| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mstps | Structured version Visualization version GIF version | ||
| Description: A metric space is a topological space. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| Ref | Expression |
|---|---|
| mstps | ⊢ (𝑀 ∈ MetSp → 𝑀 ∈ TopSp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | msxms 24424 | . 2 ⊢ (𝑀 ∈ MetSp → 𝑀 ∈ ∞MetSp) | |
| 2 | xmstps 24423 | . 2 ⊢ (𝑀 ∈ ∞MetSp → 𝑀 ∈ TopSp) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝑀 ∈ MetSp → 𝑀 ∈ TopSp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 TopSpctps 22901 ∞MetSpcxms 24287 MetSpcms 24288 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-xp 5673 df-res 5679 df-iota 6495 df-fv 6550 df-xms 24290 df-ms 24291 |
| This theorem is referenced by: ngptps 24574 ngptgp 24608 cnfldtps 24749 cnmpt1ds 24815 cnmpt2ds 24816 rlmbn 25346 rrhcn 33935 sitgclbn 34282 |
| Copyright terms: Public domain | W3C validator |