MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptima Structured version   Visualization version   GIF version

Theorem mptima 5981
Description: Image of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Assertion
Ref Expression
mptima ((𝑥𝐴𝐵) “ 𝐶) = ran (𝑥 ∈ (𝐴𝐶) ↦ 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem mptima
StepHypRef Expression
1 df-ima 5602 . 2 ((𝑥𝐴𝐵) “ 𝐶) = ran ((𝑥𝐴𝐵) ↾ 𝐶)
2 resmpt3 5946 . . 3 ((𝑥𝐴𝐵) ↾ 𝐶) = (𝑥 ∈ (𝐴𝐶) ↦ 𝐵)
32rneqi 5846 . 2 ran ((𝑥𝐴𝐵) ↾ 𝐶) = ran (𝑥 ∈ (𝐴𝐶) ↦ 𝐵)
41, 3eqtri 2766 1 ((𝑥𝐴𝐵) “ 𝐶) = ran (𝑥 ∈ (𝐴𝐶) ↦ 𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cin 3886  cmpt 5157  ran crn 5590  cres 5591  cima 5592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-mpt 5158  df-xp 5595  df-rel 5596  df-cnv 5597  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602
This theorem is referenced by:  fsplitfpar  7959  mptima2  42791  elmptima  42804
  Copyright terms: Public domain W3C validator