| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mptimass | Structured version Visualization version GIF version | ||
| Description: Image of a function in maps-to notation for a subset. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| mptimass.1 | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
| Ref | Expression |
|---|---|
| mptimass | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) “ 𝐶) = ran (𝑥 ∈ 𝐶 ↦ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptima 6025 | . 2 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) “ 𝐶) = ran (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ 𝐵) | |
| 2 | mptimass.1 | . . . . 5 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) | |
| 3 | sseqin2 4172 | . . . . 5 ⊢ (𝐶 ⊆ 𝐴 ↔ (𝐴 ∩ 𝐶) = 𝐶) | |
| 4 | 2, 3 | sylib 218 | . . . 4 ⊢ (𝜑 → (𝐴 ∩ 𝐶) = 𝐶) |
| 5 | 4 | mpteq1d 5183 | . . 3 ⊢ (𝜑 → (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐵)) |
| 6 | 5 | rneqd 5882 | . 2 ⊢ (𝜑 → ran (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ 𝐵) = ran (𝑥 ∈ 𝐶 ↦ 𝐵)) |
| 7 | 1, 6 | eqtrid 2780 | 1 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) “ 𝐶) = ran (𝑥 ∈ 𝐶 ↦ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∩ cin 3897 ⊆ wss 3898 ↦ cmpt 5174 ran crn 5620 “ cima 5622 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-mpt 5175 df-xp 5625 df-rel 5626 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 |
| This theorem is referenced by: pzriprnglem10 21429 limsupresico 45822 limsupvaluz 45830 liminfresico 45893 |
| Copyright terms: Public domain | W3C validator |