MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwspjmhmmgpd Structured version   Visualization version   GIF version

Theorem pwspjmhmmgpd 20051
Description: The projection given by pwspjmhm 18648 is also a monoid homomorphism between the respective multiplicative groups. (Contributed by SN, 30-Jul-2024.)
Hypotheses
Ref Expression
pwspjmhmmgpd.y 𝑌 = (𝑅s 𝐼)
pwspjmhmmgpd.b 𝐵 = (Base‘𝑌)
pwspjmhmmgpd.m 𝑀 = (mulGrp‘𝑌)
pwspjmhmmgpd.t 𝑇 = (mulGrp‘𝑅)
pwspjmhmmgpd.r (𝜑𝑅 ∈ Ring)
pwspjmhmmgpd.i (𝜑𝐼𝑉)
pwspjmhmmgpd.a (𝜑𝐴𝐼)
Assertion
Ref Expression
pwspjmhmmgpd (𝜑 → (𝑥𝐵 ↦ (𝑥𝐴)) ∈ (𝑀 MndHom 𝑇))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅   𝑥,𝑌   𝜑,𝑥
Allowed substitution hints:   𝑇(𝑥)   𝐼(𝑥)   𝑀(𝑥)   𝑉(𝑥)

Proof of Theorem pwspjmhmmgpd
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwspjmhmmgpd.m . . 3 𝑀 = (mulGrp‘𝑌)
2 pwspjmhmmgpd.b . . 3 𝐵 = (Base‘𝑌)
31, 2mgpbas 19910 . 2 𝐵 = (Base‘𝑀)
4 pwspjmhmmgpd.t . . 3 𝑇 = (mulGrp‘𝑅)
5 eqid 2733 . . 3 (Base‘𝑅) = (Base‘𝑅)
64, 5mgpbas 19910 . 2 (Base‘𝑅) = (Base‘𝑇)
7 eqid 2733 . . 3 (.r𝑌) = (.r𝑌)
81, 7mgpplusg 19908 . 2 (.r𝑌) = (+g𝑀)
9 eqid 2733 . . 3 (.r𝑅) = (.r𝑅)
104, 9mgpplusg 19908 . 2 (.r𝑅) = (+g𝑇)
11 eqid 2733 . . 3 (1r𝑌) = (1r𝑌)
121, 11ringidval 19923 . 2 (1r𝑌) = (0g𝑀)
13 eqid 2733 . . 3 (1r𝑅) = (1r𝑅)
144, 13ringidval 19923 . 2 (1r𝑅) = (0g𝑇)
15 pwspjmhmmgpd.r . . . 4 (𝜑𝑅 ∈ Ring)
16 pwspjmhmmgpd.i . . . 4 (𝜑𝐼𝑉)
17 pwspjmhmmgpd.y . . . . 5 𝑌 = (𝑅s 𝐼)
1817pwsring 20047 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → 𝑌 ∈ Ring)
1915, 16, 18syl2anc 585 . . 3 (𝜑𝑌 ∈ Ring)
201ringmgp 19978 . . 3 (𝑌 ∈ Ring → 𝑀 ∈ Mnd)
2119, 20syl 17 . 2 (𝜑𝑀 ∈ Mnd)
224ringmgp 19978 . . 3 (𝑅 ∈ Ring → 𝑇 ∈ Mnd)
2315, 22syl 17 . 2 (𝜑𝑇 ∈ Mnd)
2415adantr 482 . . . . 5 ((𝜑𝑥𝐵) → 𝑅 ∈ Ring)
2516adantr 482 . . . . 5 ((𝜑𝑥𝐵) → 𝐼𝑉)
26 simpr 486 . . . . 5 ((𝜑𝑥𝐵) → 𝑥𝐵)
2717, 5, 2, 24, 25, 26pwselbas 17379 . . . 4 ((𝜑𝑥𝐵) → 𝑥:𝐼⟶(Base‘𝑅))
28 pwspjmhmmgpd.a . . . . 5 (𝜑𝐴𝐼)
2928adantr 482 . . . 4 ((𝜑𝑥𝐵) → 𝐴𝐼)
3027, 29ffvelcdmd 7040 . . 3 ((𝜑𝑥𝐵) → (𝑥𝐴) ∈ (Base‘𝑅))
3130fmpttd 7067 . 2 (𝜑 → (𝑥𝐵 ↦ (𝑥𝐴)):𝐵⟶(Base‘𝑅))
3215adantr 482 . . . . . 6 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑅 ∈ Ring)
3316adantr 482 . . . . . 6 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝐼𝑉)
34 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑎𝐵)
35 simprr 772 . . . . . 6 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑏𝐵)
3617, 2, 32, 33, 34, 35, 9, 7pwsmulrval 17381 . . . . 5 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(.r𝑌)𝑏) = (𝑎f (.r𝑅)𝑏))
3736fveq1d 6848 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((𝑎(.r𝑌)𝑏)‘𝐴) = ((𝑎f (.r𝑅)𝑏)‘𝐴))
3817, 5, 2, 32, 33, 34pwselbas 17379 . . . . . . 7 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑎:𝐼⟶(Base‘𝑅))
3938ffnd 6673 . . . . . 6 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑎 Fn 𝐼)
4017, 5, 2, 32, 33, 35pwselbas 17379 . . . . . . 7 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑏:𝐼⟶(Base‘𝑅))
4140ffnd 6673 . . . . . 6 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑏 Fn 𝐼)
42 inidm 4182 . . . . . 6 (𝐼𝐼) = 𝐼
43 eqidd 2734 . . . . . 6 (((𝜑 ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝐴𝐼) → (𝑎𝐴) = (𝑎𝐴))
44 eqidd 2734 . . . . . 6 (((𝜑 ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝐴𝐼) → (𝑏𝐴) = (𝑏𝐴))
4539, 41, 33, 33, 42, 43, 44ofval 7632 . . . . 5 (((𝜑 ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝐴𝐼) → ((𝑎f (.r𝑅)𝑏)‘𝐴) = ((𝑎𝐴)(.r𝑅)(𝑏𝐴)))
4628, 45mpidan 688 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((𝑎f (.r𝑅)𝑏)‘𝐴) = ((𝑎𝐴)(.r𝑅)(𝑏𝐴)))
4737, 46eqtrd 2773 . . 3 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((𝑎(.r𝑌)𝑏)‘𝐴) = ((𝑎𝐴)(.r𝑅)(𝑏𝐴)))
482, 7ringcl 19989 . . . . . 6 ((𝑌 ∈ Ring ∧ 𝑎𝐵𝑏𝐵) → (𝑎(.r𝑌)𝑏) ∈ 𝐵)
4919, 48syl3an1 1164 . . . . 5 ((𝜑𝑎𝐵𝑏𝐵) → (𝑎(.r𝑌)𝑏) ∈ 𝐵)
50493expb 1121 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(.r𝑌)𝑏) ∈ 𝐵)
51 fveq1 6845 . . . . 5 (𝑥 = (𝑎(.r𝑌)𝑏) → (𝑥𝐴) = ((𝑎(.r𝑌)𝑏)‘𝐴))
52 eqid 2733 . . . . 5 (𝑥𝐵 ↦ (𝑥𝐴)) = (𝑥𝐵 ↦ (𝑥𝐴))
53 fvex 6859 . . . . 5 ((𝑎(.r𝑌)𝑏)‘𝐴) ∈ V
5451, 52, 53fvmpt 6952 . . . 4 ((𝑎(.r𝑌)𝑏) ∈ 𝐵 → ((𝑥𝐵 ↦ (𝑥𝐴))‘(𝑎(.r𝑌)𝑏)) = ((𝑎(.r𝑌)𝑏)‘𝐴))
5550, 54syl 17 . . 3 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((𝑥𝐵 ↦ (𝑥𝐴))‘(𝑎(.r𝑌)𝑏)) = ((𝑎(.r𝑌)𝑏)‘𝐴))
56 fveq1 6845 . . . . . 6 (𝑥 = 𝑎 → (𝑥𝐴) = (𝑎𝐴))
57 fvex 6859 . . . . . 6 (𝑎𝐴) ∈ V
5856, 52, 57fvmpt 6952 . . . . 5 (𝑎𝐵 → ((𝑥𝐵 ↦ (𝑥𝐴))‘𝑎) = (𝑎𝐴))
5934, 58syl 17 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((𝑥𝐵 ↦ (𝑥𝐴))‘𝑎) = (𝑎𝐴))
60 fveq1 6845 . . . . . 6 (𝑥 = 𝑏 → (𝑥𝐴) = (𝑏𝐴))
61 fvex 6859 . . . . . 6 (𝑏𝐴) ∈ V
6260, 52, 61fvmpt 6952 . . . . 5 (𝑏𝐵 → ((𝑥𝐵 ↦ (𝑥𝐴))‘𝑏) = (𝑏𝐴))
6335, 62syl 17 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((𝑥𝐵 ↦ (𝑥𝐴))‘𝑏) = (𝑏𝐴))
6459, 63oveq12d 7379 . . 3 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (((𝑥𝐵 ↦ (𝑥𝐴))‘𝑎)(.r𝑅)((𝑥𝐵 ↦ (𝑥𝐴))‘𝑏)) = ((𝑎𝐴)(.r𝑅)(𝑏𝐴)))
6547, 55, 643eqtr4d 2783 . 2 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ((𝑥𝐵 ↦ (𝑥𝐴))‘(𝑎(.r𝑌)𝑏)) = (((𝑥𝐵 ↦ (𝑥𝐴))‘𝑎)(.r𝑅)((𝑥𝐵 ↦ (𝑥𝐴))‘𝑏)))
662, 11ringidcl 19997 . . . 4 (𝑌 ∈ Ring → (1r𝑌) ∈ 𝐵)
67 fveq1 6845 . . . . 5 (𝑥 = (1r𝑌) → (𝑥𝐴) = ((1r𝑌)‘𝐴))
68 fvex 6859 . . . . 5 ((1r𝑌)‘𝐴) ∈ V
6967, 52, 68fvmpt 6952 . . . 4 ((1r𝑌) ∈ 𝐵 → ((𝑥𝐵 ↦ (𝑥𝐴))‘(1r𝑌)) = ((1r𝑌)‘𝐴))
7019, 66, 693syl 18 . . 3 (𝜑 → ((𝑥𝐵 ↦ (𝑥𝐴))‘(1r𝑌)) = ((1r𝑌)‘𝐴))
7117, 13pws1 20048 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → (𝐼 × {(1r𝑅)}) = (1r𝑌))
7215, 16, 71syl2anc 585 . . . 4 (𝜑 → (𝐼 × {(1r𝑅)}) = (1r𝑌))
7372fveq1d 6848 . . 3 (𝜑 → ((𝐼 × {(1r𝑅)})‘𝐴) = ((1r𝑌)‘𝐴))
74 fvex 6859 . . . . 5 (1r𝑅) ∈ V
7574fvconst2 7157 . . . 4 (𝐴𝐼 → ((𝐼 × {(1r𝑅)})‘𝐴) = (1r𝑅))
7628, 75syl 17 . . 3 (𝜑 → ((𝐼 × {(1r𝑅)})‘𝐴) = (1r𝑅))
7770, 73, 763eqtr2d 2779 . 2 (𝜑 → ((𝑥𝐵 ↦ (𝑥𝐴))‘(1r𝑌)) = (1r𝑅))
783, 6, 8, 10, 12, 14, 21, 23, 31, 65, 77ismhmd 18612 1 (𝜑 → (𝑥𝐵 ↦ (𝑥𝐴)) ∈ (𝑀 MndHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  {csn 4590  cmpt 5192   × cxp 5635  cfv 6500  (class class class)co 7361  f cof 7619  Basecbs 17091  .rcmulr 17142  s cpws 17336  Mndcmnd 18564   MndHom cmhm 18607  mulGrpcmgp 19904  1rcur 19921  Ringcrg 19972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-cnex 11115  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135  ax-pre-mulgt0 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-tp 4595  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-of 7621  df-om 7807  df-1st 7925  df-2nd 7926  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-1o 8416  df-er 8654  df-map 8773  df-ixp 8842  df-en 8890  df-dom 8891  df-sdom 8892  df-fin 8893  df-sup 9386  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-sub 11395  df-neg 11396  df-nn 12162  df-2 12224  df-3 12225  df-4 12226  df-5 12227  df-6 12228  df-7 12229  df-8 12230  df-9 12231  df-n0 12422  df-z 12508  df-dec 12627  df-uz 12772  df-fz 13434  df-struct 17027  df-sets 17044  df-slot 17062  df-ndx 17074  df-base 17092  df-plusg 17154  df-mulr 17155  df-sca 17157  df-vsca 17158  df-ip 17159  df-tset 17160  df-ple 17161  df-ds 17163  df-hom 17165  df-cco 17166  df-0g 17331  df-prds 17337  df-pws 17339  df-mgm 18505  df-sgrp 18554  df-mnd 18565  df-mhm 18609  df-grp 18759  df-minusg 18760  df-mgp 19905  df-ur 19922  df-ring 19974
This theorem is referenced by:  pwsexpg  20052  pwsgprod  40779
  Copyright terms: Public domain W3C validator