MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mstps Structured version   Visualization version   GIF version

Theorem mstps 24487
Description: A metric space is a topological space. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
mstps (𝑀 ∈ MetSp → 𝑀 ∈ TopSp)

Proof of Theorem mstps
StepHypRef Expression
1 msxms 24486 . 2 (𝑀 ∈ MetSp → 𝑀 ∈ ∞MetSp)
2 xmstps 24485 . 2 (𝑀 ∈ ∞MetSp → 𝑀 ∈ TopSp)
31, 2syl 17 1 (𝑀 ∈ MetSp → 𝑀 ∈ TopSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  TopSpctps 22960  ∞MetSpcxms 24349  MetSpcms 24350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-rab 3435  df-v 3481  df-dif 3967  df-un 3969  df-in 3971  df-ss 3981  df-nul 4341  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4914  df-br 5150  df-opab 5212  df-xp 5696  df-res 5702  df-iota 6519  df-fv 6574  df-xms 24352  df-ms 24353
This theorem is referenced by:  ngptps  24637  ngptgp  24671  cnfldtps  24820  cnmpt1ds  24886  cnmpt2ds  24887  rlmbn  25417  rrhcn  33973  sitgclbn  34338
  Copyright terms: Public domain W3C validator