![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mstps | Structured version Visualization version GIF version |
Description: A metric space is a topological space. (Contributed by Mario Carneiro, 26-Aug-2015.) |
Ref | Expression |
---|---|
mstps | ⊢ (𝑀 ∈ MetSp → 𝑀 ∈ TopSp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | msxms 22761 | . 2 ⊢ (𝑀 ∈ MetSp → 𝑀 ∈ ∞MetSp) | |
2 | xmstps 22760 | . 2 ⊢ (𝑀 ∈ ∞MetSp → 𝑀 ∈ TopSp) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝑀 ∈ MetSp → 𝑀 ∈ TopSp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2050 TopSpctps 21238 ∞MetSpcxms 22624 MetSpcms 22625 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-ext 2744 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-rex 3088 df-rab 3091 df-v 3411 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-nul 4173 df-if 4345 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4707 df-br 4924 df-opab 4986 df-xp 5407 df-res 5413 df-iota 6146 df-fv 6190 df-xms 22627 df-ms 22628 |
This theorem is referenced by: ngptps 22908 ngptgp 22942 cnfldtps 23083 cnmpt1ds 23147 cnmpt2ds 23148 rlmbn 23661 rrhcn 30882 sitgclbn 31246 |
Copyright terms: Public domain | W3C validator |