MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mstps Structured version   Visualization version   GIF version

Theorem mstps 24479
Description: A metric space is a topological space. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
mstps (𝑀 ∈ MetSp → 𝑀 ∈ TopSp)

Proof of Theorem mstps
StepHypRef Expression
1 msxms 24478 . 2 (𝑀 ∈ MetSp → 𝑀 ∈ ∞MetSp)
2 xmstps 24477 . 2 (𝑀 ∈ ∞MetSp → 𝑀 ∈ TopSp)
31, 2syl 17 1 (𝑀 ∈ MetSp → 𝑀 ∈ TopSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2103  TopSpctps 22952  ∞MetSpcxms 24341  MetSpcms 24342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2712  df-cleq 2726  df-clel 2813  df-rab 3439  df-v 3484  df-dif 3973  df-un 3975  df-in 3977  df-ss 3987  df-nul 4348  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5170  df-opab 5232  df-xp 5705  df-res 5711  df-iota 6524  df-fv 6580  df-xms 24344  df-ms 24345
This theorem is referenced by:  ngptps  24629  ngptgp  24663  cnfldtps  24812  cnmpt1ds  24876  cnmpt2ds  24877  rlmbn  25407  rrhcn  33935  sitgclbn  34300
  Copyright terms: Public domain W3C validator