Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mstps | Structured version Visualization version GIF version |
Description: A metric space is a topological space. (Contributed by Mario Carneiro, 26-Aug-2015.) |
Ref | Expression |
---|---|
mstps | ⊢ (𝑀 ∈ MetSp → 𝑀 ∈ TopSp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | msxms 23169 | . 2 ⊢ (𝑀 ∈ MetSp → 𝑀 ∈ ∞MetSp) | |
2 | xmstps 23168 | . 2 ⊢ (𝑀 ∈ ∞MetSp → 𝑀 ∈ TopSp) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝑀 ∈ MetSp → 𝑀 ∈ TopSp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2111 TopSpctps 21645 ∞MetSpcxms 23032 MetSpcms 23033 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-rab 3079 df-v 3411 df-un 3865 df-in 3867 df-ss 3877 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5037 df-opab 5099 df-xp 5534 df-res 5540 df-iota 6299 df-fv 6348 df-xms 23035 df-ms 23036 |
This theorem is referenced by: ngptps 23317 ngptgp 23351 cnfldtps 23492 cnmpt1ds 23556 cnmpt2ds 23557 rlmbn 24074 rrhcn 31478 sitgclbn 31841 |
Copyright terms: Public domain | W3C validator |