![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elmptima | Structured version Visualization version GIF version |
Description: The image of a function in maps-to notation. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
elmptima | ⊢ (𝐶 ∈ 𝑉 → (𝐶 ∈ ((𝑥 ∈ 𝐴 ↦ 𝐵) “ 𝐷) ↔ ∃𝑥 ∈ (𝐴 ∩ 𝐷)𝐶 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptima 6076 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) “ 𝐷) = ran (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐵) | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝐶 ∈ 𝑉 → ((𝑥 ∈ 𝐴 ↦ 𝐵) “ 𝐷) = ran (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐵)) |
3 | 2 | eleq2d 2811 | . 2 ⊢ (𝐶 ∈ 𝑉 → (𝐶 ∈ ((𝑥 ∈ 𝐴 ↦ 𝐵) “ 𝐷) ↔ 𝐶 ∈ ran (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐵))) |
4 | eqid 2725 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐵) = (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐵) | |
5 | 4 | elrnmpt 5958 | . 2 ⊢ (𝐶 ∈ 𝑉 → (𝐶 ∈ ran (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐵) ↔ ∃𝑥 ∈ (𝐴 ∩ 𝐷)𝐶 = 𝐵)) |
6 | 3, 5 | bitrd 278 | 1 ⊢ (𝐶 ∈ 𝑉 → (𝐶 ∈ ((𝑥 ∈ 𝐴 ↦ 𝐵) “ 𝐷) ↔ ∃𝑥 ∈ (𝐴 ∩ 𝐷)𝐶 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1533 ∈ wcel 2098 ∃wrex 3059 ∩ cin 3943 ↦ cmpt 5232 ran crn 5679 “ cima 5681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5150 df-opab 5212 df-mpt 5233 df-xp 5684 df-rel 5685 df-cnv 5686 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 |
This theorem is referenced by: liminfvalxr 45309 |
Copyright terms: Public domain | W3C validator |