MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwspjmhmmgpd Structured version   Visualization version   GIF version

Theorem pwspjmhmmgpd 20140
Description: The projection given by pwspjmhm 18710 is also a monoid homomorphism between the respective multiplicative groups. (Contributed by SN, 30-Jul-2024.)
Hypotheses
Ref Expression
pwspjmhmmgpd.y 𝑌 = (𝑅s 𝐼)
pwspjmhmmgpd.b 𝐵 = (Base‘𝑌)
pwspjmhmmgpd.m 𝑀 = (mulGrp‘𝑌)
pwspjmhmmgpd.t 𝑇 = (mulGrp‘𝑅)
pwspjmhmmgpd.r (𝜑𝑅 ∈ Ring)
pwspjmhmmgpd.i (𝜑𝐼𝑉)
pwspjmhmmgpd.a (𝜑𝐴𝐼)
Assertion
Ref Expression
pwspjmhmmgpd (𝜑 → (𝑥𝐵 ↦ (𝑥𝐴)) ∈ (𝑀 MndHom 𝑇))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅   𝑥,𝑌   𝜑,𝑥
Allowed substitution hints:   𝑇(𝑥)   𝐼(𝑥)   𝑀(𝑥)   𝑉(𝑥)

Proof of Theorem pwspjmhmmgpd
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwspjmhmmgpd.m . . 3 𝑀 = (mulGrp‘𝑌)
2 pwspjmhmmgpd.b . . 3 𝐵 = (Base‘𝑌)
31, 2mgpbas 19992 . 2 𝐵 = (Base‘𝑀)
4 pwspjmhmmgpd.t . . 3 𝑇 = (mulGrp‘𝑅)
5 eqid 2732 . . 3 (Base‘𝑅) = (Base‘𝑅)
64, 5mgpbas 19992 . 2 (Base‘𝑅) = (Base‘𝑇)
7 eqid 2732 . . 3 (.r𝑌) = (.r𝑌)
81, 7mgpplusg 19990 . 2 (.r𝑌) = (+g𝑀)
9 eqid 2732 . . 3 (.r𝑅) = (.r𝑅)
104, 9mgpplusg 19990 . 2 (.r𝑅) = (+g𝑇)
11 eqid 2732 . . 3 (1r𝑌) = (1r𝑌)
121, 11ringidval 20005 . 2 (1r𝑌) = (0g𝑀)
13 eqid 2732 . . 3 (1r𝑅) = (1r𝑅)
144, 13ringidval 20005 . 2 (1r𝑅) = (0g𝑇)
15 pwspjmhmmgpd.r . . . 4 (𝜑𝑅 ∈ Ring)
16 pwspjmhmmgpd.i . . . 4 (𝜑𝐼𝑉)
17 pwspjmhmmgpd.y . . . . 5 𝑌 = (𝑅s 𝐼)
1817pwsring 20136 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → 𝑌 ∈ Ring)
1915, 16, 18syl2anc 584 . . 3 (𝜑𝑌 ∈ Ring)
201ringmgp 20061 . . 3 (𝑌 ∈ Ring → 𝑀 ∈ Mnd)
2119, 20syl 17 . 2 (𝜑𝑀 ∈ Mnd)
224ringmgp 20061 . . 3 (𝑅 ∈ Ring → 𝑇 ∈ Mnd)
2315, 22syl 17 . 2 (𝜑𝑇 ∈ Mnd)
2415adantr 481 . . . . 5 ((𝜑𝑥𝐵) → 𝑅 ∈ Ring)
2516adantr 481 . . . . 5 ((𝜑𝑥𝐵) → 𝐼𝑉)
26 simpr 485 . . . . 5 ((𝜑𝑥𝐵) → 𝑥𝐵)
2717, 5, 2, 24, 25, 26pwselbas 17434 . . . 4 ((𝜑𝑥𝐵) → 𝑥:𝐼⟶(Base‘𝑅))
28 pwspjmhmmgpd.a . . . . 5 (𝜑𝐴𝐼)
2928adantr 481 . . . 4 ((𝜑𝑥𝐵) → 𝐴𝐼)
3027, 29ffvelcdmd 7087 . . 3 ((𝜑𝑥𝐵) → (𝑥𝐴) ∈ (Base‘𝑅))
3130fmpttd 7114 . 2 (𝜑 → (𝑥𝐵 ↦ (𝑥𝐴)):𝐵⟶(Base‘𝑅))
3215adantr 481 . . . . . 6 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑅 ∈ Ring)
3316adantr 481 . . . . . 6 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝐼𝑉)
34 simprl 769 . . . . . 6 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑎𝐵)
35 simprr 771 . . . . . 6 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑏𝐵)
3617, 2, 32, 33, 34, 35, 9, 7pwsmulrval 17436 . . . . 5 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(.r𝑌)𝑏) = (𝑎f (.r𝑅)𝑏))
3736fveq1d 6893 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((𝑎(.r𝑌)𝑏)‘𝐴) = ((𝑎f (.r𝑅)𝑏)‘𝐴))
3817, 5, 2, 32, 33, 34pwselbas 17434 . . . . . . 7 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑎:𝐼⟶(Base‘𝑅))
3938ffnd 6718 . . . . . 6 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑎 Fn 𝐼)
4017, 5, 2, 32, 33, 35pwselbas 17434 . . . . . . 7 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑏:𝐼⟶(Base‘𝑅))
4140ffnd 6718 . . . . . 6 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑏 Fn 𝐼)
42 inidm 4218 . . . . . 6 (𝐼𝐼) = 𝐼
43 eqidd 2733 . . . . . 6 (((𝜑 ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝐴𝐼) → (𝑎𝐴) = (𝑎𝐴))
44 eqidd 2733 . . . . . 6 (((𝜑 ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝐴𝐼) → (𝑏𝐴) = (𝑏𝐴))
4539, 41, 33, 33, 42, 43, 44ofval 7680 . . . . 5 (((𝜑 ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝐴𝐼) → ((𝑎f (.r𝑅)𝑏)‘𝐴) = ((𝑎𝐴)(.r𝑅)(𝑏𝐴)))
4628, 45mpidan 687 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((𝑎f (.r𝑅)𝑏)‘𝐴) = ((𝑎𝐴)(.r𝑅)(𝑏𝐴)))
4737, 46eqtrd 2772 . . 3 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((𝑎(.r𝑌)𝑏)‘𝐴) = ((𝑎𝐴)(.r𝑅)(𝑏𝐴)))
482, 7ringcl 20072 . . . . . 6 ((𝑌 ∈ Ring ∧ 𝑎𝐵𝑏𝐵) → (𝑎(.r𝑌)𝑏) ∈ 𝐵)
4919, 48syl3an1 1163 . . . . 5 ((𝜑𝑎𝐵𝑏𝐵) → (𝑎(.r𝑌)𝑏) ∈ 𝐵)
50493expb 1120 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(.r𝑌)𝑏) ∈ 𝐵)
51 fveq1 6890 . . . . 5 (𝑥 = (𝑎(.r𝑌)𝑏) → (𝑥𝐴) = ((𝑎(.r𝑌)𝑏)‘𝐴))
52 eqid 2732 . . . . 5 (𝑥𝐵 ↦ (𝑥𝐴)) = (𝑥𝐵 ↦ (𝑥𝐴))
53 fvex 6904 . . . . 5 ((𝑎(.r𝑌)𝑏)‘𝐴) ∈ V
5451, 52, 53fvmpt 6998 . . . 4 ((𝑎(.r𝑌)𝑏) ∈ 𝐵 → ((𝑥𝐵 ↦ (𝑥𝐴))‘(𝑎(.r𝑌)𝑏)) = ((𝑎(.r𝑌)𝑏)‘𝐴))
5550, 54syl 17 . . 3 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((𝑥𝐵 ↦ (𝑥𝐴))‘(𝑎(.r𝑌)𝑏)) = ((𝑎(.r𝑌)𝑏)‘𝐴))
56 fveq1 6890 . . . . . 6 (𝑥 = 𝑎 → (𝑥𝐴) = (𝑎𝐴))
57 fvex 6904 . . . . . 6 (𝑎𝐴) ∈ V
5856, 52, 57fvmpt 6998 . . . . 5 (𝑎𝐵 → ((𝑥𝐵 ↦ (𝑥𝐴))‘𝑎) = (𝑎𝐴))
5934, 58syl 17 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((𝑥𝐵 ↦ (𝑥𝐴))‘𝑎) = (𝑎𝐴))
60 fveq1 6890 . . . . . 6 (𝑥 = 𝑏 → (𝑥𝐴) = (𝑏𝐴))
61 fvex 6904 . . . . . 6 (𝑏𝐴) ∈ V
6260, 52, 61fvmpt 6998 . . . . 5 (𝑏𝐵 → ((𝑥𝐵 ↦ (𝑥𝐴))‘𝑏) = (𝑏𝐴))
6335, 62syl 17 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((𝑥𝐵 ↦ (𝑥𝐴))‘𝑏) = (𝑏𝐴))
6459, 63oveq12d 7426 . . 3 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (((𝑥𝐵 ↦ (𝑥𝐴))‘𝑎)(.r𝑅)((𝑥𝐵 ↦ (𝑥𝐴))‘𝑏)) = ((𝑎𝐴)(.r𝑅)(𝑏𝐴)))
6547, 55, 643eqtr4d 2782 . 2 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((𝑥𝐵 ↦ (𝑥𝐴))‘(𝑎(.r𝑌)𝑏)) = (((𝑥𝐵 ↦ (𝑥𝐴))‘𝑎)(.r𝑅)((𝑥𝐵 ↦ (𝑥𝐴))‘𝑏)))
662, 11ringidcl 20082 . . . 4 (𝑌 ∈ Ring → (1r𝑌) ∈ 𝐵)
67 fveq1 6890 . . . . 5 (𝑥 = (1r𝑌) → (𝑥𝐴) = ((1r𝑌)‘𝐴))
68 fvex 6904 . . . . 5 ((1r𝑌)‘𝐴) ∈ V
6967, 52, 68fvmpt 6998 . . . 4 ((1r𝑌) ∈ 𝐵 → ((𝑥𝐵 ↦ (𝑥𝐴))‘(1r𝑌)) = ((1r𝑌)‘𝐴))
7019, 66, 693syl 18 . . 3 (𝜑 → ((𝑥𝐵 ↦ (𝑥𝐴))‘(1r𝑌)) = ((1r𝑌)‘𝐴))
7117, 13pws1 20137 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → (𝐼 × {(1r𝑅)}) = (1r𝑌))
7215, 16, 71syl2anc 584 . . . 4 (𝜑 → (𝐼 × {(1r𝑅)}) = (1r𝑌))
7372fveq1d 6893 . . 3 (𝜑 → ((𝐼 × {(1r𝑅)})‘𝐴) = ((1r𝑌)‘𝐴))
74 fvex 6904 . . . . 5 (1r𝑅) ∈ V
7574fvconst2 7204 . . . 4 (𝐴𝐼 → ((𝐼 × {(1r𝑅)})‘𝐴) = (1r𝑅))
7628, 75syl 17 . . 3 (𝜑 → ((𝐼 × {(1r𝑅)})‘𝐴) = (1r𝑅))
7770, 73, 763eqtr2d 2778 . 2 (𝜑 → ((𝑥𝐵 ↦ (𝑥𝐴))‘(1r𝑌)) = (1r𝑅))
783, 6, 8, 10, 12, 14, 21, 23, 31, 65, 77ismhmd 18673 1 (𝜑 → (𝑥𝐵 ↦ (𝑥𝐴)) ∈ (𝑀 MndHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  {csn 4628  cmpt 5231   × cxp 5674  cfv 6543  (class class class)co 7408  f cof 7667  Basecbs 17143  .rcmulr 17197  s cpws 17391  Mndcmnd 18624   MndHom cmhm 18668  mulGrpcmgp 19986  1rcur 20003  Ringcrg 20055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-of 7669  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-er 8702  df-map 8821  df-ixp 8891  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-sup 9436  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-2 12274  df-3 12275  df-4 12276  df-5 12277  df-6 12278  df-7 12279  df-8 12280  df-9 12281  df-n0 12472  df-z 12558  df-dec 12677  df-uz 12822  df-fz 13484  df-struct 17079  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-hom 17220  df-cco 17221  df-0g 17386  df-prds 17392  df-pws 17394  df-mgm 18560  df-sgrp 18609  df-mnd 18625  df-mhm 18670  df-grp 18821  df-minusg 18822  df-mgp 19987  df-ur 20004  df-ring 20057
This theorem is referenced by:  pwsexpg  20141  pwsgprod  41116
  Copyright terms: Public domain W3C validator