MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resmpt3 Structured version   Visualization version   GIF version

Theorem resmpt3 6067
Description: Unconditional restriction of the mapping operation. (Contributed by Stefan O'Rear, 24-Jan-2015.) (Proof shortened by Mario Carneiro, 22-Mar-2015.)
Assertion
Ref Expression
resmpt3 ((𝑥𝐴𝐶) ↾ 𝐵) = (𝑥 ∈ (𝐴𝐵) ↦ 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem resmpt3
StepHypRef Expression
1 resres 6022 . 2 (((𝑥𝐴𝐶) ↾ 𝐴) ↾ 𝐵) = ((𝑥𝐴𝐶) ↾ (𝐴𝐵))
2 ssid 4031 . . . 4 𝐴𝐴
3 resmpt 6066 . . . 4 (𝐴𝐴 → ((𝑥𝐴𝐶) ↾ 𝐴) = (𝑥𝐴𝐶))
42, 3ax-mp 5 . . 3 ((𝑥𝐴𝐶) ↾ 𝐴) = (𝑥𝐴𝐶)
54reseq1i 6005 . 2 (((𝑥𝐴𝐶) ↾ 𝐴) ↾ 𝐵) = ((𝑥𝐴𝐶) ↾ 𝐵)
6 inss1 4258 . . 3 (𝐴𝐵) ⊆ 𝐴
7 resmpt 6066 . . 3 ((𝐴𝐵) ⊆ 𝐴 → ((𝑥𝐴𝐶) ↾ (𝐴𝐵)) = (𝑥 ∈ (𝐴𝐵) ↦ 𝐶))
86, 7ax-mp 5 . 2 ((𝑥𝐴𝐶) ↾ (𝐴𝐵)) = (𝑥 ∈ (𝐴𝐵) ↦ 𝐶)
91, 5, 83eqtr3i 2776 1 ((𝑥𝐴𝐶) ↾ 𝐵) = (𝑥 ∈ (𝐴𝐵) ↦ 𝐶)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  cin 3975  wss 3976  cmpt 5249  cres 5702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-opab 5229  df-mpt 5250  df-xp 5706  df-rel 5707  df-res 5712
This theorem is referenced by:  mptima  6101  offres  8024  lo1resb  15610  o1resb  15612  measinb2  34187  eulerpartgbij  34337  imassmpt  45172  limsupresicompt  45677  liminfresicompt  45701
  Copyright terms: Public domain W3C validator