Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elmptima Structured version   Visualization version   GIF version

Theorem elmptima 45252
Description: The image of a function in maps-to notation. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Assertion
Ref Expression
elmptima (𝐶𝑉 → (𝐶 ∈ ((𝑥𝐴𝐵) “ 𝐷) ↔ ∃𝑥 ∈ (𝐴𝐷)𝐶 = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem elmptima
StepHypRef Expression
1 mptima 6043 . . . 4 ((𝑥𝐴𝐵) “ 𝐷) = ran (𝑥 ∈ (𝐴𝐷) ↦ 𝐵)
21a1i 11 . . 3 (𝐶𝑉 → ((𝑥𝐴𝐵) “ 𝐷) = ran (𝑥 ∈ (𝐴𝐷) ↦ 𝐵))
32eleq2d 2814 . 2 (𝐶𝑉 → (𝐶 ∈ ((𝑥𝐴𝐵) “ 𝐷) ↔ 𝐶 ∈ ran (𝑥 ∈ (𝐴𝐷) ↦ 𝐵)))
4 eqid 2729 . . 3 (𝑥 ∈ (𝐴𝐷) ↦ 𝐵) = (𝑥 ∈ (𝐴𝐷) ↦ 𝐵)
54elrnmpt 5922 . 2 (𝐶𝑉 → (𝐶 ∈ ran (𝑥 ∈ (𝐴𝐷) ↦ 𝐵) ↔ ∃𝑥 ∈ (𝐴𝐷)𝐶 = 𝐵))
63, 5bitrd 279 1 (𝐶𝑉 → (𝐶 ∈ ((𝑥𝐴𝐵) “ 𝐷) ↔ ∃𝑥 ∈ (𝐴𝐷)𝐶 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wrex 3053  cin 3913  cmpt 5188  ran crn 5639  cima 5641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-mpt 5189  df-xp 5644  df-rel 5645  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651
This theorem is referenced by:  liminfvalxr  45781
  Copyright terms: Public domain W3C validator