MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ngptgp Structured version   Visualization version   GIF version

Theorem ngptgp 23992
Description: A normed abelian group is a topological group (with the topology induced by the metric induced by the norm). (Contributed by Mario Carneiro, 4-Oct-2015.)
Assertion
Ref Expression
ngptgp ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → 𝐺 ∈ TopGrp)

Proof of Theorem ngptgp
Dummy variables 𝑢 𝑟 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ngpgrp 23955 . . 3 (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp)
21adantr 481 . 2 ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → 𝐺 ∈ Grp)
3 ngpms 23956 . . . 4 (𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp)
43adantr 481 . . 3 ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → 𝐺 ∈ MetSp)
5 mstps 23808 . . 3 (𝐺 ∈ MetSp → 𝐺 ∈ TopSp)
64, 5syl 17 . 2 ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → 𝐺 ∈ TopSp)
7 eqid 2736 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
8 eqid 2736 . . . . . 6 (-g𝐺) = (-g𝐺)
97, 8grpsubf 18826 . . . . 5 (𝐺 ∈ Grp → (-g𝐺):((Base‘𝐺) × (Base‘𝐺))⟶(Base‘𝐺))
102, 9syl 17 . . . 4 ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → (-g𝐺):((Base‘𝐺) × (Base‘𝐺))⟶(Base‘𝐺))
11 rphalfcl 12942 . . . . . . 7 (𝑧 ∈ ℝ+ → (𝑧 / 2) ∈ ℝ+)
12 simplll 773 . . . . . . . . . . . . 13 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel))
1312, 4syl 17 . . . . . . . . . . . 12 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → 𝐺 ∈ MetSp)
14 simpllr 774 . . . . . . . . . . . . 13 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)))
1514simpld 495 . . . . . . . . . . . 12 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → 𝑥 ∈ (Base‘𝐺))
16 simprl 769 . . . . . . . . . . . 12 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → 𝑢 ∈ (Base‘𝐺))
17 eqid 2736 . . . . . . . . . . . . 13 (dist‘𝐺) = (dist‘𝐺)
187, 17mscl 23814 . . . . . . . . . . . 12 ((𝐺 ∈ MetSp ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺)) → (𝑥(dist‘𝐺)𝑢) ∈ ℝ)
1913, 15, 16, 18syl3anc 1371 . . . . . . . . . . 11 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (𝑥(dist‘𝐺)𝑢) ∈ ℝ)
2014simprd 496 . . . . . . . . . . . 12 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → 𝑦 ∈ (Base‘𝐺))
21 simprr 771 . . . . . . . . . . . 12 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → 𝑣 ∈ (Base‘𝐺))
227, 17mscl 23814 . . . . . . . . . . . 12 ((𝐺 ∈ MetSp ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺)) → (𝑦(dist‘𝐺)𝑣) ∈ ℝ)
2313, 20, 21, 22syl3anc 1371 . . . . . . . . . . 11 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (𝑦(dist‘𝐺)𝑣) ∈ ℝ)
24 rpre 12923 . . . . . . . . . . . 12 (𝑧 ∈ ℝ+𝑧 ∈ ℝ)
2524ad2antlr 725 . . . . . . . . . . 11 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → 𝑧 ∈ ℝ)
26 lt2halves 12388 . . . . . . . . . . 11 (((𝑥(dist‘𝐺)𝑢) ∈ ℝ ∧ (𝑦(dist‘𝐺)𝑣) ∈ ℝ ∧ 𝑧 ∈ ℝ) → (((𝑥(dist‘𝐺)𝑢) < (𝑧 / 2) ∧ (𝑦(dist‘𝐺)𝑣) < (𝑧 / 2)) → ((𝑥(dist‘𝐺)𝑢) + (𝑦(dist‘𝐺)𝑣)) < 𝑧))
2719, 23, 25, 26syl3anc 1371 . . . . . . . . . 10 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (((𝑥(dist‘𝐺)𝑢) < (𝑧 / 2) ∧ (𝑦(dist‘𝐺)𝑣) < (𝑧 / 2)) → ((𝑥(dist‘𝐺)𝑢) + (𝑦(dist‘𝐺)𝑣)) < 𝑧))
2812, 2syl 17 . . . . . . . . . . . . . 14 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → 𝐺 ∈ Grp)
297, 8grpsubcl 18827 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(-g𝐺)𝑦) ∈ (Base‘𝐺))
3028, 15, 20, 29syl3anc 1371 . . . . . . . . . . . . 13 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (𝑥(-g𝐺)𝑦) ∈ (Base‘𝐺))
317, 8grpsubcl 18827 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ 𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺)) → (𝑢(-g𝐺)𝑣) ∈ (Base‘𝐺))
3228, 16, 21, 31syl3anc 1371 . . . . . . . . . . . . 13 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (𝑢(-g𝐺)𝑣) ∈ (Base‘𝐺))
337, 8grpsubcl 18827 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ 𝑢 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑢(-g𝐺)𝑦) ∈ (Base‘𝐺))
3428, 16, 20, 33syl3anc 1371 . . . . . . . . . . . . 13 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (𝑢(-g𝐺)𝑦) ∈ (Base‘𝐺))
357, 17mstri 23822 . . . . . . . . . . . . 13 ((𝐺 ∈ MetSp ∧ ((𝑥(-g𝐺)𝑦) ∈ (Base‘𝐺) ∧ (𝑢(-g𝐺)𝑣) ∈ (Base‘𝐺) ∧ (𝑢(-g𝐺)𝑦) ∈ (Base‘𝐺))) → ((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) ≤ (((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑦)) + ((𝑢(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣))))
3613, 30, 32, 34, 35syl13anc 1372 . . . . . . . . . . . 12 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → ((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) ≤ (((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑦)) + ((𝑢(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣))))
3712simpld 495 . . . . . . . . . . . . . 14 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → 𝐺 ∈ NrmGrp)
387, 8, 17ngpsubcan 23970 . . . . . . . . . . . . . 14 ((𝐺 ∈ NrmGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → ((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑦)) = (𝑥(dist‘𝐺)𝑢))
3937, 15, 16, 20, 38syl13anc 1372 . . . . . . . . . . . . 13 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → ((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑦)) = (𝑥(dist‘𝐺)𝑢))
40 eqid 2736 . . . . . . . . . . . . . . . . 17 (+g𝐺) = (+g𝐺)
41 eqid 2736 . . . . . . . . . . . . . . . . 17 (invg𝐺) = (invg𝐺)
427, 40, 41, 8grpsubval 18796 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑢(-g𝐺)𝑦) = (𝑢(+g𝐺)((invg𝐺)‘𝑦)))
4316, 20, 42syl2anc 584 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (𝑢(-g𝐺)𝑦) = (𝑢(+g𝐺)((invg𝐺)‘𝑦)))
447, 40, 41, 8grpsubval 18796 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺)) → (𝑢(-g𝐺)𝑣) = (𝑢(+g𝐺)((invg𝐺)‘𝑣)))
4544adantl 482 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (𝑢(-g𝐺)𝑣) = (𝑢(+g𝐺)((invg𝐺)‘𝑣)))
4643, 45oveq12d 7375 . . . . . . . . . . . . . 14 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → ((𝑢(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) = ((𝑢(+g𝐺)((invg𝐺)‘𝑦))(dist‘𝐺)(𝑢(+g𝐺)((invg𝐺)‘𝑣))))
477, 41grpinvcl 18798 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ Grp ∧ 𝑦 ∈ (Base‘𝐺)) → ((invg𝐺)‘𝑦) ∈ (Base‘𝐺))
4828, 20, 47syl2anc 584 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → ((invg𝐺)‘𝑦) ∈ (Base‘𝐺))
497, 41grpinvcl 18798 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ Grp ∧ 𝑣 ∈ (Base‘𝐺)) → ((invg𝐺)‘𝑣) ∈ (Base‘𝐺))
5028, 21, 49syl2anc 584 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → ((invg𝐺)‘𝑣) ∈ (Base‘𝐺))
517, 40, 17ngplcan 23967 . . . . . . . . . . . . . . 15 (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (((invg𝐺)‘𝑦) ∈ (Base‘𝐺) ∧ ((invg𝐺)‘𝑣) ∈ (Base‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺))) → ((𝑢(+g𝐺)((invg𝐺)‘𝑦))(dist‘𝐺)(𝑢(+g𝐺)((invg𝐺)‘𝑣))) = (((invg𝐺)‘𝑦)(dist‘𝐺)((invg𝐺)‘𝑣)))
5212, 48, 50, 16, 51syl13anc 1372 . . . . . . . . . . . . . 14 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → ((𝑢(+g𝐺)((invg𝐺)‘𝑦))(dist‘𝐺)(𝑢(+g𝐺)((invg𝐺)‘𝑣))) = (((invg𝐺)‘𝑦)(dist‘𝐺)((invg𝐺)‘𝑣)))
537, 41, 17ngpinvds 23969 . . . . . . . . . . . . . . 15 (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑦 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (((invg𝐺)‘𝑦)(dist‘𝐺)((invg𝐺)‘𝑣)) = (𝑦(dist‘𝐺)𝑣))
5412, 20, 21, 53syl12anc 835 . . . . . . . . . . . . . 14 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (((invg𝐺)‘𝑦)(dist‘𝐺)((invg𝐺)‘𝑣)) = (𝑦(dist‘𝐺)𝑣))
5546, 52, 543eqtrd 2780 . . . . . . . . . . . . 13 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → ((𝑢(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) = (𝑦(dist‘𝐺)𝑣))
5639, 55oveq12d 7375 . . . . . . . . . . . 12 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑦)) + ((𝑢(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣))) = ((𝑥(dist‘𝐺)𝑢) + (𝑦(dist‘𝐺)𝑣)))
5736, 56breqtrd 5131 . . . . . . . . . . 11 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → ((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) ≤ ((𝑥(dist‘𝐺)𝑢) + (𝑦(dist‘𝐺)𝑣)))
587, 17mscl 23814 . . . . . . . . . . . . 13 ((𝐺 ∈ MetSp ∧ (𝑥(-g𝐺)𝑦) ∈ (Base‘𝐺) ∧ (𝑢(-g𝐺)𝑣) ∈ (Base‘𝐺)) → ((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) ∈ ℝ)
5913, 30, 32, 58syl3anc 1371 . . . . . . . . . . . 12 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → ((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) ∈ ℝ)
6019, 23readdcld 11184 . . . . . . . . . . . 12 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → ((𝑥(dist‘𝐺)𝑢) + (𝑦(dist‘𝐺)𝑣)) ∈ ℝ)
61 lelttr 11245 . . . . . . . . . . . 12 ((((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) ∈ ℝ ∧ ((𝑥(dist‘𝐺)𝑢) + (𝑦(dist‘𝐺)𝑣)) ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) ≤ ((𝑥(dist‘𝐺)𝑢) + (𝑦(dist‘𝐺)𝑣)) ∧ ((𝑥(dist‘𝐺)𝑢) + (𝑦(dist‘𝐺)𝑣)) < 𝑧) → ((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) < 𝑧))
6259, 60, 25, 61syl3anc 1371 . . . . . . . . . . 11 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → ((((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) ≤ ((𝑥(dist‘𝐺)𝑢) + (𝑦(dist‘𝐺)𝑣)) ∧ ((𝑥(dist‘𝐺)𝑢) + (𝑦(dist‘𝐺)𝑣)) < 𝑧) → ((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) < 𝑧))
6357, 62mpand 693 . . . . . . . . . 10 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (((𝑥(dist‘𝐺)𝑢) + (𝑦(dist‘𝐺)𝑣)) < 𝑧 → ((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) < 𝑧))
6427, 63syld 47 . . . . . . . . 9 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (((𝑥(dist‘𝐺)𝑢) < (𝑧 / 2) ∧ (𝑦(dist‘𝐺)𝑣) < (𝑧 / 2)) → ((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) < 𝑧))
6515, 16ovresd 7521 . . . . . . . . . . 11 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) = (𝑥(dist‘𝐺)𝑢))
6665breq1d 5115 . . . . . . . . . 10 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → ((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < (𝑧 / 2) ↔ (𝑥(dist‘𝐺)𝑢) < (𝑧 / 2)))
6720, 21ovresd 7521 . . . . . . . . . . 11 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) = (𝑦(dist‘𝐺)𝑣))
6867breq1d 5115 . . . . . . . . . 10 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → ((𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < (𝑧 / 2) ↔ (𝑦(dist‘𝐺)𝑣) < (𝑧 / 2)))
6966, 68anbi12d 631 . . . . . . . . 9 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < (𝑧 / 2) ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < (𝑧 / 2)) ↔ ((𝑥(dist‘𝐺)𝑢) < (𝑧 / 2) ∧ (𝑦(dist‘𝐺)𝑣) < (𝑧 / 2))))
7030, 32ovresd 7521 . . . . . . . . . 10 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → ((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) = ((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)))
7170breq1d 5115 . . . . . . . . 9 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) < 𝑧 ↔ ((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) < 𝑧))
7264, 69, 713imtr4d 293 . . . . . . . 8 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < (𝑧 / 2) ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < (𝑧 / 2)) → ((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) < 𝑧))
7372ralrimivva 3197 . . . . . . 7 ((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) → ∀𝑢 ∈ (Base‘𝐺)∀𝑣 ∈ (Base‘𝐺)(((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < (𝑧 / 2) ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < (𝑧 / 2)) → ((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) < 𝑧))
74 breq2 5109 . . . . . . . . . . 11 (𝑟 = (𝑧 / 2) → ((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < 𝑟 ↔ (𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < (𝑧 / 2)))
75 breq2 5109 . . . . . . . . . . 11 (𝑟 = (𝑧 / 2) → ((𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < 𝑟 ↔ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < (𝑧 / 2)))
7674, 75anbi12d 631 . . . . . . . . . 10 (𝑟 = (𝑧 / 2) → (((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < 𝑟 ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < 𝑟) ↔ ((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < (𝑧 / 2) ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < (𝑧 / 2))))
7776imbi1d 341 . . . . . . . . 9 (𝑟 = (𝑧 / 2) → ((((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < 𝑟 ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < 𝑟) → ((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) < 𝑧) ↔ (((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < (𝑧 / 2) ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < (𝑧 / 2)) → ((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) < 𝑧)))
78772ralbidv 3212 . . . . . . . 8 (𝑟 = (𝑧 / 2) → (∀𝑢 ∈ (Base‘𝐺)∀𝑣 ∈ (Base‘𝐺)(((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < 𝑟 ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < 𝑟) → ((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) < 𝑧) ↔ ∀𝑢 ∈ (Base‘𝐺)∀𝑣 ∈ (Base‘𝐺)(((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < (𝑧 / 2) ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < (𝑧 / 2)) → ((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) < 𝑧)))
7978rspcev 3581 . . . . . . 7 (((𝑧 / 2) ∈ ℝ+ ∧ ∀𝑢 ∈ (Base‘𝐺)∀𝑣 ∈ (Base‘𝐺)(((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < (𝑧 / 2) ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < (𝑧 / 2)) → ((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) < 𝑧)) → ∃𝑟 ∈ ℝ+𝑢 ∈ (Base‘𝐺)∀𝑣 ∈ (Base‘𝐺)(((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < 𝑟 ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < 𝑟) → ((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) < 𝑧))
8011, 73, 79syl2an2 684 . . . . . 6 ((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) → ∃𝑟 ∈ ℝ+𝑢 ∈ (Base‘𝐺)∀𝑣 ∈ (Base‘𝐺)(((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < 𝑟 ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < 𝑟) → ((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) < 𝑧))
8180ralrimiva 3143 . . . . 5 (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → ∀𝑧 ∈ ℝ+𝑟 ∈ ℝ+𝑢 ∈ (Base‘𝐺)∀𝑣 ∈ (Base‘𝐺)(((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < 𝑟 ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < 𝑟) → ((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) < 𝑧))
8281ralrimivva 3197 . . . 4 ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ ℝ+𝑟 ∈ ℝ+𝑢 ∈ (Base‘𝐺)∀𝑣 ∈ (Base‘𝐺)(((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < 𝑟 ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < 𝑟) → ((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) < 𝑧))
83 msxms 23807 . . . . . 6 (𝐺 ∈ MetSp → 𝐺 ∈ ∞MetSp)
84 eqid 2736 . . . . . . 7 ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) = ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))
857, 84xmsxmet 23809 . . . . . 6 (𝐺 ∈ ∞MetSp → ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) ∈ (∞Met‘(Base‘𝐺)))
864, 83, 853syl 18 . . . . 5 ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) ∈ (∞Met‘(Base‘𝐺)))
87 eqid 2736 . . . . . 6 (MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))) = (MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))))
8887, 87, 87txmetcn 23904 . . . . 5 ((((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) ∈ (∞Met‘(Base‘𝐺)) ∧ ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) ∈ (∞Met‘(Base‘𝐺)) ∧ ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) ∈ (∞Met‘(Base‘𝐺))) → ((-g𝐺) ∈ (((MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))) ×t (MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))))) Cn (MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))))) ↔ ((-g𝐺):((Base‘𝐺) × (Base‘𝐺))⟶(Base‘𝐺) ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ ℝ+𝑟 ∈ ℝ+𝑢 ∈ (Base‘𝐺)∀𝑣 ∈ (Base‘𝐺)(((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < 𝑟 ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < 𝑟) → ((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) < 𝑧))))
8986, 86, 86, 88syl3anc 1371 . . . 4 ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → ((-g𝐺) ∈ (((MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))) ×t (MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))))) Cn (MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))))) ↔ ((-g𝐺):((Base‘𝐺) × (Base‘𝐺))⟶(Base‘𝐺) ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ ℝ+𝑟 ∈ ℝ+𝑢 ∈ (Base‘𝐺)∀𝑣 ∈ (Base‘𝐺)(((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < 𝑟 ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < 𝑟) → ((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) < 𝑧))))
9010, 82, 89mpbir2and 711 . . 3 ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → (-g𝐺) ∈ (((MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))) ×t (MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))))) Cn (MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))))))
91 eqid 2736 . . . . . . 7 (TopOpen‘𝐺) = (TopOpen‘𝐺)
9291, 7, 84mstopn 23805 . . . . . 6 (𝐺 ∈ MetSp → (TopOpen‘𝐺) = (MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))))
934, 92syl 17 . . . . 5 ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → (TopOpen‘𝐺) = (MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))))
9493, 93oveq12d 7375 . . . 4 ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → ((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) = ((MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))) ×t (MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))))))
9594, 93oveq12d 7375 . . 3 ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺)) = (((MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))) ×t (MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))))) Cn (MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))))))
9690, 95eleqtrrd 2841 . 2 ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → (-g𝐺) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺)))
9791, 8istgp2 23442 . 2 (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ (-g𝐺) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺))))
982, 6, 96, 97syl3anbrc 1343 1 ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → 𝐺 ∈ TopGrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3064  wrex 3073   class class class wbr 5105   × cxp 5631  cres 5635  wf 6492  cfv 6496  (class class class)co 7357  cr 11050   + caddc 11054   < clt 11189  cle 11190   / cdiv 11812  2c2 12208  +crp 12915  Basecbs 17083  +gcplusg 17133  distcds 17142  TopOpenctopn 17303  Grpcgrp 18748  invgcminusg 18749  -gcsg 18750  Abelcabl 19563  ∞Metcxmet 20781  MetOpencmopn 20786  TopSpctps 22281   Cn ccn 22575   ×t ctx 22911  TopGrpctgp 23422  ∞MetSpcxms 23670  MetSpcms 23671  NrmGrpcngp 23933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-icc 13271  df-fz 13425  df-fzo 13568  df-seq 13907  df-hash 14231  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-plusf 18496  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-abl 19565  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cn 22578  df-cnp 22579  df-tx 22913  df-hmeo 23106  df-tmd 23423  df-tgp 23424  df-xms 23673  df-ms 23674  df-tms 23675  df-nm 23938  df-ngp 23939
This theorem is referenced by:  nrgtgp  24036  nlmtlm  24058
  Copyright terms: Public domain W3C validator