MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mstps Structured version   Visualization version   GIF version

Theorem mstps 24391
Description: A metric space is a topological space. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
mstps (𝑀 ∈ MetSp β†’ 𝑀 ∈ TopSp)

Proof of Theorem mstps
StepHypRef Expression
1 msxms 24390 . 2 (𝑀 ∈ MetSp β†’ 𝑀 ∈ ∞MetSp)
2 xmstps 24389 . 2 (𝑀 ∈ ∞MetSp β†’ 𝑀 ∈ TopSp)
31, 2syl 17 1 (𝑀 ∈ MetSp β†’ 𝑀 ∈ TopSp)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∈ wcel 2098  TopSpctps 22864  βˆžMetSpcxms 24253  MetSpcms 24254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-rab 3420  df-v 3465  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-xp 5683  df-res 5689  df-iota 6499  df-fv 6555  df-xms 24256  df-ms 24257
This theorem is referenced by:  ngptps  24541  ngptgp  24575  cnfldtps  24724  cnmpt1ds  24788  cnmpt2ds  24789  rlmbn  25319  rrhcn  33668  sitgclbn  34033
  Copyright terms: Public domain W3C validator