![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elmptima | Structured version Visualization version GIF version |
Description: The image of a function in maps-to notation. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
elmptima | ⊢ (𝐶 ∈ 𝑉 → (𝐶 ∈ ((𝑥 ∈ 𝐴 ↦ 𝐵) “ 𝐷) ↔ ∃𝑥 ∈ (𝐴 ∩ 𝐷)𝐶 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptima 6097 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) “ 𝐷) = ran (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐵) | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝐶 ∈ 𝑉 → ((𝑥 ∈ 𝐴 ↦ 𝐵) “ 𝐷) = ran (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐵)) |
3 | 2 | eleq2d 2827 | . 2 ⊢ (𝐶 ∈ 𝑉 → (𝐶 ∈ ((𝑥 ∈ 𝐴 ↦ 𝐵) “ 𝐷) ↔ 𝐶 ∈ ran (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐵))) |
4 | eqid 2737 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐵) = (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐵) | |
5 | 4 | elrnmpt 5976 | . 2 ⊢ (𝐶 ∈ 𝑉 → (𝐶 ∈ ran (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐵) ↔ ∃𝑥 ∈ (𝐴 ∩ 𝐷)𝐶 = 𝐵)) |
6 | 3, 5 | bitrd 279 | 1 ⊢ (𝐶 ∈ 𝑉 → (𝐶 ∈ ((𝑥 ∈ 𝐴 ↦ 𝐵) “ 𝐷) ↔ ∃𝑥 ∈ (𝐴 ∩ 𝐷)𝐶 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ∈ wcel 2108 ∃wrex 3070 ∩ cin 3965 ↦ cmpt 5234 ran crn 5694 “ cima 5696 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-br 5152 df-opab 5214 df-mpt 5235 df-xp 5699 df-rel 5700 df-cnv 5701 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 |
This theorem is referenced by: liminfvalxr 45767 |
Copyright terms: Public domain | W3C validator |