MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resmpt3 Structured version   Visualization version   GIF version

Theorem resmpt3 6058
Description: Unconditional restriction of the mapping operation. (Contributed by Stefan O'Rear, 24-Jan-2015.) (Proof shortened by Mario Carneiro, 22-Mar-2015.)
Assertion
Ref Expression
resmpt3 ((𝑥𝐴𝐶) ↾ 𝐵) = (𝑥 ∈ (𝐴𝐵) ↦ 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem resmpt3
StepHypRef Expression
1 resres 6013 . 2 (((𝑥𝐴𝐶) ↾ 𝐴) ↾ 𝐵) = ((𝑥𝐴𝐶) ↾ (𝐴𝐵))
2 ssid 4018 . . . 4 𝐴𝐴
3 resmpt 6057 . . . 4 (𝐴𝐴 → ((𝑥𝐴𝐶) ↾ 𝐴) = (𝑥𝐴𝐶))
42, 3ax-mp 5 . . 3 ((𝑥𝐴𝐶) ↾ 𝐴) = (𝑥𝐴𝐶)
54reseq1i 5996 . 2 (((𝑥𝐴𝐶) ↾ 𝐴) ↾ 𝐵) = ((𝑥𝐴𝐶) ↾ 𝐵)
6 inss1 4245 . . 3 (𝐴𝐵) ⊆ 𝐴
7 resmpt 6057 . . 3 ((𝐴𝐵) ⊆ 𝐴 → ((𝑥𝐴𝐶) ↾ (𝐴𝐵)) = (𝑥 ∈ (𝐴𝐵) ↦ 𝐶))
86, 7ax-mp 5 . 2 ((𝑥𝐴𝐶) ↾ (𝐴𝐵)) = (𝑥 ∈ (𝐴𝐵) ↦ 𝐶)
91, 5, 83eqtr3i 2771 1 ((𝑥𝐴𝐶) ↾ 𝐵) = (𝑥 ∈ (𝐴𝐵) ↦ 𝐶)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  cin 3962  wss 3963  cmpt 5231  cres 5691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-opab 5211  df-mpt 5232  df-xp 5695  df-rel 5696  df-res 5701
This theorem is referenced by:  mptima  6092  offres  8007  lo1resb  15597  o1resb  15599  measinb2  34204  eulerpartgbij  34354  imassmpt  45208  limsupresicompt  45712  liminfresicompt  45736
  Copyright terms: Public domain W3C validator