MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptimass Structured version   Visualization version   GIF version

Theorem mptimass 6047
Description: Image of a function in maps-to notation for a subset. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypothesis
Ref Expression
mptimass.1 (𝜑𝐶𝐴)
Assertion
Ref Expression
mptimass (𝜑 → ((𝑥𝐴𝐵) “ 𝐶) = ran (𝑥𝐶𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem mptimass
StepHypRef Expression
1 mptima 6046 . 2 ((𝑥𝐴𝐵) “ 𝐶) = ran (𝑥 ∈ (𝐴𝐶) ↦ 𝐵)
2 mptimass.1 . . . . 5 (𝜑𝐶𝐴)
3 sseqin2 4189 . . . . 5 (𝐶𝐴 ↔ (𝐴𝐶) = 𝐶)
42, 3sylib 218 . . . 4 (𝜑 → (𝐴𝐶) = 𝐶)
54mpteq1d 5200 . . 3 (𝜑 → (𝑥 ∈ (𝐴𝐶) ↦ 𝐵) = (𝑥𝐶𝐵))
65rneqd 5905 . 2 (𝜑 → ran (𝑥 ∈ (𝐴𝐶) ↦ 𝐵) = ran (𝑥𝐶𝐵))
71, 6eqtrid 2777 1 (𝜑 → ((𝑥𝐴𝐵) “ 𝐶) = ran (𝑥𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  cin 3916  wss 3917  cmpt 5191  ran crn 5642  cima 5644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-mpt 5192  df-xp 5647  df-rel 5648  df-cnv 5649  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654
This theorem is referenced by:  pzriprnglem10  21407  limsupresico  45705  limsupvaluz  45713  liminfresico  45776
  Copyright terms: Public domain W3C validator