MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ngptgp Structured version   Visualization version   GIF version

Theorem ngptgp 24522
Description: A normed abelian group is a topological group (with the topology induced by the metric induced by the norm). (Contributed by Mario Carneiro, 4-Oct-2015.)
Assertion
Ref Expression
ngptgp ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → 𝐺 ∈ TopGrp)

Proof of Theorem ngptgp
Dummy variables 𝑢 𝑟 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ngpgrp 24485 . . 3 (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp)
21adantr 480 . 2 ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → 𝐺 ∈ Grp)
3 ngpms 24486 . . . 4 (𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp)
43adantr 480 . . 3 ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → 𝐺 ∈ MetSp)
5 mstps 24341 . . 3 (𝐺 ∈ MetSp → 𝐺 ∈ TopSp)
64, 5syl 17 . 2 ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → 𝐺 ∈ TopSp)
7 eqid 2729 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
8 eqid 2729 . . . . . 6 (-g𝐺) = (-g𝐺)
97, 8grpsubf 18898 . . . . 5 (𝐺 ∈ Grp → (-g𝐺):((Base‘𝐺) × (Base‘𝐺))⟶(Base‘𝐺))
102, 9syl 17 . . . 4 ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → (-g𝐺):((Base‘𝐺) × (Base‘𝐺))⟶(Base‘𝐺))
11 rphalfcl 12922 . . . . . . 7 (𝑧 ∈ ℝ+ → (𝑧 / 2) ∈ ℝ+)
12 simplll 774 . . . . . . . . . . . . 13 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel))
1312, 4syl 17 . . . . . . . . . . . 12 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → 𝐺 ∈ MetSp)
14 simpllr 775 . . . . . . . . . . . . 13 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)))
1514simpld 494 . . . . . . . . . . . 12 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → 𝑥 ∈ (Base‘𝐺))
16 simprl 770 . . . . . . . . . . . 12 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → 𝑢 ∈ (Base‘𝐺))
17 eqid 2729 . . . . . . . . . . . . 13 (dist‘𝐺) = (dist‘𝐺)
187, 17mscl 24347 . . . . . . . . . . . 12 ((𝐺 ∈ MetSp ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺)) → (𝑥(dist‘𝐺)𝑢) ∈ ℝ)
1913, 15, 16, 18syl3anc 1373 . . . . . . . . . . 11 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (𝑥(dist‘𝐺)𝑢) ∈ ℝ)
2014simprd 495 . . . . . . . . . . . 12 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → 𝑦 ∈ (Base‘𝐺))
21 simprr 772 . . . . . . . . . . . 12 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → 𝑣 ∈ (Base‘𝐺))
227, 17mscl 24347 . . . . . . . . . . . 12 ((𝐺 ∈ MetSp ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺)) → (𝑦(dist‘𝐺)𝑣) ∈ ℝ)
2313, 20, 21, 22syl3anc 1373 . . . . . . . . . . 11 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (𝑦(dist‘𝐺)𝑣) ∈ ℝ)
24 rpre 12902 . . . . . . . . . . . 12 (𝑧 ∈ ℝ+𝑧 ∈ ℝ)
2524ad2antlr 727 . . . . . . . . . . 11 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → 𝑧 ∈ ℝ)
26 lt2halves 12359 . . . . . . . . . . 11 (((𝑥(dist‘𝐺)𝑢) ∈ ℝ ∧ (𝑦(dist‘𝐺)𝑣) ∈ ℝ ∧ 𝑧 ∈ ℝ) → (((𝑥(dist‘𝐺)𝑢) < (𝑧 / 2) ∧ (𝑦(dist‘𝐺)𝑣) < (𝑧 / 2)) → ((𝑥(dist‘𝐺)𝑢) + (𝑦(dist‘𝐺)𝑣)) < 𝑧))
2719, 23, 25, 26syl3anc 1373 . . . . . . . . . 10 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (((𝑥(dist‘𝐺)𝑢) < (𝑧 / 2) ∧ (𝑦(dist‘𝐺)𝑣) < (𝑧 / 2)) → ((𝑥(dist‘𝐺)𝑢) + (𝑦(dist‘𝐺)𝑣)) < 𝑧))
2812, 2syl 17 . . . . . . . . . . . . . 14 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → 𝐺 ∈ Grp)
297, 8grpsubcl 18899 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(-g𝐺)𝑦) ∈ (Base‘𝐺))
3028, 15, 20, 29syl3anc 1373 . . . . . . . . . . . . 13 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (𝑥(-g𝐺)𝑦) ∈ (Base‘𝐺))
317, 8grpsubcl 18899 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ 𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺)) → (𝑢(-g𝐺)𝑣) ∈ (Base‘𝐺))
3228, 16, 21, 31syl3anc 1373 . . . . . . . . . . . . 13 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (𝑢(-g𝐺)𝑣) ∈ (Base‘𝐺))
337, 8grpsubcl 18899 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ 𝑢 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑢(-g𝐺)𝑦) ∈ (Base‘𝐺))
3428, 16, 20, 33syl3anc 1373 . . . . . . . . . . . . 13 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (𝑢(-g𝐺)𝑦) ∈ (Base‘𝐺))
357, 17mstri 24355 . . . . . . . . . . . . 13 ((𝐺 ∈ MetSp ∧ ((𝑥(-g𝐺)𝑦) ∈ (Base‘𝐺) ∧ (𝑢(-g𝐺)𝑣) ∈ (Base‘𝐺) ∧ (𝑢(-g𝐺)𝑦) ∈ (Base‘𝐺))) → ((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) ≤ (((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑦)) + ((𝑢(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣))))
3613, 30, 32, 34, 35syl13anc 1374 . . . . . . . . . . . 12 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → ((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) ≤ (((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑦)) + ((𝑢(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣))))
3712simpld 494 . . . . . . . . . . . . . 14 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → 𝐺 ∈ NrmGrp)
387, 8, 17ngpsubcan 24500 . . . . . . . . . . . . . 14 ((𝐺 ∈ NrmGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → ((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑦)) = (𝑥(dist‘𝐺)𝑢))
3937, 15, 16, 20, 38syl13anc 1374 . . . . . . . . . . . . 13 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → ((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑦)) = (𝑥(dist‘𝐺)𝑢))
40 eqid 2729 . . . . . . . . . . . . . . . . 17 (+g𝐺) = (+g𝐺)
41 eqid 2729 . . . . . . . . . . . . . . . . 17 (invg𝐺) = (invg𝐺)
427, 40, 41, 8grpsubval 18864 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑢(-g𝐺)𝑦) = (𝑢(+g𝐺)((invg𝐺)‘𝑦)))
4316, 20, 42syl2anc 584 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (𝑢(-g𝐺)𝑦) = (𝑢(+g𝐺)((invg𝐺)‘𝑦)))
447, 40, 41, 8grpsubval 18864 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺)) → (𝑢(-g𝐺)𝑣) = (𝑢(+g𝐺)((invg𝐺)‘𝑣)))
4544adantl 481 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (𝑢(-g𝐺)𝑣) = (𝑢(+g𝐺)((invg𝐺)‘𝑣)))
4643, 45oveq12d 7367 . . . . . . . . . . . . . 14 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → ((𝑢(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) = ((𝑢(+g𝐺)((invg𝐺)‘𝑦))(dist‘𝐺)(𝑢(+g𝐺)((invg𝐺)‘𝑣))))
477, 41grpinvcl 18866 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ Grp ∧ 𝑦 ∈ (Base‘𝐺)) → ((invg𝐺)‘𝑦) ∈ (Base‘𝐺))
4828, 20, 47syl2anc 584 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → ((invg𝐺)‘𝑦) ∈ (Base‘𝐺))
497, 41grpinvcl 18866 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ Grp ∧ 𝑣 ∈ (Base‘𝐺)) → ((invg𝐺)‘𝑣) ∈ (Base‘𝐺))
5028, 21, 49syl2anc 584 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → ((invg𝐺)‘𝑣) ∈ (Base‘𝐺))
517, 40, 17ngplcan 24497 . . . . . . . . . . . . . . 15 (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (((invg𝐺)‘𝑦) ∈ (Base‘𝐺) ∧ ((invg𝐺)‘𝑣) ∈ (Base‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺))) → ((𝑢(+g𝐺)((invg𝐺)‘𝑦))(dist‘𝐺)(𝑢(+g𝐺)((invg𝐺)‘𝑣))) = (((invg𝐺)‘𝑦)(dist‘𝐺)((invg𝐺)‘𝑣)))
5212, 48, 50, 16, 51syl13anc 1374 . . . . . . . . . . . . . 14 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → ((𝑢(+g𝐺)((invg𝐺)‘𝑦))(dist‘𝐺)(𝑢(+g𝐺)((invg𝐺)‘𝑣))) = (((invg𝐺)‘𝑦)(dist‘𝐺)((invg𝐺)‘𝑣)))
537, 41, 17ngpinvds 24499 . . . . . . . . . . . . . . 15 (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑦 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (((invg𝐺)‘𝑦)(dist‘𝐺)((invg𝐺)‘𝑣)) = (𝑦(dist‘𝐺)𝑣))
5412, 20, 21, 53syl12anc 836 . . . . . . . . . . . . . 14 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (((invg𝐺)‘𝑦)(dist‘𝐺)((invg𝐺)‘𝑣)) = (𝑦(dist‘𝐺)𝑣))
5546, 52, 543eqtrd 2768 . . . . . . . . . . . . 13 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → ((𝑢(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) = (𝑦(dist‘𝐺)𝑣))
5639, 55oveq12d 7367 . . . . . . . . . . . 12 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑦)) + ((𝑢(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣))) = ((𝑥(dist‘𝐺)𝑢) + (𝑦(dist‘𝐺)𝑣)))
5736, 56breqtrd 5118 . . . . . . . . . . 11 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → ((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) ≤ ((𝑥(dist‘𝐺)𝑢) + (𝑦(dist‘𝐺)𝑣)))
587, 17mscl 24347 . . . . . . . . . . . . 13 ((𝐺 ∈ MetSp ∧ (𝑥(-g𝐺)𝑦) ∈ (Base‘𝐺) ∧ (𝑢(-g𝐺)𝑣) ∈ (Base‘𝐺)) → ((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) ∈ ℝ)
5913, 30, 32, 58syl3anc 1373 . . . . . . . . . . . 12 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → ((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) ∈ ℝ)
6019, 23readdcld 11144 . . . . . . . . . . . 12 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → ((𝑥(dist‘𝐺)𝑢) + (𝑦(dist‘𝐺)𝑣)) ∈ ℝ)
61 lelttr 11206 . . . . . . . . . . . 12 ((((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) ∈ ℝ ∧ ((𝑥(dist‘𝐺)𝑢) + (𝑦(dist‘𝐺)𝑣)) ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) ≤ ((𝑥(dist‘𝐺)𝑢) + (𝑦(dist‘𝐺)𝑣)) ∧ ((𝑥(dist‘𝐺)𝑢) + (𝑦(dist‘𝐺)𝑣)) < 𝑧) → ((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) < 𝑧))
6259, 60, 25, 61syl3anc 1373 . . . . . . . . . . 11 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → ((((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) ≤ ((𝑥(dist‘𝐺)𝑢) + (𝑦(dist‘𝐺)𝑣)) ∧ ((𝑥(dist‘𝐺)𝑢) + (𝑦(dist‘𝐺)𝑣)) < 𝑧) → ((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) < 𝑧))
6357, 62mpand 695 . . . . . . . . . 10 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (((𝑥(dist‘𝐺)𝑢) + (𝑦(dist‘𝐺)𝑣)) < 𝑧 → ((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) < 𝑧))
6427, 63syld 47 . . . . . . . . 9 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (((𝑥(dist‘𝐺)𝑢) < (𝑧 / 2) ∧ (𝑦(dist‘𝐺)𝑣) < (𝑧 / 2)) → ((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) < 𝑧))
6515, 16ovresd 7516 . . . . . . . . . . 11 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) = (𝑥(dist‘𝐺)𝑢))
6665breq1d 5102 . . . . . . . . . 10 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → ((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < (𝑧 / 2) ↔ (𝑥(dist‘𝐺)𝑢) < (𝑧 / 2)))
6720, 21ovresd 7516 . . . . . . . . . . 11 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) = (𝑦(dist‘𝐺)𝑣))
6867breq1d 5102 . . . . . . . . . 10 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → ((𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < (𝑧 / 2) ↔ (𝑦(dist‘𝐺)𝑣) < (𝑧 / 2)))
6966, 68anbi12d 632 . . . . . . . . 9 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < (𝑧 / 2) ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < (𝑧 / 2)) ↔ ((𝑥(dist‘𝐺)𝑢) < (𝑧 / 2) ∧ (𝑦(dist‘𝐺)𝑣) < (𝑧 / 2))))
7030, 32ovresd 7516 . . . . . . . . . 10 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → ((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) = ((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)))
7170breq1d 5102 . . . . . . . . 9 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) < 𝑧 ↔ ((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) < 𝑧))
7264, 69, 713imtr4d 294 . . . . . . . 8 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < (𝑧 / 2) ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < (𝑧 / 2)) → ((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) < 𝑧))
7372ralrimivva 3172 . . . . . . 7 ((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) → ∀𝑢 ∈ (Base‘𝐺)∀𝑣 ∈ (Base‘𝐺)(((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < (𝑧 / 2) ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < (𝑧 / 2)) → ((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) < 𝑧))
74 breq2 5096 . . . . . . . . . . 11 (𝑟 = (𝑧 / 2) → ((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < 𝑟 ↔ (𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < (𝑧 / 2)))
75 breq2 5096 . . . . . . . . . . 11 (𝑟 = (𝑧 / 2) → ((𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < 𝑟 ↔ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < (𝑧 / 2)))
7674, 75anbi12d 632 . . . . . . . . . 10 (𝑟 = (𝑧 / 2) → (((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < 𝑟 ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < 𝑟) ↔ ((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < (𝑧 / 2) ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < (𝑧 / 2))))
7776imbi1d 341 . . . . . . . . 9 (𝑟 = (𝑧 / 2) → ((((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < 𝑟 ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < 𝑟) → ((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) < 𝑧) ↔ (((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < (𝑧 / 2) ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < (𝑧 / 2)) → ((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) < 𝑧)))
78772ralbidv 3193 . . . . . . . 8 (𝑟 = (𝑧 / 2) → (∀𝑢 ∈ (Base‘𝐺)∀𝑣 ∈ (Base‘𝐺)(((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < 𝑟 ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < 𝑟) → ((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) < 𝑧) ↔ ∀𝑢 ∈ (Base‘𝐺)∀𝑣 ∈ (Base‘𝐺)(((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < (𝑧 / 2) ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < (𝑧 / 2)) → ((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) < 𝑧)))
7978rspcev 3577 . . . . . . 7 (((𝑧 / 2) ∈ ℝ+ ∧ ∀𝑢 ∈ (Base‘𝐺)∀𝑣 ∈ (Base‘𝐺)(((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < (𝑧 / 2) ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < (𝑧 / 2)) → ((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) < 𝑧)) → ∃𝑟 ∈ ℝ+𝑢 ∈ (Base‘𝐺)∀𝑣 ∈ (Base‘𝐺)(((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < 𝑟 ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < 𝑟) → ((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) < 𝑧))
8011, 73, 79syl2an2 686 . . . . . 6 ((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) → ∃𝑟 ∈ ℝ+𝑢 ∈ (Base‘𝐺)∀𝑣 ∈ (Base‘𝐺)(((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < 𝑟 ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < 𝑟) → ((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) < 𝑧))
8180ralrimiva 3121 . . . . 5 (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → ∀𝑧 ∈ ℝ+𝑟 ∈ ℝ+𝑢 ∈ (Base‘𝐺)∀𝑣 ∈ (Base‘𝐺)(((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < 𝑟 ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < 𝑟) → ((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) < 𝑧))
8281ralrimivva 3172 . . . 4 ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ ℝ+𝑟 ∈ ℝ+𝑢 ∈ (Base‘𝐺)∀𝑣 ∈ (Base‘𝐺)(((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < 𝑟 ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < 𝑟) → ((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) < 𝑧))
83 msxms 24340 . . . . . 6 (𝐺 ∈ MetSp → 𝐺 ∈ ∞MetSp)
84 eqid 2729 . . . . . . 7 ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) = ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))
857, 84xmsxmet 24342 . . . . . 6 (𝐺 ∈ ∞MetSp → ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) ∈ (∞Met‘(Base‘𝐺)))
864, 83, 853syl 18 . . . . 5 ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) ∈ (∞Met‘(Base‘𝐺)))
87 eqid 2729 . . . . . 6 (MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))) = (MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))))
8887, 87, 87txmetcn 24434 . . . . 5 ((((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) ∈ (∞Met‘(Base‘𝐺)) ∧ ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) ∈ (∞Met‘(Base‘𝐺)) ∧ ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) ∈ (∞Met‘(Base‘𝐺))) → ((-g𝐺) ∈ (((MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))) ×t (MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))))) Cn (MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))))) ↔ ((-g𝐺):((Base‘𝐺) × (Base‘𝐺))⟶(Base‘𝐺) ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ ℝ+𝑟 ∈ ℝ+𝑢 ∈ (Base‘𝐺)∀𝑣 ∈ (Base‘𝐺)(((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < 𝑟 ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < 𝑟) → ((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) < 𝑧))))
8986, 86, 86, 88syl3anc 1373 . . . 4 ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → ((-g𝐺) ∈ (((MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))) ×t (MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))))) Cn (MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))))) ↔ ((-g𝐺):((Base‘𝐺) × (Base‘𝐺))⟶(Base‘𝐺) ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ ℝ+𝑟 ∈ ℝ+𝑢 ∈ (Base‘𝐺)∀𝑣 ∈ (Base‘𝐺)(((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < 𝑟 ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < 𝑟) → ((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) < 𝑧))))
9010, 82, 89mpbir2and 713 . . 3 ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → (-g𝐺) ∈ (((MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))) ×t (MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))))) Cn (MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))))))
91 eqid 2729 . . . . . . 7 (TopOpen‘𝐺) = (TopOpen‘𝐺)
9291, 7, 84mstopn 24338 . . . . . 6 (𝐺 ∈ MetSp → (TopOpen‘𝐺) = (MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))))
934, 92syl 17 . . . . 5 ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → (TopOpen‘𝐺) = (MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))))
9493, 93oveq12d 7367 . . . 4 ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → ((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) = ((MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))) ×t (MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))))))
9594, 93oveq12d 7367 . . 3 ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺)) = (((MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))) ×t (MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))))) Cn (MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))))))
9690, 95eleqtrrd 2831 . 2 ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → (-g𝐺) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺)))
9791, 8istgp2 23976 . 2 (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ (-g𝐺) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺))))
982, 6, 96, 97syl3anbrc 1344 1 ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → 𝐺 ∈ TopGrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053   class class class wbr 5092   × cxp 5617  cres 5621  wf 6478  cfv 6482  (class class class)co 7349  cr 11008   + caddc 11012   < clt 11149  cle 11150   / cdiv 11777  2c2 12183  +crp 12893  Basecbs 17120  +gcplusg 17161  distcds 17170  TopOpenctopn 17325  Grpcgrp 18812  invgcminusg 18813  -gcsg 18814  Abelcabl 19660  ∞Metcxmet 21246  MetOpencmopn 21251  TopSpctps 22817   Cn ccn 23109   ×t ctx 23445  TopGrpctgp 23956  ∞MetSpcxms 24203  MetSpcms 24204  NrmGrpcngp 24463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-icc 13255  df-fz 13411  df-fzo 13558  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-plusf 18513  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-abl 19662  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cn 23112  df-cnp 23113  df-tx 23447  df-hmeo 23640  df-tmd 23957  df-tgp 23958  df-xms 24206  df-ms 24207  df-tms 24208  df-nm 24468  df-ngp 24469
This theorem is referenced by:  nrgtgp  24558  nlmtlm  24580
  Copyright terms: Public domain W3C validator