![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resmpt3 | Structured version Visualization version GIF version |
Description: Unconditional restriction of the mapping operation. (Contributed by Stefan O'Rear, 24-Jan-2015.) (Proof shortened by Mario Carneiro, 22-Mar-2015.) |
Ref | Expression |
---|---|
resmpt3 | ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = (𝑥 ∈ (𝐴 ∩ 𝐵) ↦ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resres 6022 | . 2 ⊢ (((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐴) ↾ 𝐵) = ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ (𝐴 ∩ 𝐵)) | |
2 | ssid 4031 | . . . 4 ⊢ 𝐴 ⊆ 𝐴 | |
3 | resmpt 6066 | . . . 4 ⊢ (𝐴 ⊆ 𝐴 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝐶)) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝐶) |
5 | 4 | reseq1i 6005 | . 2 ⊢ (((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐴) ↾ 𝐵) = ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) |
6 | inss1 4258 | . . 3 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
7 | resmpt 6066 | . . 3 ⊢ ((𝐴 ∩ 𝐵) ⊆ 𝐴 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ (𝐴 ∩ 𝐵)) = (𝑥 ∈ (𝐴 ∩ 𝐵) ↦ 𝐶)) | |
8 | 6, 7 | ax-mp 5 | . 2 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ (𝐴 ∩ 𝐵)) = (𝑥 ∈ (𝐴 ∩ 𝐵) ↦ 𝐶) |
9 | 1, 5, 8 | 3eqtr3i 2776 | 1 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = (𝑥 ∈ (𝐴 ∩ 𝐵) ↦ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∩ cin 3975 ⊆ wss 3976 ↦ cmpt 5249 ↾ cres 5702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-opab 5229 df-mpt 5250 df-xp 5706 df-rel 5707 df-res 5712 |
This theorem is referenced by: mptima 6101 offres 8024 lo1resb 15610 o1resb 15612 measinb2 34187 eulerpartgbij 34337 imassmpt 45172 limsupresicompt 45677 liminfresicompt 45701 |
Copyright terms: Public domain | W3C validator |