Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elmptima Structured version   Visualization version   GIF version

Theorem elmptima 45198
Description: The image of a function in maps-to notation. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Assertion
Ref Expression
elmptima (𝐶𝑉 → (𝐶 ∈ ((𝑥𝐴𝐵) “ 𝐷) ↔ ∃𝑥 ∈ (𝐴𝐷)𝐶 = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem elmptima
StepHypRef Expression
1 mptima 6070 . . . 4 ((𝑥𝐴𝐵) “ 𝐷) = ran (𝑥 ∈ (𝐴𝐷) ↦ 𝐵)
21a1i 11 . . 3 (𝐶𝑉 → ((𝑥𝐴𝐵) “ 𝐷) = ran (𝑥 ∈ (𝐴𝐷) ↦ 𝐵))
32eleq2d 2819 . 2 (𝐶𝑉 → (𝐶 ∈ ((𝑥𝐴𝐵) “ 𝐷) ↔ 𝐶 ∈ ran (𝑥 ∈ (𝐴𝐷) ↦ 𝐵)))
4 eqid 2734 . . 3 (𝑥 ∈ (𝐴𝐷) ↦ 𝐵) = (𝑥 ∈ (𝐴𝐷) ↦ 𝐵)
54elrnmpt 5949 . 2 (𝐶𝑉 → (𝐶 ∈ ran (𝑥 ∈ (𝐴𝐷) ↦ 𝐵) ↔ ∃𝑥 ∈ (𝐴𝐷)𝐶 = 𝐵))
63, 5bitrd 279 1 (𝐶𝑉 → (𝐶 ∈ ((𝑥𝐴𝐵) “ 𝐷) ↔ ∃𝑥 ∈ (𝐴𝐷)𝐶 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1539  wcel 2107  wrex 3059  cin 3930  cmpt 5205  ran crn 5666  cima 5668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5124  df-opab 5186  df-mpt 5206  df-xp 5671  df-rel 5672  df-cnv 5673  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678
This theorem is referenced by:  liminfvalxr  45731
  Copyright terms: Public domain W3C validator