 11 (𝜑 → (∀𝑧 ∈ ℝ+ (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑘 ∈ dom 𝐹 ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧)) → ∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑦) < 𝑧)))
150133, 149syl5bir 235 . . . . . . . . . 10 (𝜑 → ((∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑘 ∈ dom 𝐹 ∧ ∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧)) → ∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑦) < 𝑧)))
15148, 150mpand 685 . . . . . . . . 9 (𝜑 → (∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧) → ∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑦) < 𝑧)))
152151adantr 474 . . . . . . . 8 ((𝜑𝐺(⇝𝑡𝐽)𝑦) → (∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐺 ∧ (𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷𝑦) < 𝑧) → ∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑦) < 𝑧)))
153132, 152mpd 15 . . . . . . 7 ((𝜑𝐺(⇝𝑡𝐽)𝑦) → ∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑦) < 𝑧))
1545adantr 474 . . . . . . . 8 ((𝜑𝐺(⇝𝑡𝐽)𝑦) → 𝐷 ∈ (∞Met‘𝑋))
155 1zzd 11760 . . . . . . . 8 ((𝜑𝐺(⇝𝑡𝐽)𝑦) → 1 ∈ ℤ)
1566, 154, 10, 155lmmbr3 23466 . . . . . . 7 ((𝜑𝐺(⇝𝑡𝐽)𝑦) → (𝐹(⇝𝑡𝐽)𝑦 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑦𝑋 ∧ ∀𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑦) < 𝑧))))
157127, 129, 153, 156mpbir3and 1399 . . . . . 6 ((𝜑𝐺(⇝𝑡𝐽)𝑦) → 𝐹(⇝𝑡𝐽)𝑦)
158 lmrel 21442 . . . . . . 7 Rel (⇝𝑡𝐽)
159158releldmi 5608 . . . . . 6 (𝐹(⇝𝑡𝐽)𝑦𝐹 ∈ dom (⇝𝑡𝐽))
160157, 159syl 17 . . . . 5 ((𝜑𝐺(⇝𝑡𝐽)𝑦) → 𝐹 ∈ dom (⇝𝑡𝐽))
161160ex 403 . . . 4 (𝜑 → (𝐺(⇝𝑡𝐽)𝑦𝐹 ∈ dom (⇝𝑡𝐽)))
162126, 161sylbird 252 . . 3 (𝜑 → (𝑦 ∈ ((𝐽 fLimf (ℕfilGen(ℤ “ ℕ)))‘𝐺) → 𝐹 ∈ dom (⇝𝑡𝐽)))
163162exlimdv 1976 . 2 (𝜑 → (∃𝑦 𝑦 ∈ ((𝐽 fLimf (ℕfilGen(ℤ “ ℕ)))‘𝐺) → 𝐹 ∈ dom (⇝𝑡𝐽)))
164124, 163mpd 15 1 (𝜑𝐹 ∈ dom (⇝𝑡𝐽))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  w3a 1071   = wceq 1601  wex 1823  wcel 2107  wne 2969  wral 3090  wrex 3091  Vcvv 3398  cin 3791  wss 3792  c0 4141  ifcif 4307   class class class wbr 4886  cmpt 4965  dom cdm 5355  cima 5358  wf 6131  cfv 6135  (class class class)co 6922  pm cpm 8141  cc 10270  1c1 10273   < clt 10411  cn 11374  cz 11728  cuz 11992  +crp 12137  ∞Metcxmet 20127  Metcmet 20128  fBascfbas 20130  filGencfg 20131  MetOpencmopn 20132  TopOnctopon 21122  𝑡clm 21438  Filcfil 22057   FilMap cfm 22145   fLim cflim 22146   fLimf cflf 22147  CauFilccfil 23458  Cauccau 23459  CMetccmet 23460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-er 8026  df-map 8142  df-pm 8143  df-en 8242  df-dom 8243  df-sdom 8244  df-sup 8636  df-inf 8637  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-n0 11643  df-z 11729  df-uz 11993  df-q 12096  df-rp 12138  df-xneg 12257  df-xadd 12258  df-xmul 12259  df-ico 12493  df-rest 16469  df-topgen 16490  df-psmet 20134  df-xmet 20135  df-met 20136  df-bl 20137  df-mopn 20138  df-fbas 20139  df-fg 20140  df-top 21106  df-topon 21123  df-bases 21158  df-ntr 21232  df-nei 21310  df-lm 21441  df-fil 22058  df-fm 22150  df-flim 22151  df-flf 22152  df-cfil 23461  df-cau 23462  df-cmet 23463
This theorem is referenced by:  cmetcau  23495
  Copyright terms: Public domain W3C validator