Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwspjmhmmgpd Structured version   Visualization version   GIF version

Theorem pwspjmhmmgpd 39868
Description: The projection given by pwspjmhm 18110 is also a monoid homomorphism between the respective multiplicative groups. (Contributed by SN, 30-Jul-2024.)
Hypotheses
Ref Expression
pwspjmhmmgpd.y 𝑌 = (𝑅s 𝐼)
pwspjmhmmgpd.b 𝐵 = (Base‘𝑌)
pwspjmhmmgpd.m 𝑀 = (mulGrp‘𝑌)
pwspjmhmmgpd.t 𝑇 = (mulGrp‘𝑅)
pwspjmhmmgpd.r (𝜑𝑅 ∈ Ring)
pwspjmhmmgpd.i (𝜑𝐼𝑉)
pwspjmhmmgpd.a (𝜑𝐴𝐼)
Assertion
Ref Expression
pwspjmhmmgpd (𝜑 → (𝑥𝐵 ↦ (𝑥𝐴)) ∈ (𝑀 MndHom 𝑇))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅   𝑥,𝑌   𝜑,𝑥
Allowed substitution hints:   𝑇(𝑥)   𝐼(𝑥)   𝑀(𝑥)   𝑉(𝑥)

Proof of Theorem pwspjmhmmgpd
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwspjmhmmgpd.m . . 3 𝑀 = (mulGrp‘𝑌)
2 pwspjmhmmgpd.b . . 3 𝐵 = (Base‘𝑌)
31, 2mgpbas 19364 . 2 𝐵 = (Base‘𝑀)
4 pwspjmhmmgpd.t . . 3 𝑇 = (mulGrp‘𝑅)
5 eqid 2738 . . 3 (Base‘𝑅) = (Base‘𝑅)
64, 5mgpbas 19364 . 2 (Base‘𝑅) = (Base‘𝑇)
7 eqid 2738 . . 3 (.r𝑌) = (.r𝑌)
81, 7mgpplusg 19362 . 2 (.r𝑌) = (+g𝑀)
9 eqid 2738 . . 3 (.r𝑅) = (.r𝑅)
104, 9mgpplusg 19362 . 2 (.r𝑅) = (+g𝑇)
11 eqid 2738 . . 3 (1r𝑌) = (1r𝑌)
121, 11ringidval 19372 . 2 (1r𝑌) = (0g𝑀)
13 eqid 2738 . . 3 (1r𝑅) = (1r𝑅)
144, 13ringidval 19372 . 2 (1r𝑅) = (0g𝑇)
15 pwspjmhmmgpd.r . . . 4 (𝜑𝑅 ∈ Ring)
16 pwspjmhmmgpd.i . . . 4 (𝜑𝐼𝑉)
17 pwspjmhmmgpd.y . . . . 5 𝑌 = (𝑅s 𝐼)
1817pwsring 19487 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → 𝑌 ∈ Ring)
1915, 16, 18syl2anc 587 . . 3 (𝜑𝑌 ∈ Ring)
201ringmgp 19422 . . 3 (𝑌 ∈ Ring → 𝑀 ∈ Mnd)
2119, 20syl 17 . 2 (𝜑𝑀 ∈ Mnd)
224ringmgp 19422 . . 3 (𝑅 ∈ Ring → 𝑇 ∈ Mnd)
2315, 22syl 17 . 2 (𝜑𝑇 ∈ Mnd)
2415adantr 484 . . . . 5 ((𝜑𝑥𝐵) → 𝑅 ∈ Ring)
2516adantr 484 . . . . 5 ((𝜑𝑥𝐵) → 𝐼𝑉)
26 simpr 488 . . . . 5 ((𝜑𝑥𝐵) → 𝑥𝐵)
2717, 5, 2, 24, 25, 26pwselbas 16865 . . . 4 ((𝜑𝑥𝐵) → 𝑥:𝐼⟶(Base‘𝑅))
28 pwspjmhmmgpd.a . . . . 5 (𝜑𝐴𝐼)
2928adantr 484 . . . 4 ((𝜑𝑥𝐵) → 𝐴𝐼)
3027, 29ffvelrnd 6862 . . 3 ((𝜑𝑥𝐵) → (𝑥𝐴) ∈ (Base‘𝑅))
3130fmpttd 6889 . 2 (𝜑 → (𝑥𝐵 ↦ (𝑥𝐴)):𝐵⟶(Base‘𝑅))
3215adantr 484 . . . . . 6 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑅 ∈ Ring)
3316adantr 484 . . . . . 6 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝐼𝑉)
34 simprl 771 . . . . . 6 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑎𝐵)
35 simprr 773 . . . . . 6 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑏𝐵)
3617, 2, 32, 33, 34, 35, 9, 7pwsmulrval 16867 . . . . 5 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(.r𝑌)𝑏) = (𝑎f (.r𝑅)𝑏))
3736fveq1d 6676 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((𝑎(.r𝑌)𝑏)‘𝐴) = ((𝑎f (.r𝑅)𝑏)‘𝐴))
3817, 5, 2, 32, 33, 34pwselbas 16865 . . . . . . 7 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑎:𝐼⟶(Base‘𝑅))
3938ffnd 6505 . . . . . 6 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑎 Fn 𝐼)
4017, 5, 2, 32, 33, 35pwselbas 16865 . . . . . . 7 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑏:𝐼⟶(Base‘𝑅))
4140ffnd 6505 . . . . . 6 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑏 Fn 𝐼)
42 inidm 4109 . . . . . 6 (𝐼𝐼) = 𝐼
43 eqidd 2739 . . . . . 6 (((𝜑 ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝐴𝐼) → (𝑎𝐴) = (𝑎𝐴))
44 eqidd 2739 . . . . . 6 (((𝜑 ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝐴𝐼) → (𝑏𝐴) = (𝑏𝐴))
4539, 41, 33, 33, 42, 43, 44ofval 7435 . . . . 5 (((𝜑 ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝐴𝐼) → ((𝑎f (.r𝑅)𝑏)‘𝐴) = ((𝑎𝐴)(.r𝑅)(𝑏𝐴)))
4628, 45mpidan 689 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((𝑎f (.r𝑅)𝑏)‘𝐴) = ((𝑎𝐴)(.r𝑅)(𝑏𝐴)))
4737, 46eqtrd 2773 . . 3 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((𝑎(.r𝑌)𝑏)‘𝐴) = ((𝑎𝐴)(.r𝑅)(𝑏𝐴)))
482, 7ringcl 19433 . . . . . 6 ((𝑌 ∈ Ring ∧ 𝑎𝐵𝑏𝐵) → (𝑎(.r𝑌)𝑏) ∈ 𝐵)
4919, 48syl3an1 1164 . . . . 5 ((𝜑𝑎𝐵𝑏𝐵) → (𝑎(.r𝑌)𝑏) ∈ 𝐵)
50493expb 1121 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(.r𝑌)𝑏) ∈ 𝐵)
51 fveq1 6673 . . . . 5 (𝑥 = (𝑎(.r𝑌)𝑏) → (𝑥𝐴) = ((𝑎(.r𝑌)𝑏)‘𝐴))
52 eqid 2738 . . . . 5 (𝑥𝐵 ↦ (𝑥𝐴)) = (𝑥𝐵 ↦ (𝑥𝐴))
53 fvex 6687 . . . . 5 ((𝑎(.r𝑌)𝑏)‘𝐴) ∈ V
5451, 52, 53fvmpt 6775 . . . 4 ((𝑎(.r𝑌)𝑏) ∈ 𝐵 → ((𝑥𝐵 ↦ (𝑥𝐴))‘(𝑎(.r𝑌)𝑏)) = ((𝑎(.r𝑌)𝑏)‘𝐴))
5550, 54syl 17 . . 3 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((𝑥𝐵 ↦ (𝑥𝐴))‘(𝑎(.r𝑌)𝑏)) = ((𝑎(.r𝑌)𝑏)‘𝐴))
56 fveq1 6673 . . . . . 6 (𝑥 = 𝑎 → (𝑥𝐴) = (𝑎𝐴))
57 fvex 6687 . . . . . 6 (𝑎𝐴) ∈ V
5856, 52, 57fvmpt 6775 . . . . 5 (𝑎𝐵 → ((𝑥𝐵 ↦ (𝑥𝐴))‘𝑎) = (𝑎𝐴))
5934, 58syl 17 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((𝑥𝐵 ↦ (𝑥𝐴))‘𝑎) = (𝑎𝐴))
60 fveq1 6673 . . . . . 6 (𝑥 = 𝑏 → (𝑥𝐴) = (𝑏𝐴))
61 fvex 6687 . . . . . 6 (𝑏𝐴) ∈ V
6260, 52, 61fvmpt 6775 . . . . 5 (𝑏𝐵 → ((𝑥𝐵 ↦ (𝑥𝐴))‘𝑏) = (𝑏𝐴))
6335, 62syl 17 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((𝑥𝐵 ↦ (𝑥𝐴))‘𝑏) = (𝑏𝐴))
6459, 63oveq12d 7188 . . 3 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (((𝑥𝐵 ↦ (𝑥𝐴))‘𝑎)(.r𝑅)((𝑥𝐵 ↦ (𝑥𝐴))‘𝑏)) = ((𝑎𝐴)(.r𝑅)(𝑏𝐴)))
6547, 55, 643eqtr4d 2783 . 2 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((𝑥𝐵 ↦ (𝑥𝐴))‘(𝑎(.r𝑌)𝑏)) = (((𝑥𝐵 ↦ (𝑥𝐴))‘𝑎)(.r𝑅)((𝑥𝐵 ↦ (𝑥𝐴))‘𝑏)))
662, 11ringidcl 19440 . . . 4 (𝑌 ∈ Ring → (1r𝑌) ∈ 𝐵)
67 fveq1 6673 . . . . 5 (𝑥 = (1r𝑌) → (𝑥𝐴) = ((1r𝑌)‘𝐴))
68 fvex 6687 . . . . 5 ((1r𝑌)‘𝐴) ∈ V
6967, 52, 68fvmpt 6775 . . . 4 ((1r𝑌) ∈ 𝐵 → ((𝑥𝐵 ↦ (𝑥𝐴))‘(1r𝑌)) = ((1r𝑌)‘𝐴))
7019, 66, 693syl 18 . . 3 (𝜑 → ((𝑥𝐵 ↦ (𝑥𝐴))‘(1r𝑌)) = ((1r𝑌)‘𝐴))
7117, 13pws1 19488 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → (𝐼 × {(1r𝑅)}) = (1r𝑌))
7215, 16, 71syl2anc 587 . . . 4 (𝜑 → (𝐼 × {(1r𝑅)}) = (1r𝑌))
7372fveq1d 6676 . . 3 (𝜑 → ((𝐼 × {(1r𝑅)})‘𝐴) = ((1r𝑌)‘𝐴))
74 fvex 6687 . . . . 5 (1r𝑅) ∈ V
7574fvconst2 6976 . . . 4 (𝐴𝐼 → ((𝐼 × {(1r𝑅)})‘𝐴) = (1r𝑅))
7628, 75syl 17 . . 3 (𝜑 → ((𝐼 × {(1r𝑅)})‘𝐴) = (1r𝑅))
7770, 73, 763eqtr2d 2779 . 2 (𝜑 → ((𝑥𝐵 ↦ (𝑥𝐴))‘(1r𝑌)) = (1r𝑅))
783, 6, 8, 10, 12, 14, 21, 23, 31, 65, 77ismhmd 39840 1 (𝜑 → (𝑥𝐵 ↦ (𝑥𝐴)) ∈ (𝑀 MndHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wcel 2114  {csn 4516  cmpt 5110   × cxp 5523  cfv 6339  (class class class)co 7170  f cof 7423  Basecbs 16586  .rcmulr 16669  s cpws 16823  Mndcmnd 18027   MndHom cmhm 18070  mulGrpcmgp 19358  1rcur 19370  Ringcrg 19416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-of 7425  df-om 7600  df-1st 7714  df-2nd 7715  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-1o 8131  df-er 8320  df-map 8439  df-ixp 8508  df-en 8556  df-dom 8557  df-sdom 8558  df-fin 8559  df-sup 8979  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-nn 11717  df-2 11779  df-3 11780  df-4 11781  df-5 11782  df-6 11783  df-7 11784  df-8 11785  df-9 11786  df-n0 11977  df-z 12063  df-dec 12180  df-uz 12325  df-fz 12982  df-struct 16588  df-ndx 16589  df-slot 16590  df-base 16592  df-sets 16593  df-plusg 16681  df-mulr 16682  df-sca 16684  df-vsca 16685  df-ip 16686  df-tset 16687  df-ple 16688  df-ds 16690  df-hom 16692  df-cco 16693  df-0g 16818  df-prds 16824  df-pws 16826  df-mgm 17968  df-sgrp 18017  df-mnd 18028  df-mhm 18072  df-grp 18222  df-minusg 18223  df-mgp 19359  df-ur 19371  df-ring 19418
This theorem is referenced by:  pwsexpg  39869  pwsgprod  39870
  Copyright terms: Public domain W3C validator