MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptima Structured version   Visualization version   GIF version

Theorem mptima 6043
Description: Image of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Assertion
Ref Expression
mptima ((𝑥𝐴𝐵) “ 𝐶) = ran (𝑥 ∈ (𝐴𝐶) ↦ 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem mptima
StepHypRef Expression
1 df-ima 5651 . 2 ((𝑥𝐴𝐵) “ 𝐶) = ran ((𝑥𝐴𝐵) ↾ 𝐶)
2 resmpt3 6009 . . 3 ((𝑥𝐴𝐵) ↾ 𝐶) = (𝑥 ∈ (𝐴𝐶) ↦ 𝐵)
32rneqi 5901 . 2 ran ((𝑥𝐴𝐵) ↾ 𝐶) = ran (𝑥 ∈ (𝐴𝐶) ↦ 𝐵)
41, 3eqtri 2752 1 ((𝑥𝐴𝐵) “ 𝐶) = ran (𝑥 ∈ (𝐴𝐶) ↦ 𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cin 3913  cmpt 5188  ran crn 5639  cres 5640  cima 5641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-mpt 5189  df-xp 5644  df-rel 5645  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651
This theorem is referenced by:  mptimass  6044  fsplitfpar  8097  elmptima  45252
  Copyright terms: Public domain W3C validator