MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwspjmhmmgpd Structured version   Visualization version   GIF version

Theorem pwspjmhmmgpd 20351
Description: The projection given by pwspjmhm 18865 is also a monoid homomorphism between the respective multiplicative groups. (Contributed by SN, 30-Jul-2024.)
Hypotheses
Ref Expression
pwspjmhmmgpd.y 𝑌 = (𝑅s 𝐼)
pwspjmhmmgpd.b 𝐵 = (Base‘𝑌)
pwspjmhmmgpd.m 𝑀 = (mulGrp‘𝑌)
pwspjmhmmgpd.t 𝑇 = (mulGrp‘𝑅)
pwspjmhmmgpd.r (𝜑𝑅 ∈ Ring)
pwspjmhmmgpd.i (𝜑𝐼𝑉)
pwspjmhmmgpd.a (𝜑𝐴𝐼)
Assertion
Ref Expression
pwspjmhmmgpd (𝜑 → (𝑥𝐵 ↦ (𝑥𝐴)) ∈ (𝑀 MndHom 𝑇))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅   𝑥,𝑌   𝜑,𝑥
Allowed substitution hints:   𝑇(𝑥)   𝐼(𝑥)   𝑀(𝑥)   𝑉(𝑥)

Proof of Theorem pwspjmhmmgpd
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwspjmhmmgpd.m . . 3 𝑀 = (mulGrp‘𝑌)
2 pwspjmhmmgpd.b . . 3 𝐵 = (Base‘𝑌)
31, 2mgpbas 20167 . 2 𝐵 = (Base‘𝑀)
4 pwspjmhmmgpd.t . . 3 𝑇 = (mulGrp‘𝑅)
5 eqid 2740 . . 3 (Base‘𝑅) = (Base‘𝑅)
64, 5mgpbas 20167 . 2 (Base‘𝑅) = (Base‘𝑇)
7 eqid 2740 . . 3 (.r𝑌) = (.r𝑌)
81, 7mgpplusg 20165 . 2 (.r𝑌) = (+g𝑀)
9 eqid 2740 . . 3 (.r𝑅) = (.r𝑅)
104, 9mgpplusg 20165 . 2 (.r𝑅) = (+g𝑇)
11 eqid 2740 . . 3 (1r𝑌) = (1r𝑌)
121, 11ringidval 20210 . 2 (1r𝑌) = (0g𝑀)
13 eqid 2740 . . 3 (1r𝑅) = (1r𝑅)
144, 13ringidval 20210 . 2 (1r𝑅) = (0g𝑇)
15 pwspjmhmmgpd.r . . . 4 (𝜑𝑅 ∈ Ring)
16 pwspjmhmmgpd.i . . . 4 (𝜑𝐼𝑉)
17 pwspjmhmmgpd.y . . . . 5 𝑌 = (𝑅s 𝐼)
1817pwsring 20347 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → 𝑌 ∈ Ring)
1915, 16, 18syl2anc 583 . . 3 (𝜑𝑌 ∈ Ring)
201ringmgp 20266 . . 3 (𝑌 ∈ Ring → 𝑀 ∈ Mnd)
2119, 20syl 17 . 2 (𝜑𝑀 ∈ Mnd)
224ringmgp 20266 . . 3 (𝑅 ∈ Ring → 𝑇 ∈ Mnd)
2315, 22syl 17 . 2 (𝜑𝑇 ∈ Mnd)
2415adantr 480 . . . . 5 ((𝜑𝑥𝐵) → 𝑅 ∈ Ring)
2516adantr 480 . . . . 5 ((𝜑𝑥𝐵) → 𝐼𝑉)
26 simpr 484 . . . . 5 ((𝜑𝑥𝐵) → 𝑥𝐵)
2717, 5, 2, 24, 25, 26pwselbas 17549 . . . 4 ((𝜑𝑥𝐵) → 𝑥:𝐼⟶(Base‘𝑅))
28 pwspjmhmmgpd.a . . . . 5 (𝜑𝐴𝐼)
2928adantr 480 . . . 4 ((𝜑𝑥𝐵) → 𝐴𝐼)
3027, 29ffvelcdmd 7119 . . 3 ((𝜑𝑥𝐵) → (𝑥𝐴) ∈ (Base‘𝑅))
3130fmpttd 7149 . 2 (𝜑 → (𝑥𝐵 ↦ (𝑥𝐴)):𝐵⟶(Base‘𝑅))
3215adantr 480 . . . . . 6 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑅 ∈ Ring)
3316adantr 480 . . . . . 6 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝐼𝑉)
34 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑎𝐵)
35 simprr 772 . . . . . 6 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑏𝐵)
3617, 2, 32, 33, 34, 35, 9, 7pwsmulrval 17551 . . . . 5 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(.r𝑌)𝑏) = (𝑎f (.r𝑅)𝑏))
3736fveq1d 6922 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((𝑎(.r𝑌)𝑏)‘𝐴) = ((𝑎f (.r𝑅)𝑏)‘𝐴))
3817, 5, 2, 32, 33, 34pwselbas 17549 . . . . . . 7 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑎:𝐼⟶(Base‘𝑅))
3938ffnd 6748 . . . . . 6 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑎 Fn 𝐼)
4017, 5, 2, 32, 33, 35pwselbas 17549 . . . . . . 7 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑏:𝐼⟶(Base‘𝑅))
4140ffnd 6748 . . . . . 6 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑏 Fn 𝐼)
42 inidm 4248 . . . . . 6 (𝐼𝐼) = 𝐼
43 eqidd 2741 . . . . . 6 (((𝜑 ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝐴𝐼) → (𝑎𝐴) = (𝑎𝐴))
44 eqidd 2741 . . . . . 6 (((𝜑 ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝐴𝐼) → (𝑏𝐴) = (𝑏𝐴))
4539, 41, 33, 33, 42, 43, 44ofval 7725 . . . . 5 (((𝜑 ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝐴𝐼) → ((𝑎f (.r𝑅)𝑏)‘𝐴) = ((𝑎𝐴)(.r𝑅)(𝑏𝐴)))
4628, 45mpidan 688 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((𝑎f (.r𝑅)𝑏)‘𝐴) = ((𝑎𝐴)(.r𝑅)(𝑏𝐴)))
4737, 46eqtrd 2780 . . 3 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((𝑎(.r𝑌)𝑏)‘𝐴) = ((𝑎𝐴)(.r𝑅)(𝑏𝐴)))
482, 7ringcl 20277 . . . . . 6 ((𝑌 ∈ Ring ∧ 𝑎𝐵𝑏𝐵) → (𝑎(.r𝑌)𝑏) ∈ 𝐵)
4919, 48syl3an1 1163 . . . . 5 ((𝜑𝑎𝐵𝑏𝐵) → (𝑎(.r𝑌)𝑏) ∈ 𝐵)
50493expb 1120 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(.r𝑌)𝑏) ∈ 𝐵)
51 fveq1 6919 . . . . 5 (𝑥 = (𝑎(.r𝑌)𝑏) → (𝑥𝐴) = ((𝑎(.r𝑌)𝑏)‘𝐴))
52 eqid 2740 . . . . 5 (𝑥𝐵 ↦ (𝑥𝐴)) = (𝑥𝐵 ↦ (𝑥𝐴))
53 fvex 6933 . . . . 5 ((𝑎(.r𝑌)𝑏)‘𝐴) ∈ V
5451, 52, 53fvmpt 7029 . . . 4 ((𝑎(.r𝑌)𝑏) ∈ 𝐵 → ((𝑥𝐵 ↦ (𝑥𝐴))‘(𝑎(.r𝑌)𝑏)) = ((𝑎(.r𝑌)𝑏)‘𝐴))
5550, 54syl 17 . . 3 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((𝑥𝐵 ↦ (𝑥𝐴))‘(𝑎(.r𝑌)𝑏)) = ((𝑎(.r𝑌)𝑏)‘𝐴))
56 fveq1 6919 . . . . . 6 (𝑥 = 𝑎 → (𝑥𝐴) = (𝑎𝐴))
57 fvex 6933 . . . . . 6 (𝑎𝐴) ∈ V
5856, 52, 57fvmpt 7029 . . . . 5 (𝑎𝐵 → ((𝑥𝐵 ↦ (𝑥𝐴))‘𝑎) = (𝑎𝐴))
5934, 58syl 17 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((𝑥𝐵 ↦ (𝑥𝐴))‘𝑎) = (𝑎𝐴))
60 fveq1 6919 . . . . . 6 (𝑥 = 𝑏 → (𝑥𝐴) = (𝑏𝐴))
61 fvex 6933 . . . . . 6 (𝑏𝐴) ∈ V
6260, 52, 61fvmpt 7029 . . . . 5 (𝑏𝐵 → ((𝑥𝐵 ↦ (𝑥𝐴))‘𝑏) = (𝑏𝐴))
6335, 62syl 17 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((𝑥𝐵 ↦ (𝑥𝐴))‘𝑏) = (𝑏𝐴))
6459, 63oveq12d 7466 . . 3 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (((𝑥𝐵 ↦ (𝑥𝐴))‘𝑎)(.r𝑅)((𝑥𝐵 ↦ (𝑥𝐴))‘𝑏)) = ((𝑎𝐴)(.r𝑅)(𝑏𝐴)))
6547, 55, 643eqtr4d 2790 . 2 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((𝑥𝐵 ↦ (𝑥𝐴))‘(𝑎(.r𝑌)𝑏)) = (((𝑥𝐵 ↦ (𝑥𝐴))‘𝑎)(.r𝑅)((𝑥𝐵 ↦ (𝑥𝐴))‘𝑏)))
662, 11ringidcl 20289 . . . 4 (𝑌 ∈ Ring → (1r𝑌) ∈ 𝐵)
67 fveq1 6919 . . . . 5 (𝑥 = (1r𝑌) → (𝑥𝐴) = ((1r𝑌)‘𝐴))
68 fvex 6933 . . . . 5 ((1r𝑌)‘𝐴) ∈ V
6967, 52, 68fvmpt 7029 . . . 4 ((1r𝑌) ∈ 𝐵 → ((𝑥𝐵 ↦ (𝑥𝐴))‘(1r𝑌)) = ((1r𝑌)‘𝐴))
7019, 66, 693syl 18 . . 3 (𝜑 → ((𝑥𝐵 ↦ (𝑥𝐴))‘(1r𝑌)) = ((1r𝑌)‘𝐴))
7117, 13pws1 20348 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → (𝐼 × {(1r𝑅)}) = (1r𝑌))
7215, 16, 71syl2anc 583 . . . 4 (𝜑 → (𝐼 × {(1r𝑅)}) = (1r𝑌))
7372fveq1d 6922 . . 3 (𝜑 → ((𝐼 × {(1r𝑅)})‘𝐴) = ((1r𝑌)‘𝐴))
74 fvex 6933 . . . . 5 (1r𝑅) ∈ V
7574fvconst2 7241 . . . 4 (𝐴𝐼 → ((𝐼 × {(1r𝑅)})‘𝐴) = (1r𝑅))
7628, 75syl 17 . . 3 (𝜑 → ((𝐼 × {(1r𝑅)})‘𝐴) = (1r𝑅))
7770, 73, 763eqtr2d 2786 . 2 (𝜑 → ((𝑥𝐵 ↦ (𝑥𝐴))‘(1r𝑌)) = (1r𝑅))
783, 6, 8, 10, 12, 14, 21, 23, 31, 65, 77ismhmd 18821 1 (𝜑 → (𝑥𝐵 ↦ (𝑥𝐴)) ∈ (𝑀 MndHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {csn 4648  cmpt 5249   × cxp 5698  cfv 6573  (class class class)co 7448  f cof 7712  Basecbs 17258  .rcmulr 17312  s cpws 17506  Mndcmnd 18772   MndHom cmhm 18816  mulGrpcmgp 20161  1rcur 20208  Ringcrg 20260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-hom 17335  df-cco 17336  df-0g 17501  df-prds 17507  df-pws 17509  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-grp 18976  df-minusg 18977  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262
This theorem is referenced by:  pwsexpg  20352  pwsgprod  42499
  Copyright terms: Public domain W3C validator