MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwspjmhmmgpd Structured version   Visualization version   GIF version

Theorem pwspjmhmmgpd 20043
Description: The projection given by pwspjmhm 18640 is also a monoid homomorphism between the respective multiplicative groups. (Contributed by SN, 30-Jul-2024.)
Hypotheses
Ref Expression
pwspjmhmmgpd.y 𝑌 = (𝑅s 𝐼)
pwspjmhmmgpd.b 𝐵 = (Base‘𝑌)
pwspjmhmmgpd.m 𝑀 = (mulGrp‘𝑌)
pwspjmhmmgpd.t 𝑇 = (mulGrp‘𝑅)
pwspjmhmmgpd.r (𝜑𝑅 ∈ Ring)
pwspjmhmmgpd.i (𝜑𝐼𝑉)
pwspjmhmmgpd.a (𝜑𝐴𝐼)
Assertion
Ref Expression
pwspjmhmmgpd (𝜑 → (𝑥𝐵 ↦ (𝑥𝐴)) ∈ (𝑀 MndHom 𝑇))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅   𝑥,𝑌   𝜑,𝑥
Allowed substitution hints:   𝑇(𝑥)   𝐼(𝑥)   𝑀(𝑥)   𝑉(𝑥)

Proof of Theorem pwspjmhmmgpd
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwspjmhmmgpd.m . . 3 𝑀 = (mulGrp‘𝑌)
2 pwspjmhmmgpd.b . . 3 𝐵 = (Base‘𝑌)
31, 2mgpbas 19902 . 2 𝐵 = (Base‘𝑀)
4 pwspjmhmmgpd.t . . 3 𝑇 = (mulGrp‘𝑅)
5 eqid 2736 . . 3 (Base‘𝑅) = (Base‘𝑅)
64, 5mgpbas 19902 . 2 (Base‘𝑅) = (Base‘𝑇)
7 eqid 2736 . . 3 (.r𝑌) = (.r𝑌)
81, 7mgpplusg 19900 . 2 (.r𝑌) = (+g𝑀)
9 eqid 2736 . . 3 (.r𝑅) = (.r𝑅)
104, 9mgpplusg 19900 . 2 (.r𝑅) = (+g𝑇)
11 eqid 2736 . . 3 (1r𝑌) = (1r𝑌)
121, 11ringidval 19915 . 2 (1r𝑌) = (0g𝑀)
13 eqid 2736 . . 3 (1r𝑅) = (1r𝑅)
144, 13ringidval 19915 . 2 (1r𝑅) = (0g𝑇)
15 pwspjmhmmgpd.r . . . 4 (𝜑𝑅 ∈ Ring)
16 pwspjmhmmgpd.i . . . 4 (𝜑𝐼𝑉)
17 pwspjmhmmgpd.y . . . . 5 𝑌 = (𝑅s 𝐼)
1817pwsring 20039 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → 𝑌 ∈ Ring)
1915, 16, 18syl2anc 584 . . 3 (𝜑𝑌 ∈ Ring)
201ringmgp 19970 . . 3 (𝑌 ∈ Ring → 𝑀 ∈ Mnd)
2119, 20syl 17 . 2 (𝜑𝑀 ∈ Mnd)
224ringmgp 19970 . . 3 (𝑅 ∈ Ring → 𝑇 ∈ Mnd)
2315, 22syl 17 . 2 (𝜑𝑇 ∈ Mnd)
2415adantr 481 . . . . 5 ((𝜑𝑥𝐵) → 𝑅 ∈ Ring)
2516adantr 481 . . . . 5 ((𝜑𝑥𝐵) → 𝐼𝑉)
26 simpr 485 . . . . 5 ((𝜑𝑥𝐵) → 𝑥𝐵)
2717, 5, 2, 24, 25, 26pwselbas 17371 . . . 4 ((𝜑𝑥𝐵) → 𝑥:𝐼⟶(Base‘𝑅))
28 pwspjmhmmgpd.a . . . . 5 (𝜑𝐴𝐼)
2928adantr 481 . . . 4 ((𝜑𝑥𝐵) → 𝐴𝐼)
3027, 29ffvelcdmd 7036 . . 3 ((𝜑𝑥𝐵) → (𝑥𝐴) ∈ (Base‘𝑅))
3130fmpttd 7063 . 2 (𝜑 → (𝑥𝐵 ↦ (𝑥𝐴)):𝐵⟶(Base‘𝑅))
3215adantr 481 . . . . . 6 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑅 ∈ Ring)
3316adantr 481 . . . . . 6 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝐼𝑉)
34 simprl 769 . . . . . 6 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑎𝐵)
35 simprr 771 . . . . . 6 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑏𝐵)
3617, 2, 32, 33, 34, 35, 9, 7pwsmulrval 17373 . . . . 5 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(.r𝑌)𝑏) = (𝑎f (.r𝑅)𝑏))
3736fveq1d 6844 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((𝑎(.r𝑌)𝑏)‘𝐴) = ((𝑎f (.r𝑅)𝑏)‘𝐴))
3817, 5, 2, 32, 33, 34pwselbas 17371 . . . . . . 7 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑎:𝐼⟶(Base‘𝑅))
3938ffnd 6669 . . . . . 6 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑎 Fn 𝐼)
4017, 5, 2, 32, 33, 35pwselbas 17371 . . . . . . 7 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑏:𝐼⟶(Base‘𝑅))
4140ffnd 6669 . . . . . 6 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑏 Fn 𝐼)
42 inidm 4178 . . . . . 6 (𝐼𝐼) = 𝐼
43 eqidd 2737 . . . . . 6 (((𝜑 ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝐴𝐼) → (𝑎𝐴) = (𝑎𝐴))
44 eqidd 2737 . . . . . 6 (((𝜑 ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝐴𝐼) → (𝑏𝐴) = (𝑏𝐴))
4539, 41, 33, 33, 42, 43, 44ofval 7628 . . . . 5 (((𝜑 ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝐴𝐼) → ((𝑎f (.r𝑅)𝑏)‘𝐴) = ((𝑎𝐴)(.r𝑅)(𝑏𝐴)))
4628, 45mpidan 687 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((𝑎f (.r𝑅)𝑏)‘𝐴) = ((𝑎𝐴)(.r𝑅)(𝑏𝐴)))
4737, 46eqtrd 2776 . . 3 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((𝑎(.r𝑌)𝑏)‘𝐴) = ((𝑎𝐴)(.r𝑅)(𝑏𝐴)))
482, 7ringcl 19981 . . . . . 6 ((𝑌 ∈ Ring ∧ 𝑎𝐵𝑏𝐵) → (𝑎(.r𝑌)𝑏) ∈ 𝐵)
4919, 48syl3an1 1163 . . . . 5 ((𝜑𝑎𝐵𝑏𝐵) → (𝑎(.r𝑌)𝑏) ∈ 𝐵)
50493expb 1120 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(.r𝑌)𝑏) ∈ 𝐵)
51 fveq1 6841 . . . . 5 (𝑥 = (𝑎(.r𝑌)𝑏) → (𝑥𝐴) = ((𝑎(.r𝑌)𝑏)‘𝐴))
52 eqid 2736 . . . . 5 (𝑥𝐵 ↦ (𝑥𝐴)) = (𝑥𝐵 ↦ (𝑥𝐴))
53 fvex 6855 . . . . 5 ((𝑎(.r𝑌)𝑏)‘𝐴) ∈ V
5451, 52, 53fvmpt 6948 . . . 4 ((𝑎(.r𝑌)𝑏) ∈ 𝐵 → ((𝑥𝐵 ↦ (𝑥𝐴))‘(𝑎(.r𝑌)𝑏)) = ((𝑎(.r𝑌)𝑏)‘𝐴))
5550, 54syl 17 . . 3 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((𝑥𝐵 ↦ (𝑥𝐴))‘(𝑎(.r𝑌)𝑏)) = ((𝑎(.r𝑌)𝑏)‘𝐴))
56 fveq1 6841 . . . . . 6 (𝑥 = 𝑎 → (𝑥𝐴) = (𝑎𝐴))
57 fvex 6855 . . . . . 6 (𝑎𝐴) ∈ V
5856, 52, 57fvmpt 6948 . . . . 5 (𝑎𝐵 → ((𝑥𝐵 ↦ (𝑥𝐴))‘𝑎) = (𝑎𝐴))
5934, 58syl 17 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((𝑥𝐵 ↦ (𝑥𝐴))‘𝑎) = (𝑎𝐴))
60 fveq1 6841 . . . . . 6 (𝑥 = 𝑏 → (𝑥𝐴) = (𝑏𝐴))
61 fvex 6855 . . . . . 6 (𝑏𝐴) ∈ V
6260, 52, 61fvmpt 6948 . . . . 5 (𝑏𝐵 → ((𝑥𝐵 ↦ (𝑥𝐴))‘𝑏) = (𝑏𝐴))
6335, 62syl 17 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((𝑥𝐵 ↦ (𝑥𝐴))‘𝑏) = (𝑏𝐴))
6459, 63oveq12d 7375 . . 3 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (((𝑥𝐵 ↦ (𝑥𝐴))‘𝑎)(.r𝑅)((𝑥𝐵 ↦ (𝑥𝐴))‘𝑏)) = ((𝑎𝐴)(.r𝑅)(𝑏𝐴)))
6547, 55, 643eqtr4d 2786 . 2 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((𝑥𝐵 ↦ (𝑥𝐴))‘(𝑎(.r𝑌)𝑏)) = (((𝑥𝐵 ↦ (𝑥𝐴))‘𝑎)(.r𝑅)((𝑥𝐵 ↦ (𝑥𝐴))‘𝑏)))
662, 11ringidcl 19989 . . . 4 (𝑌 ∈ Ring → (1r𝑌) ∈ 𝐵)
67 fveq1 6841 . . . . 5 (𝑥 = (1r𝑌) → (𝑥𝐴) = ((1r𝑌)‘𝐴))
68 fvex 6855 . . . . 5 ((1r𝑌)‘𝐴) ∈ V
6967, 52, 68fvmpt 6948 . . . 4 ((1r𝑌) ∈ 𝐵 → ((𝑥𝐵 ↦ (𝑥𝐴))‘(1r𝑌)) = ((1r𝑌)‘𝐴))
7019, 66, 693syl 18 . . 3 (𝜑 → ((𝑥𝐵 ↦ (𝑥𝐴))‘(1r𝑌)) = ((1r𝑌)‘𝐴))
7117, 13pws1 20040 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → (𝐼 × {(1r𝑅)}) = (1r𝑌))
7215, 16, 71syl2anc 584 . . . 4 (𝜑 → (𝐼 × {(1r𝑅)}) = (1r𝑌))
7372fveq1d 6844 . . 3 (𝜑 → ((𝐼 × {(1r𝑅)})‘𝐴) = ((1r𝑌)‘𝐴))
74 fvex 6855 . . . . 5 (1r𝑅) ∈ V
7574fvconst2 7153 . . . 4 (𝐴𝐼 → ((𝐼 × {(1r𝑅)})‘𝐴) = (1r𝑅))
7628, 75syl 17 . . 3 (𝜑 → ((𝐼 × {(1r𝑅)})‘𝐴) = (1r𝑅))
7770, 73, 763eqtr2d 2782 . 2 (𝜑 → ((𝑥𝐵 ↦ (𝑥𝐴))‘(1r𝑌)) = (1r𝑅))
783, 6, 8, 10, 12, 14, 21, 23, 31, 65, 77ismhmd 18604 1 (𝜑 → (𝑥𝐵 ↦ (𝑥𝐴)) ∈ (𝑀 MndHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  {csn 4586  cmpt 5188   × cxp 5631  cfv 6496  (class class class)co 7357  f cof 7615  Basecbs 17083  .rcmulr 17134  s cpws 17328  Mndcmnd 18556   MndHom cmhm 18599  mulGrpcmgp 19896  1rcur 19913  Ringcrg 19964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-fz 13425  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-hom 17157  df-cco 17158  df-0g 17323  df-prds 17329  df-pws 17331  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-grp 18751  df-minusg 18752  df-mgp 19897  df-ur 19914  df-ring 19966
This theorem is referenced by:  pwsexpg  20044  pwsgprod  40720
  Copyright terms: Public domain W3C validator