![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resmpt3 | Structured version Visualization version GIF version |
Description: Unconditional restriction of the mapping operation. (Contributed by Stefan O'Rear, 24-Jan-2015.) (Proof shortened by Mario Carneiro, 22-Mar-2015.) |
Ref | Expression |
---|---|
resmpt3 | ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = (𝑥 ∈ (𝐴 ∩ 𝐵) ↦ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resres 5711 | . 2 ⊢ (((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐴) ↾ 𝐵) = ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ (𝐴 ∩ 𝐵)) | |
2 | ssid 3879 | . . . 4 ⊢ 𝐴 ⊆ 𝐴 | |
3 | resmpt 5750 | . . . 4 ⊢ (𝐴 ⊆ 𝐴 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝐶)) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝐶) |
5 | 4 | reseq1i 5691 | . 2 ⊢ (((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐴) ↾ 𝐵) = ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) |
6 | inss1 4092 | . . 3 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
7 | resmpt 5750 | . . 3 ⊢ ((𝐴 ∩ 𝐵) ⊆ 𝐴 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ (𝐴 ∩ 𝐵)) = (𝑥 ∈ (𝐴 ∩ 𝐵) ↦ 𝐶)) | |
8 | 6, 7 | ax-mp 5 | . 2 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ (𝐴 ∩ 𝐵)) = (𝑥 ∈ (𝐴 ∩ 𝐵) ↦ 𝐶) |
9 | 1, 5, 8 | 3eqtr3i 2810 | 1 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = (𝑥 ∈ (𝐴 ∩ 𝐵) ↦ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1507 ∩ cin 3828 ⊆ wss 3829 ↦ cmpt 5008 ↾ cres 5409 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-ext 2750 ax-sep 5060 ax-nul 5067 ax-pr 5186 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-rab 3097 df-v 3417 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-nul 4179 df-if 4351 df-sn 4442 df-pr 4444 df-op 4448 df-opab 4992 df-mpt 5009 df-xp 5413 df-rel 5414 df-res 5419 |
This theorem is referenced by: offres 7496 lo1resb 14782 o1resb 14784 measinb2 31133 eulerpartgbij 31281 mptima 40934 imassmpt 40971 limsupresicompt 41474 liminfresicompt 41498 |
Copyright terms: Public domain | W3C validator |