MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsplitfpar Structured version   Visualization version   GIF version

Theorem fsplitfpar 7806
Description: Merge two functions with a common argument in parallel. Combination of fsplit 7804 and fpar 7803. (Contributed by AV, 3-Jan-2024.)
Hypotheses
Ref Expression
fsplitfpar.h 𝐻 = (((1st ↾ (V × V)) ∘ (𝐹 ∘ (1st ↾ (V × V)))) ∩ ((2nd ↾ (V × V)) ∘ (𝐺 ∘ (2nd ↾ (V × V)))))
fsplitfpar.s 𝑆 = ((1st ↾ I ) ↾ 𝐴)
Assertion
Ref Expression
fsplitfpar ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐻𝑆) = (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺
Allowed substitution hints:   𝑆(𝑥)   𝐻(𝑥)

Proof of Theorem fsplitfpar
Dummy variables 𝑎 𝑝 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fsplitfpar.s . . . . . . . . . 10 𝑆 = ((1st ↾ I ) ↾ 𝐴)
2 fsplit 7804 . . . . . . . . . . 11 (1st ↾ I ) = (𝑥 ∈ V ↦ ⟨𝑥, 𝑥⟩)
32reseq1i 5842 . . . . . . . . . 10 ((1st ↾ I ) ↾ 𝐴) = ((𝑥 ∈ V ↦ ⟨𝑥, 𝑥⟩) ↾ 𝐴)
41, 3eqtri 2842 . . . . . . . . 9 𝑆 = ((𝑥 ∈ V ↦ ⟨𝑥, 𝑥⟩) ↾ 𝐴)
54fveq1i 6664 . . . . . . . 8 (𝑆𝑎) = (((𝑥 ∈ V ↦ ⟨𝑥, 𝑥⟩) ↾ 𝐴)‘𝑎)
65a1i 11 . . . . . . 7 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑎𝐴) → (𝑆𝑎) = (((𝑥 ∈ V ↦ ⟨𝑥, 𝑥⟩) ↾ 𝐴)‘𝑎))
7 fvres 6682 . . . . . . . . 9 (𝑎𝐴 → (((𝑥 ∈ V ↦ ⟨𝑥, 𝑥⟩) ↾ 𝐴)‘𝑎) = ((𝑥 ∈ V ↦ ⟨𝑥, 𝑥⟩)‘𝑎))
8 eqidd 2820 . . . . . . . . . 10 (𝑎𝐴 → (𝑥 ∈ V ↦ ⟨𝑥, 𝑥⟩) = (𝑥 ∈ V ↦ ⟨𝑥, 𝑥⟩))
9 id 22 . . . . . . . . . . . 12 (𝑥 = 𝑎𝑥 = 𝑎)
109, 9opeq12d 4803 . . . . . . . . . . 11 (𝑥 = 𝑎 → ⟨𝑥, 𝑥⟩ = ⟨𝑎, 𝑎⟩)
1110adantl 484 . . . . . . . . . 10 ((𝑎𝐴𝑥 = 𝑎) → ⟨𝑥, 𝑥⟩ = ⟨𝑎, 𝑎⟩)
12 elex 3511 . . . . . . . . . 10 (𝑎𝐴𝑎 ∈ V)
13 opex 5347 . . . . . . . . . . 11 𝑎, 𝑎⟩ ∈ V
1413a1i 11 . . . . . . . . . 10 (𝑎𝐴 → ⟨𝑎, 𝑎⟩ ∈ V)
158, 11, 12, 14fvmptd 6768 . . . . . . . . 9 (𝑎𝐴 → ((𝑥 ∈ V ↦ ⟨𝑥, 𝑥⟩)‘𝑎) = ⟨𝑎, 𝑎⟩)
167, 15eqtrd 2854 . . . . . . . 8 (𝑎𝐴 → (((𝑥 ∈ V ↦ ⟨𝑥, 𝑥⟩) ↾ 𝐴)‘𝑎) = ⟨𝑎, 𝑎⟩)
1716adantl 484 . . . . . . 7 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑎𝐴) → (((𝑥 ∈ V ↦ ⟨𝑥, 𝑥⟩) ↾ 𝐴)‘𝑎) = ⟨𝑎, 𝑎⟩)
186, 17eqtrd 2854 . . . . . 6 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑎𝐴) → (𝑆𝑎) = ⟨𝑎, 𝑎⟩)
1918fveq2d 6667 . . . . 5 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑎𝐴) → (𝐻‘(𝑆𝑎)) = (𝐻‘⟨𝑎, 𝑎⟩))
20 df-ov 7151 . . . . . 6 (𝑎𝐻𝑎) = (𝐻‘⟨𝑎, 𝑎⟩)
21 fsplitfpar.h . . . . . . . . 9 𝐻 = (((1st ↾ (V × V)) ∘ (𝐹 ∘ (1st ↾ (V × V)))) ∩ ((2nd ↾ (V × V)) ∘ (𝐺 ∘ (2nd ↾ (V × V)))))
2221fpar 7803 . . . . . . . 8 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → 𝐻 = (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑦)⟩))
2322adantr 483 . . . . . . 7 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑎𝐴) → 𝐻 = (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑦)⟩))
24 fveq2 6663 . . . . . . . . . 10 (𝑥 = 𝑎 → (𝐹𝑥) = (𝐹𝑎))
2524adantr 483 . . . . . . . . 9 ((𝑥 = 𝑎𝑦 = 𝑎) → (𝐹𝑥) = (𝐹𝑎))
26 fveq2 6663 . . . . . . . . . 10 (𝑦 = 𝑎 → (𝐺𝑦) = (𝐺𝑎))
2726adantl 484 . . . . . . . . 9 ((𝑥 = 𝑎𝑦 = 𝑎) → (𝐺𝑦) = (𝐺𝑎))
2825, 27opeq12d 4803 . . . . . . . 8 ((𝑥 = 𝑎𝑦 = 𝑎) → ⟨(𝐹𝑥), (𝐺𝑦)⟩ = ⟨(𝐹𝑎), (𝐺𝑎)⟩)
2928adantl 484 . . . . . . 7 ((((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑎𝐴) ∧ (𝑥 = 𝑎𝑦 = 𝑎)) → ⟨(𝐹𝑥), (𝐺𝑦)⟩ = ⟨(𝐹𝑎), (𝐺𝑎)⟩)
30 simpr 487 . . . . . . 7 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑎𝐴) → 𝑎𝐴)
31 opex 5347 . . . . . . . 8 ⟨(𝐹𝑎), (𝐺𝑎)⟩ ∈ V
3231a1i 11 . . . . . . 7 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑎𝐴) → ⟨(𝐹𝑎), (𝐺𝑎)⟩ ∈ V)
3323, 29, 30, 30, 32ovmpod 7294 . . . . . 6 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑎𝐴) → (𝑎𝐻𝑎) = ⟨(𝐹𝑎), (𝐺𝑎)⟩)
3420, 33syl5eqr 2868 . . . . 5 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑎𝐴) → (𝐻‘⟨𝑎, 𝑎⟩) = ⟨(𝐹𝑎), (𝐺𝑎)⟩)
3519, 34eqtrd 2854 . . . 4 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑎𝐴) → (𝐻‘(𝑆𝑎)) = ⟨(𝐹𝑎), (𝐺𝑎)⟩)
36 eqid 2819 . . . . . . . . . 10 (𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩) = (𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩)
3736fnmpt 6481 . . . . . . . . 9 (∀𝑎 ∈ V ⟨𝑎, 𝑎⟩ ∈ V → (𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩) Fn V)
3813a1i 11 . . . . . . . . 9 (𝑎 ∈ V → ⟨𝑎, 𝑎⟩ ∈ V)
3937, 38mprg 3150 . . . . . . . 8 (𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩) Fn V
40 ssv 3989 . . . . . . . 8 𝐴 ⊆ V
41 fnssres 6463 . . . . . . . 8 (((𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩) Fn V ∧ 𝐴 ⊆ V) → ((𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩) ↾ 𝐴) Fn 𝐴)
4239, 40, 41mp2an 690 . . . . . . 7 ((𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩) ↾ 𝐴) Fn 𝐴
43 fsplit 7804 . . . . . . . . . 10 (1st ↾ I ) = (𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩)
4443reseq1i 5842 . . . . . . . . 9 ((1st ↾ I ) ↾ 𝐴) = ((𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩) ↾ 𝐴)
451, 44eqtri 2842 . . . . . . . 8 𝑆 = ((𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩) ↾ 𝐴)
4645fneq1i 6443 . . . . . . 7 (𝑆 Fn 𝐴 ↔ ((𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩) ↾ 𝐴) Fn 𝐴)
4742, 46mpbir 233 . . . . . 6 𝑆 Fn 𝐴
4847a1i 11 . . . . 5 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → 𝑆 Fn 𝐴)
49 fvco2 6751 . . . . 5 ((𝑆 Fn 𝐴𝑎𝐴) → ((𝐻𝑆)‘𝑎) = (𝐻‘(𝑆𝑎)))
5048, 49sylan 582 . . . 4 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑎𝐴) → ((𝐻𝑆)‘𝑎) = (𝐻‘(𝑆𝑎)))
51 fveq2 6663 . . . . . . 7 (𝑥 = 𝑎 → (𝐺𝑥) = (𝐺𝑎))
5224, 51opeq12d 4803 . . . . . 6 (𝑥 = 𝑎 → ⟨(𝐹𝑥), (𝐺𝑥)⟩ = ⟨(𝐹𝑎), (𝐺𝑎)⟩)
53 eqid 2819 . . . . . 6 (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) = (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)
5452, 53, 31fvmpt 6761 . . . . 5 (𝑎𝐴 → ((𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑎) = ⟨(𝐹𝑎), (𝐺𝑎)⟩)
5554adantl 484 . . . 4 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑎𝐴) → ((𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑎) = ⟨(𝐹𝑎), (𝐺𝑎)⟩)
5635, 50, 553eqtr4d 2864 . . 3 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑎𝐴) → ((𝐻𝑆)‘𝑎) = ((𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑎))
5756ralrimiva 3180 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → ∀𝑎𝐴 ((𝐻𝑆)‘𝑎) = ((𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑎))
58 opex 5347 . . . . . . . 8 ⟨(𝐹𝑥), (𝐺𝑦)⟩ ∈ V
5958a1i 11 . . . . . . 7 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝑥𝐴𝑦𝐴)) → ⟨(𝐹𝑥), (𝐺𝑦)⟩ ∈ V)
6059ralrimivva 3189 . . . . . 6 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → ∀𝑥𝐴𝑦𝐴 ⟨(𝐹𝑥), (𝐺𝑦)⟩ ∈ V)
61 eqid 2819 . . . . . . 7 (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑦)⟩) = (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑦)⟩)
6261fnmpo 7759 . . . . . 6 (∀𝑥𝐴𝑦𝐴 ⟨(𝐹𝑥), (𝐺𝑦)⟩ ∈ V → (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑦)⟩) Fn (𝐴 × 𝐴))
6360, 62syl 17 . . . . 5 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑦)⟩) Fn (𝐴 × 𝐴))
6422fneq1d 6439 . . . . 5 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐻 Fn (𝐴 × 𝐴) ↔ (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑦)⟩) Fn (𝐴 × 𝐴)))
6563, 64mpbird 259 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → 𝐻 Fn (𝐴 × 𝐴))
6613a1i 11 . . . . . . . 8 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑎 ∈ V) → ⟨𝑎, 𝑎⟩ ∈ V)
6766ralrimiva 3180 . . . . . . 7 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → ∀𝑎 ∈ V ⟨𝑎, 𝑎⟩ ∈ V)
6867, 37syl 17 . . . . . 6 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩) Fn V)
6968, 40, 41sylancl 588 . . . . 5 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → ((𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩) ↾ 𝐴) Fn 𝐴)
7069, 46sylibr 236 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → 𝑆 Fn 𝐴)
7145rneqi 5800 . . . . . 6 ran 𝑆 = ran ((𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩) ↾ 𝐴)
72 mptima 5934 . . . . . . 7 ((𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩) “ 𝐴) = ran (𝑎 ∈ (V ∩ 𝐴) ↦ ⟨𝑎, 𝑎⟩)
73 df-ima 5561 . . . . . . 7 ((𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩) “ 𝐴) = ran ((𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩) ↾ 𝐴)
74 eqid 2819 . . . . . . . 8 (𝑎 ∈ (V ∩ 𝐴) ↦ ⟨𝑎, 𝑎⟩) = (𝑎 ∈ (V ∩ 𝐴) ↦ ⟨𝑎, 𝑎⟩)
7574rnmpt 5820 . . . . . . 7 ran (𝑎 ∈ (V ∩ 𝐴) ↦ ⟨𝑎, 𝑎⟩) = {𝑝 ∣ ∃𝑎 ∈ (V ∩ 𝐴)𝑝 = ⟨𝑎, 𝑎⟩}
7672, 73, 753eqtr3i 2850 . . . . . 6 ran ((𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩) ↾ 𝐴) = {𝑝 ∣ ∃𝑎 ∈ (V ∩ 𝐴)𝑝 = ⟨𝑎, 𝑎⟩}
7771, 76eqtri 2842 . . . . 5 ran 𝑆 = {𝑝 ∣ ∃𝑎 ∈ (V ∩ 𝐴)𝑝 = ⟨𝑎, 𝑎⟩}
78 elinel2 4171 . . . . . . . . 9 (𝑎 ∈ (V ∩ 𝐴) → 𝑎𝐴)
79 simpl 485 . . . . . . . . . . . 12 ((𝑎𝐴𝑝 = ⟨𝑎, 𝑎⟩) → 𝑎𝐴)
8079, 79opelxpd 5586 . . . . . . . . . . 11 ((𝑎𝐴𝑝 = ⟨𝑎, 𝑎⟩) → ⟨𝑎, 𝑎⟩ ∈ (𝐴 × 𝐴))
81 eleq1 2898 . . . . . . . . . . . 12 (𝑝 = ⟨𝑎, 𝑎⟩ → (𝑝 ∈ (𝐴 × 𝐴) ↔ ⟨𝑎, 𝑎⟩ ∈ (𝐴 × 𝐴)))
8281adantl 484 . . . . . . . . . . 11 ((𝑎𝐴𝑝 = ⟨𝑎, 𝑎⟩) → (𝑝 ∈ (𝐴 × 𝐴) ↔ ⟨𝑎, 𝑎⟩ ∈ (𝐴 × 𝐴)))
8380, 82mpbird 259 . . . . . . . . . 10 ((𝑎𝐴𝑝 = ⟨𝑎, 𝑎⟩) → 𝑝 ∈ (𝐴 × 𝐴))
8483ex 415 . . . . . . . . 9 (𝑎𝐴 → (𝑝 = ⟨𝑎, 𝑎⟩ → 𝑝 ∈ (𝐴 × 𝐴)))
8578, 84syl 17 . . . . . . . 8 (𝑎 ∈ (V ∩ 𝐴) → (𝑝 = ⟨𝑎, 𝑎⟩ → 𝑝 ∈ (𝐴 × 𝐴)))
8685rexlimiv 3278 . . . . . . 7 (∃𝑎 ∈ (V ∩ 𝐴)𝑝 = ⟨𝑎, 𝑎⟩ → 𝑝 ∈ (𝐴 × 𝐴))
8786abssi 4044 . . . . . 6 {𝑝 ∣ ∃𝑎 ∈ (V ∩ 𝐴)𝑝 = ⟨𝑎, 𝑎⟩} ⊆ (𝐴 × 𝐴)
8887a1i 11 . . . . 5 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → {𝑝 ∣ ∃𝑎 ∈ (V ∩ 𝐴)𝑝 = ⟨𝑎, 𝑎⟩} ⊆ (𝐴 × 𝐴))
8977, 88eqsstrid 4013 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → ran 𝑆 ⊆ (𝐴 × 𝐴))
90 fnco 6458 . . . 4 ((𝐻 Fn (𝐴 × 𝐴) ∧ 𝑆 Fn 𝐴 ∧ ran 𝑆 ⊆ (𝐴 × 𝐴)) → (𝐻𝑆) Fn 𝐴)
9165, 70, 89, 90syl3anc 1365 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐻𝑆) Fn 𝐴)
92 opex 5347 . . . . . 6 ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ V
9392a1i 11 . . . . 5 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑥𝐴) → ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ V)
9493ralrimiva 3180 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → ∀𝑥𝐴 ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ V)
9553fnmpt 6481 . . . 4 (∀𝑥𝐴 ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ V → (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) Fn 𝐴)
9694, 95syl 17 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) Fn 𝐴)
97 eqfnfv 6795 . . 3 (((𝐻𝑆) Fn 𝐴 ∧ (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) Fn 𝐴) → ((𝐻𝑆) = (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) ↔ ∀𝑎𝐴 ((𝐻𝑆)‘𝑎) = ((𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑎)))
9891, 96, 97syl2anc 586 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → ((𝐻𝑆) = (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) ↔ ∀𝑎𝐴 ((𝐻𝑆)‘𝑎) = ((𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑎)))
9957, 98mpbird 259 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐻𝑆) = (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1530  wcel 2107  {cab 2797  wral 3136  wrex 3137  Vcvv 3493  cin 3933  wss 3934  cop 4565  cmpt 5137   I cid 5452   × cxp 5546  ccnv 5547  ran crn 5549  cres 5550  cima 5551  ccom 5552   Fn wfn 6343  cfv 6348  (class class class)co 7148  cmpo 7150  1st c1st 7679  2nd c2nd 7680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7151  df-oprab 7152  df-mpo 7153  df-1st 7681  df-2nd 7682
This theorem is referenced by:  offsplitfpar  7807
  Copyright terms: Public domain W3C validator