MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsplitfpar Structured version   Visualization version   GIF version

Theorem fsplitfpar 8055
Description: Merge two functions with a common argument in parallel. Combination of fsplit 8054 and fpar 8053. (Contributed by AV, 3-Jan-2024.)
Hypotheses
Ref Expression
fsplitfpar.h 𝐻 = (((1st ↾ (V × V)) ∘ (𝐹 ∘ (1st ↾ (V × V)))) ∩ ((2nd ↾ (V × V)) ∘ (𝐺 ∘ (2nd ↾ (V × V)))))
fsplitfpar.s 𝑆 = ((1st ↾ I ) ↾ 𝐴)
Assertion
Ref Expression
fsplitfpar ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐻𝑆) = (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺
Allowed substitution hints:   𝑆(𝑥)   𝐻(𝑥)

Proof of Theorem fsplitfpar
Dummy variables 𝑎 𝑝 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fsplitfpar.s . . . . . . . . . 10 𝑆 = ((1st ↾ I ) ↾ 𝐴)
2 fsplit 8054 . . . . . . . . . . 11 (1st ↾ I ) = (𝑥 ∈ V ↦ ⟨𝑥, 𝑥⟩)
32reseq1i 5938 . . . . . . . . . 10 ((1st ↾ I ) ↾ 𝐴) = ((𝑥 ∈ V ↦ ⟨𝑥, 𝑥⟩) ↾ 𝐴)
41, 3eqtri 2759 . . . . . . . . 9 𝑆 = ((𝑥 ∈ V ↦ ⟨𝑥, 𝑥⟩) ↾ 𝐴)
54fveq1i 6848 . . . . . . . 8 (𝑆𝑎) = (((𝑥 ∈ V ↦ ⟨𝑥, 𝑥⟩) ↾ 𝐴)‘𝑎)
65a1i 11 . . . . . . 7 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑎𝐴) → (𝑆𝑎) = (((𝑥 ∈ V ↦ ⟨𝑥, 𝑥⟩) ↾ 𝐴)‘𝑎))
7 fvres 6866 . . . . . . . . 9 (𝑎𝐴 → (((𝑥 ∈ V ↦ ⟨𝑥, 𝑥⟩) ↾ 𝐴)‘𝑎) = ((𝑥 ∈ V ↦ ⟨𝑥, 𝑥⟩)‘𝑎))
8 eqidd 2732 . . . . . . . . . 10 (𝑎𝐴 → (𝑥 ∈ V ↦ ⟨𝑥, 𝑥⟩) = (𝑥 ∈ V ↦ ⟨𝑥, 𝑥⟩))
9 id 22 . . . . . . . . . . . 12 (𝑥 = 𝑎𝑥 = 𝑎)
109, 9opeq12d 4843 . . . . . . . . . . 11 (𝑥 = 𝑎 → ⟨𝑥, 𝑥⟩ = ⟨𝑎, 𝑎⟩)
1110adantl 482 . . . . . . . . . 10 ((𝑎𝐴𝑥 = 𝑎) → ⟨𝑥, 𝑥⟩ = ⟨𝑎, 𝑎⟩)
12 elex 3464 . . . . . . . . . 10 (𝑎𝐴𝑎 ∈ V)
13 opex 5426 . . . . . . . . . . 11 𝑎, 𝑎⟩ ∈ V
1413a1i 11 . . . . . . . . . 10 (𝑎𝐴 → ⟨𝑎, 𝑎⟩ ∈ V)
158, 11, 12, 14fvmptd 6960 . . . . . . . . 9 (𝑎𝐴 → ((𝑥 ∈ V ↦ ⟨𝑥, 𝑥⟩)‘𝑎) = ⟨𝑎, 𝑎⟩)
167, 15eqtrd 2771 . . . . . . . 8 (𝑎𝐴 → (((𝑥 ∈ V ↦ ⟨𝑥, 𝑥⟩) ↾ 𝐴)‘𝑎) = ⟨𝑎, 𝑎⟩)
1716adantl 482 . . . . . . 7 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑎𝐴) → (((𝑥 ∈ V ↦ ⟨𝑥, 𝑥⟩) ↾ 𝐴)‘𝑎) = ⟨𝑎, 𝑎⟩)
186, 17eqtrd 2771 . . . . . 6 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑎𝐴) → (𝑆𝑎) = ⟨𝑎, 𝑎⟩)
1918fveq2d 6851 . . . . 5 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑎𝐴) → (𝐻‘(𝑆𝑎)) = (𝐻‘⟨𝑎, 𝑎⟩))
20 df-ov 7365 . . . . . 6 (𝑎𝐻𝑎) = (𝐻‘⟨𝑎, 𝑎⟩)
21 fsplitfpar.h . . . . . . . . 9 𝐻 = (((1st ↾ (V × V)) ∘ (𝐹 ∘ (1st ↾ (V × V)))) ∩ ((2nd ↾ (V × V)) ∘ (𝐺 ∘ (2nd ↾ (V × V)))))
2221fpar 8053 . . . . . . . 8 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → 𝐻 = (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑦)⟩))
2322adantr 481 . . . . . . 7 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑎𝐴) → 𝐻 = (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑦)⟩))
24 fveq2 6847 . . . . . . . . . 10 (𝑥 = 𝑎 → (𝐹𝑥) = (𝐹𝑎))
2524adantr 481 . . . . . . . . 9 ((𝑥 = 𝑎𝑦 = 𝑎) → (𝐹𝑥) = (𝐹𝑎))
26 fveq2 6847 . . . . . . . . . 10 (𝑦 = 𝑎 → (𝐺𝑦) = (𝐺𝑎))
2726adantl 482 . . . . . . . . 9 ((𝑥 = 𝑎𝑦 = 𝑎) → (𝐺𝑦) = (𝐺𝑎))
2825, 27opeq12d 4843 . . . . . . . 8 ((𝑥 = 𝑎𝑦 = 𝑎) → ⟨(𝐹𝑥), (𝐺𝑦)⟩ = ⟨(𝐹𝑎), (𝐺𝑎)⟩)
2928adantl 482 . . . . . . 7 ((((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑎𝐴) ∧ (𝑥 = 𝑎𝑦 = 𝑎)) → ⟨(𝐹𝑥), (𝐺𝑦)⟩ = ⟨(𝐹𝑎), (𝐺𝑎)⟩)
30 simpr 485 . . . . . . 7 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑎𝐴) → 𝑎𝐴)
31 opex 5426 . . . . . . . 8 ⟨(𝐹𝑎), (𝐺𝑎)⟩ ∈ V
3231a1i 11 . . . . . . 7 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑎𝐴) → ⟨(𝐹𝑎), (𝐺𝑎)⟩ ∈ V)
3323, 29, 30, 30, 32ovmpod 7512 . . . . . 6 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑎𝐴) → (𝑎𝐻𝑎) = ⟨(𝐹𝑎), (𝐺𝑎)⟩)
3420, 33eqtr3id 2785 . . . . 5 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑎𝐴) → (𝐻‘⟨𝑎, 𝑎⟩) = ⟨(𝐹𝑎), (𝐺𝑎)⟩)
3519, 34eqtrd 2771 . . . 4 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑎𝐴) → (𝐻‘(𝑆𝑎)) = ⟨(𝐹𝑎), (𝐺𝑎)⟩)
36 eqid 2731 . . . . . . . . . 10 (𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩) = (𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩)
3736fnmpt 6646 . . . . . . . . 9 (∀𝑎 ∈ V ⟨𝑎, 𝑎⟩ ∈ V → (𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩) Fn V)
3813a1i 11 . . . . . . . . 9 (𝑎 ∈ V → ⟨𝑎, 𝑎⟩ ∈ V)
3937, 38mprg 3066 . . . . . . . 8 (𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩) Fn V
40 ssv 3971 . . . . . . . 8 𝐴 ⊆ V
41 fnssres 6629 . . . . . . . 8 (((𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩) Fn V ∧ 𝐴 ⊆ V) → ((𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩) ↾ 𝐴) Fn 𝐴)
4239, 40, 41mp2an 690 . . . . . . 7 ((𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩) ↾ 𝐴) Fn 𝐴
43 fsplit 8054 . . . . . . . . . 10 (1st ↾ I ) = (𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩)
4443reseq1i 5938 . . . . . . . . 9 ((1st ↾ I ) ↾ 𝐴) = ((𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩) ↾ 𝐴)
451, 44eqtri 2759 . . . . . . . 8 𝑆 = ((𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩) ↾ 𝐴)
4645fneq1i 6604 . . . . . . 7 (𝑆 Fn 𝐴 ↔ ((𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩) ↾ 𝐴) Fn 𝐴)
4742, 46mpbir 230 . . . . . 6 𝑆 Fn 𝐴
4847a1i 11 . . . . 5 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → 𝑆 Fn 𝐴)
49 fvco2 6943 . . . . 5 ((𝑆 Fn 𝐴𝑎𝐴) → ((𝐻𝑆)‘𝑎) = (𝐻‘(𝑆𝑎)))
5048, 49sylan 580 . . . 4 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑎𝐴) → ((𝐻𝑆)‘𝑎) = (𝐻‘(𝑆𝑎)))
51 fveq2 6847 . . . . . . 7 (𝑥 = 𝑎 → (𝐺𝑥) = (𝐺𝑎))
5224, 51opeq12d 4843 . . . . . 6 (𝑥 = 𝑎 → ⟨(𝐹𝑥), (𝐺𝑥)⟩ = ⟨(𝐹𝑎), (𝐺𝑎)⟩)
53 eqid 2731 . . . . . 6 (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) = (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)
5452, 53, 31fvmpt 6953 . . . . 5 (𝑎𝐴 → ((𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑎) = ⟨(𝐹𝑎), (𝐺𝑎)⟩)
5554adantl 482 . . . 4 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑎𝐴) → ((𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑎) = ⟨(𝐹𝑎), (𝐺𝑎)⟩)
5635, 50, 553eqtr4d 2781 . . 3 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑎𝐴) → ((𝐻𝑆)‘𝑎) = ((𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑎))
5756ralrimiva 3139 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → ∀𝑎𝐴 ((𝐻𝑆)‘𝑎) = ((𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑎))
58 opex 5426 . . . . . . . 8 ⟨(𝐹𝑥), (𝐺𝑦)⟩ ∈ V
5958a1i 11 . . . . . . 7 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝑥𝐴𝑦𝐴)) → ⟨(𝐹𝑥), (𝐺𝑦)⟩ ∈ V)
6059ralrimivva 3193 . . . . . 6 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → ∀𝑥𝐴𝑦𝐴 ⟨(𝐹𝑥), (𝐺𝑦)⟩ ∈ V)
61 eqid 2731 . . . . . . 7 (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑦)⟩) = (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑦)⟩)
6261fnmpo 8006 . . . . . 6 (∀𝑥𝐴𝑦𝐴 ⟨(𝐹𝑥), (𝐺𝑦)⟩ ∈ V → (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑦)⟩) Fn (𝐴 × 𝐴))
6360, 62syl 17 . . . . 5 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑦)⟩) Fn (𝐴 × 𝐴))
6422fneq1d 6600 . . . . 5 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐻 Fn (𝐴 × 𝐴) ↔ (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑦)⟩) Fn (𝐴 × 𝐴)))
6563, 64mpbird 256 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → 𝐻 Fn (𝐴 × 𝐴))
6613a1i 11 . . . . . . . 8 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑎 ∈ V) → ⟨𝑎, 𝑎⟩ ∈ V)
6766ralrimiva 3139 . . . . . . 7 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → ∀𝑎 ∈ V ⟨𝑎, 𝑎⟩ ∈ V)
6867, 37syl 17 . . . . . 6 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩) Fn V)
6968, 40, 41sylancl 586 . . . . 5 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → ((𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩) ↾ 𝐴) Fn 𝐴)
7069, 46sylibr 233 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → 𝑆 Fn 𝐴)
7145rneqi 5897 . . . . . 6 ran 𝑆 = ran ((𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩) ↾ 𝐴)
72 mptima 6030 . . . . . . 7 ((𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩) “ 𝐴) = ran (𝑎 ∈ (V ∩ 𝐴) ↦ ⟨𝑎, 𝑎⟩)
73 df-ima 5651 . . . . . . 7 ((𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩) “ 𝐴) = ran ((𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩) ↾ 𝐴)
74 eqid 2731 . . . . . . . 8 (𝑎 ∈ (V ∩ 𝐴) ↦ ⟨𝑎, 𝑎⟩) = (𝑎 ∈ (V ∩ 𝐴) ↦ ⟨𝑎, 𝑎⟩)
7574rnmpt 5915 . . . . . . 7 ran (𝑎 ∈ (V ∩ 𝐴) ↦ ⟨𝑎, 𝑎⟩) = {𝑝 ∣ ∃𝑎 ∈ (V ∩ 𝐴)𝑝 = ⟨𝑎, 𝑎⟩}
7672, 73, 753eqtr3i 2767 . . . . . 6 ran ((𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩) ↾ 𝐴) = {𝑝 ∣ ∃𝑎 ∈ (V ∩ 𝐴)𝑝 = ⟨𝑎, 𝑎⟩}
7771, 76eqtri 2759 . . . . 5 ran 𝑆 = {𝑝 ∣ ∃𝑎 ∈ (V ∩ 𝐴)𝑝 = ⟨𝑎, 𝑎⟩}
78 elinel2 4161 . . . . . . . . 9 (𝑎 ∈ (V ∩ 𝐴) → 𝑎𝐴)
79 simpl 483 . . . . . . . . . . . 12 ((𝑎𝐴𝑝 = ⟨𝑎, 𝑎⟩) → 𝑎𝐴)
8079, 79opelxpd 5676 . . . . . . . . . . 11 ((𝑎𝐴𝑝 = ⟨𝑎, 𝑎⟩) → ⟨𝑎, 𝑎⟩ ∈ (𝐴 × 𝐴))
81 eleq1 2820 . . . . . . . . . . . 12 (𝑝 = ⟨𝑎, 𝑎⟩ → (𝑝 ∈ (𝐴 × 𝐴) ↔ ⟨𝑎, 𝑎⟩ ∈ (𝐴 × 𝐴)))
8281adantl 482 . . . . . . . . . . 11 ((𝑎𝐴𝑝 = ⟨𝑎, 𝑎⟩) → (𝑝 ∈ (𝐴 × 𝐴) ↔ ⟨𝑎, 𝑎⟩ ∈ (𝐴 × 𝐴)))
8380, 82mpbird 256 . . . . . . . . . 10 ((𝑎𝐴𝑝 = ⟨𝑎, 𝑎⟩) → 𝑝 ∈ (𝐴 × 𝐴))
8483ex 413 . . . . . . . . 9 (𝑎𝐴 → (𝑝 = ⟨𝑎, 𝑎⟩ → 𝑝 ∈ (𝐴 × 𝐴)))
8578, 84syl 17 . . . . . . . 8 (𝑎 ∈ (V ∩ 𝐴) → (𝑝 = ⟨𝑎, 𝑎⟩ → 𝑝 ∈ (𝐴 × 𝐴)))
8685rexlimiv 3141 . . . . . . 7 (∃𝑎 ∈ (V ∩ 𝐴)𝑝 = ⟨𝑎, 𝑎⟩ → 𝑝 ∈ (𝐴 × 𝐴))
8786abssi 4032 . . . . . 6 {𝑝 ∣ ∃𝑎 ∈ (V ∩ 𝐴)𝑝 = ⟨𝑎, 𝑎⟩} ⊆ (𝐴 × 𝐴)
8887a1i 11 . . . . 5 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → {𝑝 ∣ ∃𝑎 ∈ (V ∩ 𝐴)𝑝 = ⟨𝑎, 𝑎⟩} ⊆ (𝐴 × 𝐴))
8977, 88eqsstrid 3995 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → ran 𝑆 ⊆ (𝐴 × 𝐴))
90 fnco 6623 . . . 4 ((𝐻 Fn (𝐴 × 𝐴) ∧ 𝑆 Fn 𝐴 ∧ ran 𝑆 ⊆ (𝐴 × 𝐴)) → (𝐻𝑆) Fn 𝐴)
9165, 70, 89, 90syl3anc 1371 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐻𝑆) Fn 𝐴)
92 opex 5426 . . . . . 6 ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ V
9392a1i 11 . . . . 5 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑥𝐴) → ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ V)
9493ralrimiva 3139 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → ∀𝑥𝐴 ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ V)
9553fnmpt 6646 . . . 4 (∀𝑥𝐴 ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ V → (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) Fn 𝐴)
9694, 95syl 17 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) Fn 𝐴)
97 eqfnfv 6987 . . 3 (((𝐻𝑆) Fn 𝐴 ∧ (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) Fn 𝐴) → ((𝐻𝑆) = (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) ↔ ∀𝑎𝐴 ((𝐻𝑆)‘𝑎) = ((𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑎)))
9891, 96, 97syl2anc 584 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → ((𝐻𝑆) = (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) ↔ ∀𝑎𝐴 ((𝐻𝑆)‘𝑎) = ((𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑎)))
9957, 98mpbird 256 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐻𝑆) = (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  {cab 2708  wral 3060  wrex 3069  Vcvv 3446  cin 3912  wss 3913  cop 4597  cmpt 5193   I cid 5535   × cxp 5636  ccnv 5637  ran crn 5639  cres 5640  cima 5641  ccom 5642   Fn wfn 6496  cfv 6501  (class class class)co 7362  cmpo 7364  1st c1st 7924  2nd c2nd 7925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5261  ax-nul 5268  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-nul 4288  df-if 4492  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-ov 7365  df-oprab 7366  df-mpo 7367  df-1st 7926  df-2nd 7927
This theorem is referenced by:  offsplitfpar  8056
  Copyright terms: Public domain W3C validator