![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elmptima | Structured version Visualization version GIF version |
Description: The image of a function in maps-to notation. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
elmptima | ⊢ (𝐶 ∈ 𝑉 → (𝐶 ∈ ((𝑥 ∈ 𝐴 ↦ 𝐵) “ 𝐷) ↔ ∃𝑥 ∈ (𝐴 ∩ 𝐷)𝐶 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptima 6100 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) “ 𝐷) = ran (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐵) | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝐶 ∈ 𝑉 → ((𝑥 ∈ 𝐴 ↦ 𝐵) “ 𝐷) = ran (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐵)) |
3 | 2 | eleq2d 2824 | . 2 ⊢ (𝐶 ∈ 𝑉 → (𝐶 ∈ ((𝑥 ∈ 𝐴 ↦ 𝐵) “ 𝐷) ↔ 𝐶 ∈ ran (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐵))) |
4 | eqid 2734 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐵) = (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐵) | |
5 | 4 | elrnmpt 5980 | . 2 ⊢ (𝐶 ∈ 𝑉 → (𝐶 ∈ ran (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐵) ↔ ∃𝑥 ∈ (𝐴 ∩ 𝐷)𝐶 = 𝐵)) |
6 | 3, 5 | bitrd 279 | 1 ⊢ (𝐶 ∈ 𝑉 → (𝐶 ∈ ((𝑥 ∈ 𝐴 ↦ 𝐵) “ 𝐷) ↔ ∃𝑥 ∈ (𝐴 ∩ 𝐷)𝐶 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2103 ∃wrex 3072 ∩ cin 3969 ↦ cmpt 5252 ran crn 5700 “ cima 5702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-11 2153 ax-12 2173 ax-ext 2705 ax-sep 5320 ax-nul 5327 ax-pr 5450 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2890 df-ral 3064 df-rex 3073 df-rab 3439 df-v 3484 df-dif 3973 df-un 3975 df-in 3977 df-ss 3987 df-nul 4348 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5170 df-opab 5232 df-mpt 5253 df-xp 5705 df-rel 5706 df-cnv 5707 df-dm 5709 df-rn 5710 df-res 5711 df-ima 5712 |
This theorem is referenced by: liminfvalxr 45639 |
Copyright terms: Public domain | W3C validator |