MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prodrblem2 Structured version   Visualization version   GIF version

Theorem prodrblem2 15270
Description: Lemma for prodrb 15271. (Contributed by Scott Fenton, 4-Dec-2017.)
Hypotheses
Ref Expression
prodmo.1 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))
prodmo.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
prodrb.4 (𝜑𝑀 ∈ ℤ)
prodrb.5 (𝜑𝑁 ∈ ℤ)
prodrb.6 (𝜑𝐴 ⊆ (ℤ𝑀))
prodrb.7 (𝜑𝐴 ⊆ (ℤ𝑁))
Assertion
Ref Expression
prodrblem2 ((𝜑𝑁 ∈ (ℤ𝑀)) → (seq𝑀( · , 𝐹) ⇝ 𝐶 ↔ seq𝑁( · , 𝐹) ⇝ 𝐶))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝜑,𝑘   𝑘,𝑁   𝑘,𝑀
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem prodrblem2
StepHypRef Expression
1 prodrb.5 . . . 4 (𝜑𝑁 ∈ ℤ)
21adantr 483 . . 3 ((𝜑𝑁 ∈ (ℤ𝑀)) → 𝑁 ∈ ℤ)
3 seqex 13361 . . 3 seq𝑀( · , 𝐹) ∈ V
4 climres 14917 . . 3 ((𝑁 ∈ ℤ ∧ seq𝑀( · , 𝐹) ∈ V) → ((seq𝑀( · , 𝐹) ↾ (ℤ𝑁)) ⇝ 𝐶 ↔ seq𝑀( · , 𝐹) ⇝ 𝐶))
52, 3, 4sylancl 588 . 2 ((𝜑𝑁 ∈ (ℤ𝑀)) → ((seq𝑀( · , 𝐹) ↾ (ℤ𝑁)) ⇝ 𝐶 ↔ seq𝑀( · , 𝐹) ⇝ 𝐶))
6 prodrb.7 . . . 4 (𝜑𝐴 ⊆ (ℤ𝑁))
7 prodmo.1 . . . . 5 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))
8 prodmo.2 . . . . . 6 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
98adantlr 713 . . . . 5 (((𝜑𝑁 ∈ (ℤ𝑀)) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
10 simpr 487 . . . . 5 ((𝜑𝑁 ∈ (ℤ𝑀)) → 𝑁 ∈ (ℤ𝑀))
117, 9, 10prodrblem 15268 . . . 4 (((𝜑𝑁 ∈ (ℤ𝑀)) ∧ 𝐴 ⊆ (ℤ𝑁)) → (seq𝑀( · , 𝐹) ↾ (ℤ𝑁)) = seq𝑁( · , 𝐹))
126, 11mpidan 687 . . 3 ((𝜑𝑁 ∈ (ℤ𝑀)) → (seq𝑀( · , 𝐹) ↾ (ℤ𝑁)) = seq𝑁( · , 𝐹))
1312breq1d 5062 . 2 ((𝜑𝑁 ∈ (ℤ𝑀)) → ((seq𝑀( · , 𝐹) ↾ (ℤ𝑁)) ⇝ 𝐶 ↔ seq𝑁( · , 𝐹) ⇝ 𝐶))
145, 13bitr3d 283 1 ((𝜑𝑁 ∈ (ℤ𝑀)) → (seq𝑀( · , 𝐹) ⇝ 𝐶 ↔ seq𝑁( · , 𝐹) ⇝ 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  Vcvv 3486  wss 3924  ifcif 4453   class class class wbr 5052  cmpt 5132  cres 5543  cfv 6341  cc 10521  1c1 10524   · cmul 10528  cz 11968  cuz 12230  seqcseq 13359  cli 14826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5252  ax-pr 5316  ax-un 7447  ax-inf2 9090  ax-cnex 10579  ax-resscn 10580  ax-1cn 10581  ax-icn 10582  ax-addcl 10583  ax-addrcl 10584  ax-mulcl 10585  ax-mulrcl 10586  ax-mulcom 10587  ax-addass 10588  ax-mulass 10589  ax-distr 10590  ax-i2m1 10591  ax-1ne0 10592  ax-1rid 10593  ax-rnegex 10594  ax-rrecex 10595  ax-cnre 10596  ax-pre-lttri 10597  ax-pre-lttrn 10598  ax-pre-ltadd 10599  ax-pre-mulgt0 10600
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3488  df-sbc 3764  df-csb 3872  df-dif 3927  df-un 3929  df-in 3931  df-ss 3940  df-pss 3942  df-nul 4280  df-if 4454  df-pw 4527  df-sn 4554  df-pr 4556  df-tp 4558  df-op 4560  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5446  df-eprel 5451  df-po 5460  df-so 5461  df-fr 5500  df-we 5502  df-xp 5547  df-rel 5548  df-cnv 5549  df-co 5550  df-dm 5551  df-rn 5552  df-res 5553  df-ima 5554  df-pred 6134  df-ord 6180  df-on 6181  df-lim 6182  df-suc 6183  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-riota 7100  df-ov 7145  df-oprab 7146  df-mpo 7147  df-om 7567  df-1st 7675  df-2nd 7676  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-er 8275  df-en 8496  df-dom 8497  df-sdom 8498  df-pnf 10663  df-mnf 10664  df-xr 10665  df-ltxr 10666  df-le 10667  df-sub 10858  df-neg 10859  df-nn 11625  df-n0 11885  df-z 11969  df-uz 12231  df-fz 12883  df-seq 13360  df-clim 14830
This theorem is referenced by:  prodrb  15271
  Copyright terms: Public domain W3C validator