MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ngptgp Structured version   Visualization version   GIF version

Theorem ngptgp 24531
Description: A normed abelian group is a topological group (with the topology induced by the metric induced by the norm). (Contributed by Mario Carneiro, 4-Oct-2015.)
Assertion
Ref Expression
ngptgp ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → 𝐺 ∈ TopGrp)

Proof of Theorem ngptgp
Dummy variables 𝑢 𝑟 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ngpgrp 24494 . . 3 (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp)
21adantr 480 . 2 ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → 𝐺 ∈ Grp)
3 ngpms 24495 . . . 4 (𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp)
43adantr 480 . . 3 ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → 𝐺 ∈ MetSp)
5 mstps 24350 . . 3 (𝐺 ∈ MetSp → 𝐺 ∈ TopSp)
64, 5syl 17 . 2 ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → 𝐺 ∈ TopSp)
7 eqid 2730 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
8 eqid 2730 . . . . . 6 (-g𝐺) = (-g𝐺)
97, 8grpsubf 18958 . . . . 5 (𝐺 ∈ Grp → (-g𝐺):((Base‘𝐺) × (Base‘𝐺))⟶(Base‘𝐺))
102, 9syl 17 . . . 4 ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → (-g𝐺):((Base‘𝐺) × (Base‘𝐺))⟶(Base‘𝐺))
11 rphalfcl 12987 . . . . . . 7 (𝑧 ∈ ℝ+ → (𝑧 / 2) ∈ ℝ+)
12 simplll 774 . . . . . . . . . . . . 13 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel))
1312, 4syl 17 . . . . . . . . . . . 12 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → 𝐺 ∈ MetSp)
14 simpllr 775 . . . . . . . . . . . . 13 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)))
1514simpld 494 . . . . . . . . . . . 12 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → 𝑥 ∈ (Base‘𝐺))
16 simprl 770 . . . . . . . . . . . 12 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → 𝑢 ∈ (Base‘𝐺))
17 eqid 2730 . . . . . . . . . . . . 13 (dist‘𝐺) = (dist‘𝐺)
187, 17mscl 24356 . . . . . . . . . . . 12 ((𝐺 ∈ MetSp ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺)) → (𝑥(dist‘𝐺)𝑢) ∈ ℝ)
1913, 15, 16, 18syl3anc 1373 . . . . . . . . . . 11 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (𝑥(dist‘𝐺)𝑢) ∈ ℝ)
2014simprd 495 . . . . . . . . . . . 12 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → 𝑦 ∈ (Base‘𝐺))
21 simprr 772 . . . . . . . . . . . 12 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → 𝑣 ∈ (Base‘𝐺))
227, 17mscl 24356 . . . . . . . . . . . 12 ((𝐺 ∈ MetSp ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺)) → (𝑦(dist‘𝐺)𝑣) ∈ ℝ)
2313, 20, 21, 22syl3anc 1373 . . . . . . . . . . 11 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (𝑦(dist‘𝐺)𝑣) ∈ ℝ)
24 rpre 12967 . . . . . . . . . . . 12 (𝑧 ∈ ℝ+𝑧 ∈ ℝ)
2524ad2antlr 727 . . . . . . . . . . 11 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → 𝑧 ∈ ℝ)
26 lt2halves 12424 . . . . . . . . . . 11 (((𝑥(dist‘𝐺)𝑢) ∈ ℝ ∧ (𝑦(dist‘𝐺)𝑣) ∈ ℝ ∧ 𝑧 ∈ ℝ) → (((𝑥(dist‘𝐺)𝑢) < (𝑧 / 2) ∧ (𝑦(dist‘𝐺)𝑣) < (𝑧 / 2)) → ((𝑥(dist‘𝐺)𝑢) + (𝑦(dist‘𝐺)𝑣)) < 𝑧))
2719, 23, 25, 26syl3anc 1373 . . . . . . . . . 10 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (((𝑥(dist‘𝐺)𝑢) < (𝑧 / 2) ∧ (𝑦(dist‘𝐺)𝑣) < (𝑧 / 2)) → ((𝑥(dist‘𝐺)𝑢) + (𝑦(dist‘𝐺)𝑣)) < 𝑧))
2812, 2syl 17 . . . . . . . . . . . . . 14 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → 𝐺 ∈ Grp)
297, 8grpsubcl 18959 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(-g𝐺)𝑦) ∈ (Base‘𝐺))
3028, 15, 20, 29syl3anc 1373 . . . . . . . . . . . . 13 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (𝑥(-g𝐺)𝑦) ∈ (Base‘𝐺))
317, 8grpsubcl 18959 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ 𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺)) → (𝑢(-g𝐺)𝑣) ∈ (Base‘𝐺))
3228, 16, 21, 31syl3anc 1373 . . . . . . . . . . . . 13 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (𝑢(-g𝐺)𝑣) ∈ (Base‘𝐺))
337, 8grpsubcl 18959 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ 𝑢 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑢(-g𝐺)𝑦) ∈ (Base‘𝐺))
3428, 16, 20, 33syl3anc 1373 . . . . . . . . . . . . 13 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (𝑢(-g𝐺)𝑦) ∈ (Base‘𝐺))
357, 17mstri 24364 . . . . . . . . . . . . 13 ((𝐺 ∈ MetSp ∧ ((𝑥(-g𝐺)𝑦) ∈ (Base‘𝐺) ∧ (𝑢(-g𝐺)𝑣) ∈ (Base‘𝐺) ∧ (𝑢(-g𝐺)𝑦) ∈ (Base‘𝐺))) → ((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) ≤ (((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑦)) + ((𝑢(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣))))
3613, 30, 32, 34, 35syl13anc 1374 . . . . . . . . . . . 12 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → ((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) ≤ (((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑦)) + ((𝑢(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣))))
3712simpld 494 . . . . . . . . . . . . . 14 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → 𝐺 ∈ NrmGrp)
387, 8, 17ngpsubcan 24509 . . . . . . . . . . . . . 14 ((𝐺 ∈ NrmGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → ((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑦)) = (𝑥(dist‘𝐺)𝑢))
3937, 15, 16, 20, 38syl13anc 1374 . . . . . . . . . . . . 13 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → ((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑦)) = (𝑥(dist‘𝐺)𝑢))
40 eqid 2730 . . . . . . . . . . . . . . . . 17 (+g𝐺) = (+g𝐺)
41 eqid 2730 . . . . . . . . . . . . . . . . 17 (invg𝐺) = (invg𝐺)
427, 40, 41, 8grpsubval 18924 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑢(-g𝐺)𝑦) = (𝑢(+g𝐺)((invg𝐺)‘𝑦)))
4316, 20, 42syl2anc 584 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (𝑢(-g𝐺)𝑦) = (𝑢(+g𝐺)((invg𝐺)‘𝑦)))
447, 40, 41, 8grpsubval 18924 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺)) → (𝑢(-g𝐺)𝑣) = (𝑢(+g𝐺)((invg𝐺)‘𝑣)))
4544adantl 481 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (𝑢(-g𝐺)𝑣) = (𝑢(+g𝐺)((invg𝐺)‘𝑣)))
4643, 45oveq12d 7408 . . . . . . . . . . . . . 14 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → ((𝑢(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) = ((𝑢(+g𝐺)((invg𝐺)‘𝑦))(dist‘𝐺)(𝑢(+g𝐺)((invg𝐺)‘𝑣))))
477, 41grpinvcl 18926 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ Grp ∧ 𝑦 ∈ (Base‘𝐺)) → ((invg𝐺)‘𝑦) ∈ (Base‘𝐺))
4828, 20, 47syl2anc 584 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → ((invg𝐺)‘𝑦) ∈ (Base‘𝐺))
497, 41grpinvcl 18926 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ Grp ∧ 𝑣 ∈ (Base‘𝐺)) → ((invg𝐺)‘𝑣) ∈ (Base‘𝐺))
5028, 21, 49syl2anc 584 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → ((invg𝐺)‘𝑣) ∈ (Base‘𝐺))
517, 40, 17ngplcan 24506 . . . . . . . . . . . . . . 15 (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (((invg𝐺)‘𝑦) ∈ (Base‘𝐺) ∧ ((invg𝐺)‘𝑣) ∈ (Base‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺))) → ((𝑢(+g𝐺)((invg𝐺)‘𝑦))(dist‘𝐺)(𝑢(+g𝐺)((invg𝐺)‘𝑣))) = (((invg𝐺)‘𝑦)(dist‘𝐺)((invg𝐺)‘𝑣)))
5212, 48, 50, 16, 51syl13anc 1374 . . . . . . . . . . . . . 14 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → ((𝑢(+g𝐺)((invg𝐺)‘𝑦))(dist‘𝐺)(𝑢(+g𝐺)((invg𝐺)‘𝑣))) = (((invg𝐺)‘𝑦)(dist‘𝐺)((invg𝐺)‘𝑣)))
537, 41, 17ngpinvds 24508 . . . . . . . . . . . . . . 15 (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑦 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (((invg𝐺)‘𝑦)(dist‘𝐺)((invg𝐺)‘𝑣)) = (𝑦(dist‘𝐺)𝑣))
5412, 20, 21, 53syl12anc 836 . . . . . . . . . . . . . 14 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (((invg𝐺)‘𝑦)(dist‘𝐺)((invg𝐺)‘𝑣)) = (𝑦(dist‘𝐺)𝑣))
5546, 52, 543eqtrd 2769 . . . . . . . . . . . . 13 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → ((𝑢(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) = (𝑦(dist‘𝐺)𝑣))
5639, 55oveq12d 7408 . . . . . . . . . . . 12 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑦)) + ((𝑢(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣))) = ((𝑥(dist‘𝐺)𝑢) + (𝑦(dist‘𝐺)𝑣)))
5736, 56breqtrd 5136 . . . . . . . . . . 11 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → ((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) ≤ ((𝑥(dist‘𝐺)𝑢) + (𝑦(dist‘𝐺)𝑣)))
587, 17mscl 24356 . . . . . . . . . . . . 13 ((𝐺 ∈ MetSp ∧ (𝑥(-g𝐺)𝑦) ∈ (Base‘𝐺) ∧ (𝑢(-g𝐺)𝑣) ∈ (Base‘𝐺)) → ((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) ∈ ℝ)
5913, 30, 32, 58syl3anc 1373 . . . . . . . . . . . 12 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → ((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) ∈ ℝ)
6019, 23readdcld 11210 . . . . . . . . . . . 12 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → ((𝑥(dist‘𝐺)𝑢) + (𝑦(dist‘𝐺)𝑣)) ∈ ℝ)
61 lelttr 11271 . . . . . . . . . . . 12 ((((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) ∈ ℝ ∧ ((𝑥(dist‘𝐺)𝑢) + (𝑦(dist‘𝐺)𝑣)) ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) ≤ ((𝑥(dist‘𝐺)𝑢) + (𝑦(dist‘𝐺)𝑣)) ∧ ((𝑥(dist‘𝐺)𝑢) + (𝑦(dist‘𝐺)𝑣)) < 𝑧) → ((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) < 𝑧))
6259, 60, 25, 61syl3anc 1373 . . . . . . . . . . 11 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → ((((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) ≤ ((𝑥(dist‘𝐺)𝑢) + (𝑦(dist‘𝐺)𝑣)) ∧ ((𝑥(dist‘𝐺)𝑢) + (𝑦(dist‘𝐺)𝑣)) < 𝑧) → ((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) < 𝑧))
6357, 62mpand 695 . . . . . . . . . 10 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (((𝑥(dist‘𝐺)𝑢) + (𝑦(dist‘𝐺)𝑣)) < 𝑧 → ((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) < 𝑧))
6427, 63syld 47 . . . . . . . . 9 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (((𝑥(dist‘𝐺)𝑢) < (𝑧 / 2) ∧ (𝑦(dist‘𝐺)𝑣) < (𝑧 / 2)) → ((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) < 𝑧))
6515, 16ovresd 7559 . . . . . . . . . . 11 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) = (𝑥(dist‘𝐺)𝑢))
6665breq1d 5120 . . . . . . . . . 10 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → ((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < (𝑧 / 2) ↔ (𝑥(dist‘𝐺)𝑢) < (𝑧 / 2)))
6720, 21ovresd 7559 . . . . . . . . . . 11 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) = (𝑦(dist‘𝐺)𝑣))
6867breq1d 5120 . . . . . . . . . 10 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → ((𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < (𝑧 / 2) ↔ (𝑦(dist‘𝐺)𝑣) < (𝑧 / 2)))
6966, 68anbi12d 632 . . . . . . . . 9 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < (𝑧 / 2) ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < (𝑧 / 2)) ↔ ((𝑥(dist‘𝐺)𝑢) < (𝑧 / 2) ∧ (𝑦(dist‘𝐺)𝑣) < (𝑧 / 2))))
7030, 32ovresd 7559 . . . . . . . . . 10 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → ((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) = ((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)))
7170breq1d 5120 . . . . . . . . 9 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) < 𝑧 ↔ ((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) < 𝑧))
7264, 69, 713imtr4d 294 . . . . . . . 8 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < (𝑧 / 2) ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < (𝑧 / 2)) → ((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) < 𝑧))
7372ralrimivva 3181 . . . . . . 7 ((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) → ∀𝑢 ∈ (Base‘𝐺)∀𝑣 ∈ (Base‘𝐺)(((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < (𝑧 / 2) ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < (𝑧 / 2)) → ((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) < 𝑧))
74 breq2 5114 . . . . . . . . . . 11 (𝑟 = (𝑧 / 2) → ((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < 𝑟 ↔ (𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < (𝑧 / 2)))
75 breq2 5114 . . . . . . . . . . 11 (𝑟 = (𝑧 / 2) → ((𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < 𝑟 ↔ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < (𝑧 / 2)))
7674, 75anbi12d 632 . . . . . . . . . 10 (𝑟 = (𝑧 / 2) → (((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < 𝑟 ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < 𝑟) ↔ ((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < (𝑧 / 2) ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < (𝑧 / 2))))
7776imbi1d 341 . . . . . . . . 9 (𝑟 = (𝑧 / 2) → ((((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < 𝑟 ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < 𝑟) → ((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) < 𝑧) ↔ (((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < (𝑧 / 2) ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < (𝑧 / 2)) → ((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) < 𝑧)))
78772ralbidv 3202 . . . . . . . 8 (𝑟 = (𝑧 / 2) → (∀𝑢 ∈ (Base‘𝐺)∀𝑣 ∈ (Base‘𝐺)(((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < 𝑟 ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < 𝑟) → ((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) < 𝑧) ↔ ∀𝑢 ∈ (Base‘𝐺)∀𝑣 ∈ (Base‘𝐺)(((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < (𝑧 / 2) ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < (𝑧 / 2)) → ((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) < 𝑧)))
7978rspcev 3591 . . . . . . 7 (((𝑧 / 2) ∈ ℝ+ ∧ ∀𝑢 ∈ (Base‘𝐺)∀𝑣 ∈ (Base‘𝐺)(((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < (𝑧 / 2) ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < (𝑧 / 2)) → ((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) < 𝑧)) → ∃𝑟 ∈ ℝ+𝑢 ∈ (Base‘𝐺)∀𝑣 ∈ (Base‘𝐺)(((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < 𝑟 ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < 𝑟) → ((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) < 𝑧))
8011, 73, 79syl2an2 686 . . . . . 6 ((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) → ∃𝑟 ∈ ℝ+𝑢 ∈ (Base‘𝐺)∀𝑣 ∈ (Base‘𝐺)(((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < 𝑟 ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < 𝑟) → ((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) < 𝑧))
8180ralrimiva 3126 . . . . 5 (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → ∀𝑧 ∈ ℝ+𝑟 ∈ ℝ+𝑢 ∈ (Base‘𝐺)∀𝑣 ∈ (Base‘𝐺)(((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < 𝑟 ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < 𝑟) → ((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) < 𝑧))
8281ralrimivva 3181 . . . 4 ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ ℝ+𝑟 ∈ ℝ+𝑢 ∈ (Base‘𝐺)∀𝑣 ∈ (Base‘𝐺)(((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < 𝑟 ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < 𝑟) → ((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) < 𝑧))
83 msxms 24349 . . . . . 6 (𝐺 ∈ MetSp → 𝐺 ∈ ∞MetSp)
84 eqid 2730 . . . . . . 7 ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) = ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))
857, 84xmsxmet 24351 . . . . . 6 (𝐺 ∈ ∞MetSp → ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) ∈ (∞Met‘(Base‘𝐺)))
864, 83, 853syl 18 . . . . 5 ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) ∈ (∞Met‘(Base‘𝐺)))
87 eqid 2730 . . . . . 6 (MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))) = (MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))))
8887, 87, 87txmetcn 24443 . . . . 5 ((((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) ∈ (∞Met‘(Base‘𝐺)) ∧ ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) ∈ (∞Met‘(Base‘𝐺)) ∧ ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) ∈ (∞Met‘(Base‘𝐺))) → ((-g𝐺) ∈ (((MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))) ×t (MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))))) Cn (MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))))) ↔ ((-g𝐺):((Base‘𝐺) × (Base‘𝐺))⟶(Base‘𝐺) ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ ℝ+𝑟 ∈ ℝ+𝑢 ∈ (Base‘𝐺)∀𝑣 ∈ (Base‘𝐺)(((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < 𝑟 ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < 𝑟) → ((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) < 𝑧))))
8986, 86, 86, 88syl3anc 1373 . . . 4 ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → ((-g𝐺) ∈ (((MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))) ×t (MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))))) Cn (MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))))) ↔ ((-g𝐺):((Base‘𝐺) × (Base‘𝐺))⟶(Base‘𝐺) ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ ℝ+𝑟 ∈ ℝ+𝑢 ∈ (Base‘𝐺)∀𝑣 ∈ (Base‘𝐺)(((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < 𝑟 ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < 𝑟) → ((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) < 𝑧))))
9010, 82, 89mpbir2and 713 . . 3 ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → (-g𝐺) ∈ (((MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))) ×t (MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))))) Cn (MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))))))
91 eqid 2730 . . . . . . 7 (TopOpen‘𝐺) = (TopOpen‘𝐺)
9291, 7, 84mstopn 24347 . . . . . 6 (𝐺 ∈ MetSp → (TopOpen‘𝐺) = (MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))))
934, 92syl 17 . . . . 5 ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → (TopOpen‘𝐺) = (MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))))
9493, 93oveq12d 7408 . . . 4 ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → ((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) = ((MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))) ×t (MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))))))
9594, 93oveq12d 7408 . . 3 ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺)) = (((MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))) ×t (MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))))) Cn (MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))))))
9690, 95eleqtrrd 2832 . 2 ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → (-g𝐺) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺)))
9791, 8istgp2 23985 . 2 (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ (-g𝐺) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺))))
982, 6, 96, 97syl3anbrc 1344 1 ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → 𝐺 ∈ TopGrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054   class class class wbr 5110   × cxp 5639  cres 5643  wf 6510  cfv 6514  (class class class)co 7390  cr 11074   + caddc 11078   < clt 11215  cle 11216   / cdiv 11842  2c2 12248  +crp 12958  Basecbs 17186  +gcplusg 17227  distcds 17236  TopOpenctopn 17391  Grpcgrp 18872  invgcminusg 18873  -gcsg 18874  Abelcabl 19718  ∞Metcxmet 21256  MetOpencmopn 21261  TopSpctps 22826   Cn ccn 23118   ×t ctx 23454  TopGrpctgp 23965  ∞MetSpcxms 24212  MetSpcms 24213  NrmGrpcngp 24472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-icc 13320  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-plusf 18573  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-abl 19720  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cn 23121  df-cnp 23122  df-tx 23456  df-hmeo 23649  df-tmd 23966  df-tgp 23967  df-xms 24215  df-ms 24216  df-tms 24217  df-nm 24477  df-ngp 24478
This theorem is referenced by:  nrgtgp  24567  nlmtlm  24589
  Copyright terms: Public domain W3C validator