MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prodrblem2 Structured version   Visualization version   GIF version

Theorem prodrblem2 15641
Description: Lemma for prodrb 15642. (Contributed by Scott Fenton, 4-Dec-2017.)
Hypotheses
Ref Expression
prodmo.1 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))
prodmo.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
prodrb.4 (𝜑𝑀 ∈ ℤ)
prodrb.5 (𝜑𝑁 ∈ ℤ)
prodrb.6 (𝜑𝐴 ⊆ (ℤ𝑀))
prodrb.7 (𝜑𝐴 ⊆ (ℤ𝑁))
Assertion
Ref Expression
prodrblem2 ((𝜑𝑁 ∈ (ℤ𝑀)) → (seq𝑀( · , 𝐹) ⇝ 𝐶 ↔ seq𝑁( · , 𝐹) ⇝ 𝐶))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝜑,𝑘   𝑘,𝑁   𝑘,𝑀
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem prodrblem2
StepHypRef Expression
1 prodrb.5 . . . 4 (𝜑𝑁 ∈ ℤ)
21adantr 481 . . 3 ((𝜑𝑁 ∈ (ℤ𝑀)) → 𝑁 ∈ ℤ)
3 seqex 13723 . . 3 seq𝑀( · , 𝐹) ∈ V
4 climres 15284 . . 3 ((𝑁 ∈ ℤ ∧ seq𝑀( · , 𝐹) ∈ V) → ((seq𝑀( · , 𝐹) ↾ (ℤ𝑁)) ⇝ 𝐶 ↔ seq𝑀( · , 𝐹) ⇝ 𝐶))
52, 3, 4sylancl 586 . 2 ((𝜑𝑁 ∈ (ℤ𝑀)) → ((seq𝑀( · , 𝐹) ↾ (ℤ𝑁)) ⇝ 𝐶 ↔ seq𝑀( · , 𝐹) ⇝ 𝐶))
6 prodrb.7 . . . 4 (𝜑𝐴 ⊆ (ℤ𝑁))
7 prodmo.1 . . . . 5 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))
8 prodmo.2 . . . . . 6 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
98adantlr 712 . . . . 5 (((𝜑𝑁 ∈ (ℤ𝑀)) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
10 simpr 485 . . . . 5 ((𝜑𝑁 ∈ (ℤ𝑀)) → 𝑁 ∈ (ℤ𝑀))
117, 9, 10prodrblem 15639 . . . 4 (((𝜑𝑁 ∈ (ℤ𝑀)) ∧ 𝐴 ⊆ (ℤ𝑁)) → (seq𝑀( · , 𝐹) ↾ (ℤ𝑁)) = seq𝑁( · , 𝐹))
126, 11mpidan 686 . . 3 ((𝜑𝑁 ∈ (ℤ𝑀)) → (seq𝑀( · , 𝐹) ↾ (ℤ𝑁)) = seq𝑁( · , 𝐹))
1312breq1d 5084 . 2 ((𝜑𝑁 ∈ (ℤ𝑀)) → ((seq𝑀( · , 𝐹) ↾ (ℤ𝑁)) ⇝ 𝐶 ↔ seq𝑁( · , 𝐹) ⇝ 𝐶))
145, 13bitr3d 280 1 ((𝜑𝑁 ∈ (ℤ𝑀)) → (seq𝑀( · , 𝐹) ⇝ 𝐶 ↔ seq𝑁( · , 𝐹) ⇝ 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  wss 3887  ifcif 4459   class class class wbr 5074  cmpt 5157  cres 5591  cfv 6433  cc 10869  1c1 10872   · cmul 10876  cz 12319  cuz 12582  seqcseq 13721  cli 15193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-seq 13722  df-clim 15197
This theorem is referenced by:  prodrb  15642
  Copyright terms: Public domain W3C validator