| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elmptima | Structured version Visualization version GIF version | ||
| Description: The image of a function in maps-to notation. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| elmptima | ⊢ (𝐶 ∈ 𝑉 → (𝐶 ∈ ((𝑥 ∈ 𝐴 ↦ 𝐵) “ 𝐷) ↔ ∃𝑥 ∈ (𝐴 ∩ 𝐷)𝐶 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptima 6043 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) “ 𝐷) = ran (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐵) | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (𝐶 ∈ 𝑉 → ((𝑥 ∈ 𝐴 ↦ 𝐵) “ 𝐷) = ran (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐵)) |
| 3 | 2 | eleq2d 2814 | . 2 ⊢ (𝐶 ∈ 𝑉 → (𝐶 ∈ ((𝑥 ∈ 𝐴 ↦ 𝐵) “ 𝐷) ↔ 𝐶 ∈ ran (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐵))) |
| 4 | eqid 2729 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐵) = (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐵) | |
| 5 | 4 | elrnmpt 5922 | . 2 ⊢ (𝐶 ∈ 𝑉 → (𝐶 ∈ ran (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐵) ↔ ∃𝑥 ∈ (𝐴 ∩ 𝐷)𝐶 = 𝐵)) |
| 6 | 3, 5 | bitrd 279 | 1 ⊢ (𝐶 ∈ 𝑉 → (𝐶 ∈ ((𝑥 ∈ 𝐴 ↦ 𝐵) “ 𝐷) ↔ ∃𝑥 ∈ (𝐴 ∩ 𝐷)𝐶 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ∩ cin 3913 ↦ cmpt 5188 ran crn 5639 “ cima 5641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-mpt 5189 df-xp 5644 df-rel 5645 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 |
| This theorem is referenced by: liminfvalxr 45781 |
| Copyright terms: Public domain | W3C validator |