![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mptima | Structured version Visualization version GIF version |
Description: Image of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
mptima | ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) “ 𝐶) = ran (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 5691 | . 2 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) “ 𝐶) = ran ((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝐶) | |
2 | resmpt3 6043 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝐶) = (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ 𝐵) | |
3 | 2 | rneqi 5939 | . 2 ⊢ ran ((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝐶) = ran (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ 𝐵) |
4 | 1, 3 | eqtri 2753 | 1 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) “ 𝐶) = ran (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∩ cin 3943 ↦ cmpt 5232 ran crn 5679 ↾ cres 5680 “ cima 5681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5150 df-opab 5212 df-mpt 5233 df-xp 5684 df-rel 5685 df-cnv 5686 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 |
This theorem is referenced by: mptimass 6077 fsplitfpar 8123 elmptima 44774 |
Copyright terms: Public domain | W3C validator |