| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elmptima | Structured version Visualization version GIF version | ||
| Description: The image of a function in maps-to notation. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| elmptima | ⊢ (𝐶 ∈ 𝑉 → (𝐶 ∈ ((𝑥 ∈ 𝐴 ↦ 𝐵) “ 𝐷) ↔ ∃𝑥 ∈ (𝐴 ∩ 𝐷)𝐶 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptima 6051 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) “ 𝐷) = ran (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐵) | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (𝐶 ∈ 𝑉 → ((𝑥 ∈ 𝐴 ↦ 𝐵) “ 𝐷) = ran (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐵)) |
| 3 | 2 | eleq2d 2815 | . 2 ⊢ (𝐶 ∈ 𝑉 → (𝐶 ∈ ((𝑥 ∈ 𝐴 ↦ 𝐵) “ 𝐷) ↔ 𝐶 ∈ ran (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐵))) |
| 4 | eqid 2730 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐵) = (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐵) | |
| 5 | 4 | elrnmpt 5930 | . 2 ⊢ (𝐶 ∈ 𝑉 → (𝐶 ∈ ran (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐵) ↔ ∃𝑥 ∈ (𝐴 ∩ 𝐷)𝐶 = 𝐵)) |
| 6 | 3, 5 | bitrd 279 | 1 ⊢ (𝐶 ∈ 𝑉 → (𝐶 ∈ ((𝑥 ∈ 𝐴 ↦ 𝐵) “ 𝐷) ↔ ∃𝑥 ∈ (𝐴 ∩ 𝐷)𝐶 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∃wrex 3055 ∩ cin 3921 ↦ cmpt 5196 ran crn 5647 “ cima 5649 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-br 5116 df-opab 5178 df-mpt 5197 df-xp 5652 df-rel 5653 df-cnv 5654 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 |
| This theorem is referenced by: liminfvalxr 45754 |
| Copyright terms: Public domain | W3C validator |