| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mptimass | Structured version Visualization version GIF version | ||
| Description: Image of a function in maps-to notation for a subset. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| mptimass.1 | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
| Ref | Expression |
|---|---|
| mptimass | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) “ 𝐶) = ran (𝑥 ∈ 𝐶 ↦ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptima 6043 | . 2 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) “ 𝐶) = ran (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ 𝐵) | |
| 2 | mptimass.1 | . . . . 5 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) | |
| 3 | sseqin2 4186 | . . . . 5 ⊢ (𝐶 ⊆ 𝐴 ↔ (𝐴 ∩ 𝐶) = 𝐶) | |
| 4 | 2, 3 | sylib 218 | . . . 4 ⊢ (𝜑 → (𝐴 ∩ 𝐶) = 𝐶) |
| 5 | 4 | mpteq1d 5197 | . . 3 ⊢ (𝜑 → (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐵)) |
| 6 | 5 | rneqd 5902 | . 2 ⊢ (𝜑 → ran (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ 𝐵) = ran (𝑥 ∈ 𝐶 ↦ 𝐵)) |
| 7 | 1, 6 | eqtrid 2776 | 1 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) “ 𝐶) = ran (𝑥 ∈ 𝐶 ↦ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∩ cin 3913 ⊆ wss 3914 ↦ cmpt 5188 ran crn 5639 “ cima 5641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-mpt 5189 df-xp 5644 df-rel 5645 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 |
| This theorem is referenced by: pzriprnglem10 21400 limsupresico 45698 limsupvaluz 45706 liminfresico 45769 |
| Copyright terms: Public domain | W3C validator |