MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsplitfpar Structured version   Visualization version   GIF version

Theorem fsplitfpar 8058
Description: Merge two functions with a common argument in parallel. Combination of fsplit 8057 and fpar 8056. (Contributed by AV, 3-Jan-2024.)
Hypotheses
Ref Expression
fsplitfpar.h 𝐻 = (((1st ↾ (V × V)) ∘ (𝐹 ∘ (1st ↾ (V × V)))) ∩ ((2nd ↾ (V × V)) ∘ (𝐺 ∘ (2nd ↾ (V × V)))))
fsplitfpar.s 𝑆 = ((1st ↾ I ) ↾ 𝐴)
Assertion
Ref Expression
fsplitfpar ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐻𝑆) = (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺
Allowed substitution hints:   𝑆(𝑥)   𝐻(𝑥)

Proof of Theorem fsplitfpar
Dummy variables 𝑎 𝑝 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fsplitfpar.s . . . . . . . . . 10 𝑆 = ((1st ↾ I ) ↾ 𝐴)
2 fsplit 8057 . . . . . . . . . . 11 (1st ↾ I ) = (𝑥 ∈ V ↦ ⟨𝑥, 𝑥⟩)
32reseq1i 5930 . . . . . . . . . 10 ((1st ↾ I ) ↾ 𝐴) = ((𝑥 ∈ V ↦ ⟨𝑥, 𝑥⟩) ↾ 𝐴)
41, 3eqtri 2752 . . . . . . . . 9 𝑆 = ((𝑥 ∈ V ↦ ⟨𝑥, 𝑥⟩) ↾ 𝐴)
54fveq1i 6827 . . . . . . . 8 (𝑆𝑎) = (((𝑥 ∈ V ↦ ⟨𝑥, 𝑥⟩) ↾ 𝐴)‘𝑎)
65a1i 11 . . . . . . 7 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑎𝐴) → (𝑆𝑎) = (((𝑥 ∈ V ↦ ⟨𝑥, 𝑥⟩) ↾ 𝐴)‘𝑎))
7 fvres 6845 . . . . . . . . 9 (𝑎𝐴 → (((𝑥 ∈ V ↦ ⟨𝑥, 𝑥⟩) ↾ 𝐴)‘𝑎) = ((𝑥 ∈ V ↦ ⟨𝑥, 𝑥⟩)‘𝑎))
8 eqidd 2730 . . . . . . . . . 10 (𝑎𝐴 → (𝑥 ∈ V ↦ ⟨𝑥, 𝑥⟩) = (𝑥 ∈ V ↦ ⟨𝑥, 𝑥⟩))
9 id 22 . . . . . . . . . . . 12 (𝑥 = 𝑎𝑥 = 𝑎)
109, 9opeq12d 4835 . . . . . . . . . . 11 (𝑥 = 𝑎 → ⟨𝑥, 𝑥⟩ = ⟨𝑎, 𝑎⟩)
1110adantl 481 . . . . . . . . . 10 ((𝑎𝐴𝑥 = 𝑎) → ⟨𝑥, 𝑥⟩ = ⟨𝑎, 𝑎⟩)
12 elex 3459 . . . . . . . . . 10 (𝑎𝐴𝑎 ∈ V)
13 opex 5411 . . . . . . . . . . 11 𝑎, 𝑎⟩ ∈ V
1413a1i 11 . . . . . . . . . 10 (𝑎𝐴 → ⟨𝑎, 𝑎⟩ ∈ V)
158, 11, 12, 14fvmptd 6941 . . . . . . . . 9 (𝑎𝐴 → ((𝑥 ∈ V ↦ ⟨𝑥, 𝑥⟩)‘𝑎) = ⟨𝑎, 𝑎⟩)
167, 15eqtrd 2764 . . . . . . . 8 (𝑎𝐴 → (((𝑥 ∈ V ↦ ⟨𝑥, 𝑥⟩) ↾ 𝐴)‘𝑎) = ⟨𝑎, 𝑎⟩)
1716adantl 481 . . . . . . 7 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑎𝐴) → (((𝑥 ∈ V ↦ ⟨𝑥, 𝑥⟩) ↾ 𝐴)‘𝑎) = ⟨𝑎, 𝑎⟩)
186, 17eqtrd 2764 . . . . . 6 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑎𝐴) → (𝑆𝑎) = ⟨𝑎, 𝑎⟩)
1918fveq2d 6830 . . . . 5 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑎𝐴) → (𝐻‘(𝑆𝑎)) = (𝐻‘⟨𝑎, 𝑎⟩))
20 df-ov 7356 . . . . . 6 (𝑎𝐻𝑎) = (𝐻‘⟨𝑎, 𝑎⟩)
21 fsplitfpar.h . . . . . . . . 9 𝐻 = (((1st ↾ (V × V)) ∘ (𝐹 ∘ (1st ↾ (V × V)))) ∩ ((2nd ↾ (V × V)) ∘ (𝐺 ∘ (2nd ↾ (V × V)))))
2221fpar 8056 . . . . . . . 8 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → 𝐻 = (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑦)⟩))
2322adantr 480 . . . . . . 7 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑎𝐴) → 𝐻 = (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑦)⟩))
24 fveq2 6826 . . . . . . . . . 10 (𝑥 = 𝑎 → (𝐹𝑥) = (𝐹𝑎))
2524adantr 480 . . . . . . . . 9 ((𝑥 = 𝑎𝑦 = 𝑎) → (𝐹𝑥) = (𝐹𝑎))
26 fveq2 6826 . . . . . . . . . 10 (𝑦 = 𝑎 → (𝐺𝑦) = (𝐺𝑎))
2726adantl 481 . . . . . . . . 9 ((𝑥 = 𝑎𝑦 = 𝑎) → (𝐺𝑦) = (𝐺𝑎))
2825, 27opeq12d 4835 . . . . . . . 8 ((𝑥 = 𝑎𝑦 = 𝑎) → ⟨(𝐹𝑥), (𝐺𝑦)⟩ = ⟨(𝐹𝑎), (𝐺𝑎)⟩)
2928adantl 481 . . . . . . 7 ((((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑎𝐴) ∧ (𝑥 = 𝑎𝑦 = 𝑎)) → ⟨(𝐹𝑥), (𝐺𝑦)⟩ = ⟨(𝐹𝑎), (𝐺𝑎)⟩)
30 simpr 484 . . . . . . 7 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑎𝐴) → 𝑎𝐴)
31 opex 5411 . . . . . . . 8 ⟨(𝐹𝑎), (𝐺𝑎)⟩ ∈ V
3231a1i 11 . . . . . . 7 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑎𝐴) → ⟨(𝐹𝑎), (𝐺𝑎)⟩ ∈ V)
3323, 29, 30, 30, 32ovmpod 7505 . . . . . 6 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑎𝐴) → (𝑎𝐻𝑎) = ⟨(𝐹𝑎), (𝐺𝑎)⟩)
3420, 33eqtr3id 2778 . . . . 5 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑎𝐴) → (𝐻‘⟨𝑎, 𝑎⟩) = ⟨(𝐹𝑎), (𝐺𝑎)⟩)
3519, 34eqtrd 2764 . . . 4 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑎𝐴) → (𝐻‘(𝑆𝑎)) = ⟨(𝐹𝑎), (𝐺𝑎)⟩)
36 eqid 2729 . . . . . . . . . 10 (𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩) = (𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩)
3736fnmpt 6626 . . . . . . . . 9 (∀𝑎 ∈ V ⟨𝑎, 𝑎⟩ ∈ V → (𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩) Fn V)
3813a1i 11 . . . . . . . . 9 (𝑎 ∈ V → ⟨𝑎, 𝑎⟩ ∈ V)
3937, 38mprg 3050 . . . . . . . 8 (𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩) Fn V
40 ssv 3962 . . . . . . . 8 𝐴 ⊆ V
41 fnssres 6609 . . . . . . . 8 (((𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩) Fn V ∧ 𝐴 ⊆ V) → ((𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩) ↾ 𝐴) Fn 𝐴)
4239, 40, 41mp2an 692 . . . . . . 7 ((𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩) ↾ 𝐴) Fn 𝐴
43 fsplit 8057 . . . . . . . . . 10 (1st ↾ I ) = (𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩)
4443reseq1i 5930 . . . . . . . . 9 ((1st ↾ I ) ↾ 𝐴) = ((𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩) ↾ 𝐴)
451, 44eqtri 2752 . . . . . . . 8 𝑆 = ((𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩) ↾ 𝐴)
4645fneq1i 6583 . . . . . . 7 (𝑆 Fn 𝐴 ↔ ((𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩) ↾ 𝐴) Fn 𝐴)
4742, 46mpbir 231 . . . . . 6 𝑆 Fn 𝐴
4847a1i 11 . . . . 5 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → 𝑆 Fn 𝐴)
49 fvco2 6924 . . . . 5 ((𝑆 Fn 𝐴𝑎𝐴) → ((𝐻𝑆)‘𝑎) = (𝐻‘(𝑆𝑎)))
5048, 49sylan 580 . . . 4 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑎𝐴) → ((𝐻𝑆)‘𝑎) = (𝐻‘(𝑆𝑎)))
51 fveq2 6826 . . . . . . 7 (𝑥 = 𝑎 → (𝐺𝑥) = (𝐺𝑎))
5224, 51opeq12d 4835 . . . . . 6 (𝑥 = 𝑎 → ⟨(𝐹𝑥), (𝐺𝑥)⟩ = ⟨(𝐹𝑎), (𝐺𝑎)⟩)
53 eqid 2729 . . . . . 6 (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) = (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)
5452, 53, 31fvmpt 6934 . . . . 5 (𝑎𝐴 → ((𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑎) = ⟨(𝐹𝑎), (𝐺𝑎)⟩)
5554adantl 481 . . . 4 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑎𝐴) → ((𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑎) = ⟨(𝐹𝑎), (𝐺𝑎)⟩)
5635, 50, 553eqtr4d 2774 . . 3 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑎𝐴) → ((𝐻𝑆)‘𝑎) = ((𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑎))
5756ralrimiva 3121 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → ∀𝑎𝐴 ((𝐻𝑆)‘𝑎) = ((𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑎))
58 opex 5411 . . . . . . . 8 ⟨(𝐹𝑥), (𝐺𝑦)⟩ ∈ V
5958a1i 11 . . . . . . 7 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝑥𝐴𝑦𝐴)) → ⟨(𝐹𝑥), (𝐺𝑦)⟩ ∈ V)
6059ralrimivva 3172 . . . . . 6 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → ∀𝑥𝐴𝑦𝐴 ⟨(𝐹𝑥), (𝐺𝑦)⟩ ∈ V)
61 eqid 2729 . . . . . . 7 (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑦)⟩) = (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑦)⟩)
6261fnmpo 8011 . . . . . 6 (∀𝑥𝐴𝑦𝐴 ⟨(𝐹𝑥), (𝐺𝑦)⟩ ∈ V → (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑦)⟩) Fn (𝐴 × 𝐴))
6360, 62syl 17 . . . . 5 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑦)⟩) Fn (𝐴 × 𝐴))
6422fneq1d 6579 . . . . 5 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐻 Fn (𝐴 × 𝐴) ↔ (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑦)⟩) Fn (𝐴 × 𝐴)))
6563, 64mpbird 257 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → 𝐻 Fn (𝐴 × 𝐴))
6613a1i 11 . . . . . . . 8 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑎 ∈ V) → ⟨𝑎, 𝑎⟩ ∈ V)
6766ralrimiva 3121 . . . . . . 7 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → ∀𝑎 ∈ V ⟨𝑎, 𝑎⟩ ∈ V)
6867, 37syl 17 . . . . . 6 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩) Fn V)
6968, 40, 41sylancl 586 . . . . 5 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → ((𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩) ↾ 𝐴) Fn 𝐴)
7069, 46sylibr 234 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → 𝑆 Fn 𝐴)
7145rneqi 5883 . . . . . 6 ran 𝑆 = ran ((𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩) ↾ 𝐴)
72 mptima 6027 . . . . . . 7 ((𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩) “ 𝐴) = ran (𝑎 ∈ (V ∩ 𝐴) ↦ ⟨𝑎, 𝑎⟩)
73 df-ima 5636 . . . . . . 7 ((𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩) “ 𝐴) = ran ((𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩) ↾ 𝐴)
74 eqid 2729 . . . . . . . 8 (𝑎 ∈ (V ∩ 𝐴) ↦ ⟨𝑎, 𝑎⟩) = (𝑎 ∈ (V ∩ 𝐴) ↦ ⟨𝑎, 𝑎⟩)
7574rnmpt 5903 . . . . . . 7 ran (𝑎 ∈ (V ∩ 𝐴) ↦ ⟨𝑎, 𝑎⟩) = {𝑝 ∣ ∃𝑎 ∈ (V ∩ 𝐴)𝑝 = ⟨𝑎, 𝑎⟩}
7672, 73, 753eqtr3i 2760 . . . . . 6 ran ((𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩) ↾ 𝐴) = {𝑝 ∣ ∃𝑎 ∈ (V ∩ 𝐴)𝑝 = ⟨𝑎, 𝑎⟩}
7771, 76eqtri 2752 . . . . 5 ran 𝑆 = {𝑝 ∣ ∃𝑎 ∈ (V ∩ 𝐴)𝑝 = ⟨𝑎, 𝑎⟩}
78 elinel2 4155 . . . . . . . . 9 (𝑎 ∈ (V ∩ 𝐴) → 𝑎𝐴)
79 simpl 482 . . . . . . . . . . . 12 ((𝑎𝐴𝑝 = ⟨𝑎, 𝑎⟩) → 𝑎𝐴)
8079, 79opelxpd 5662 . . . . . . . . . . 11 ((𝑎𝐴𝑝 = ⟨𝑎, 𝑎⟩) → ⟨𝑎, 𝑎⟩ ∈ (𝐴 × 𝐴))
81 eleq1 2816 . . . . . . . . . . . 12 (𝑝 = ⟨𝑎, 𝑎⟩ → (𝑝 ∈ (𝐴 × 𝐴) ↔ ⟨𝑎, 𝑎⟩ ∈ (𝐴 × 𝐴)))
8281adantl 481 . . . . . . . . . . 11 ((𝑎𝐴𝑝 = ⟨𝑎, 𝑎⟩) → (𝑝 ∈ (𝐴 × 𝐴) ↔ ⟨𝑎, 𝑎⟩ ∈ (𝐴 × 𝐴)))
8380, 82mpbird 257 . . . . . . . . . 10 ((𝑎𝐴𝑝 = ⟨𝑎, 𝑎⟩) → 𝑝 ∈ (𝐴 × 𝐴))
8483ex 412 . . . . . . . . 9 (𝑎𝐴 → (𝑝 = ⟨𝑎, 𝑎⟩ → 𝑝 ∈ (𝐴 × 𝐴)))
8578, 84syl 17 . . . . . . . 8 (𝑎 ∈ (V ∩ 𝐴) → (𝑝 = ⟨𝑎, 𝑎⟩ → 𝑝 ∈ (𝐴 × 𝐴)))
8685rexlimiv 3123 . . . . . . 7 (∃𝑎 ∈ (V ∩ 𝐴)𝑝 = ⟨𝑎, 𝑎⟩ → 𝑝 ∈ (𝐴 × 𝐴))
8786abssi 4023 . . . . . 6 {𝑝 ∣ ∃𝑎 ∈ (V ∩ 𝐴)𝑝 = ⟨𝑎, 𝑎⟩} ⊆ (𝐴 × 𝐴)
8887a1i 11 . . . . 5 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → {𝑝 ∣ ∃𝑎 ∈ (V ∩ 𝐴)𝑝 = ⟨𝑎, 𝑎⟩} ⊆ (𝐴 × 𝐴))
8977, 88eqsstrid 3976 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → ran 𝑆 ⊆ (𝐴 × 𝐴))
90 fnco 6604 . . . 4 ((𝐻 Fn (𝐴 × 𝐴) ∧ 𝑆 Fn 𝐴 ∧ ran 𝑆 ⊆ (𝐴 × 𝐴)) → (𝐻𝑆) Fn 𝐴)
9165, 70, 89, 90syl3anc 1373 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐻𝑆) Fn 𝐴)
92 opex 5411 . . . . . 6 ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ V
9392a1i 11 . . . . 5 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑥𝐴) → ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ V)
9493ralrimiva 3121 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → ∀𝑥𝐴 ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ V)
9553fnmpt 6626 . . . 4 (∀𝑥𝐴 ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ V → (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) Fn 𝐴)
9694, 95syl 17 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) Fn 𝐴)
97 eqfnfv 6969 . . 3 (((𝐻𝑆) Fn 𝐴 ∧ (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) Fn 𝐴) → ((𝐻𝑆) = (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) ↔ ∀𝑎𝐴 ((𝐻𝑆)‘𝑎) = ((𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑎)))
9891, 96, 97syl2anc 584 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → ((𝐻𝑆) = (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) ↔ ∀𝑎𝐴 ((𝐻𝑆)‘𝑎) = ((𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑎)))
9957, 98mpbird 257 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐻𝑆) = (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2707  wral 3044  wrex 3053  Vcvv 3438  cin 3904  wss 3905  cop 4585  cmpt 5176   I cid 5517   × cxp 5621  ccnv 5622  ran crn 5624  cres 5625  cima 5626  ccom 5627   Fn wfn 6481  cfv 6486  (class class class)co 7353  cmpo 7355  1st c1st 7929  2nd c2nd 7930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932
This theorem is referenced by:  offsplitfpar  8059
  Copyright terms: Public domain W3C validator