MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ngptgp Structured version   Visualization version   GIF version

Theorem ngptgp 24575
Description: A normed abelian group is a topological group (with the topology induced by the metric induced by the norm). (Contributed by Mario Carneiro, 4-Oct-2015.)
Assertion
Ref Expression
ngptgp ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → 𝐺 ∈ TopGrp)

Proof of Theorem ngptgp
Dummy variables 𝑢 𝑟 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ngpgrp 24538 . . 3 (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp)
21adantr 480 . 2 ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → 𝐺 ∈ Grp)
3 ngpms 24539 . . . 4 (𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp)
43adantr 480 . . 3 ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → 𝐺 ∈ MetSp)
5 mstps 24394 . . 3 (𝐺 ∈ MetSp → 𝐺 ∈ TopSp)
64, 5syl 17 . 2 ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → 𝐺 ∈ TopSp)
7 eqid 2735 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
8 eqid 2735 . . . . . 6 (-g𝐺) = (-g𝐺)
97, 8grpsubf 19002 . . . . 5 (𝐺 ∈ Grp → (-g𝐺):((Base‘𝐺) × (Base‘𝐺))⟶(Base‘𝐺))
102, 9syl 17 . . . 4 ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → (-g𝐺):((Base‘𝐺) × (Base‘𝐺))⟶(Base‘𝐺))
11 rphalfcl 13036 . . . . . . 7 (𝑧 ∈ ℝ+ → (𝑧 / 2) ∈ ℝ+)
12 simplll 774 . . . . . . . . . . . . 13 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel))
1312, 4syl 17 . . . . . . . . . . . 12 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → 𝐺 ∈ MetSp)
14 simpllr 775 . . . . . . . . . . . . 13 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)))
1514simpld 494 . . . . . . . . . . . 12 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → 𝑥 ∈ (Base‘𝐺))
16 simprl 770 . . . . . . . . . . . 12 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → 𝑢 ∈ (Base‘𝐺))
17 eqid 2735 . . . . . . . . . . . . 13 (dist‘𝐺) = (dist‘𝐺)
187, 17mscl 24400 . . . . . . . . . . . 12 ((𝐺 ∈ MetSp ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺)) → (𝑥(dist‘𝐺)𝑢) ∈ ℝ)
1913, 15, 16, 18syl3anc 1373 . . . . . . . . . . 11 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (𝑥(dist‘𝐺)𝑢) ∈ ℝ)
2014simprd 495 . . . . . . . . . . . 12 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → 𝑦 ∈ (Base‘𝐺))
21 simprr 772 . . . . . . . . . . . 12 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → 𝑣 ∈ (Base‘𝐺))
227, 17mscl 24400 . . . . . . . . . . . 12 ((𝐺 ∈ MetSp ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺)) → (𝑦(dist‘𝐺)𝑣) ∈ ℝ)
2313, 20, 21, 22syl3anc 1373 . . . . . . . . . . 11 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (𝑦(dist‘𝐺)𝑣) ∈ ℝ)
24 rpre 13017 . . . . . . . . . . . 12 (𝑧 ∈ ℝ+𝑧 ∈ ℝ)
2524ad2antlr 727 . . . . . . . . . . 11 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → 𝑧 ∈ ℝ)
26 lt2halves 12476 . . . . . . . . . . 11 (((𝑥(dist‘𝐺)𝑢) ∈ ℝ ∧ (𝑦(dist‘𝐺)𝑣) ∈ ℝ ∧ 𝑧 ∈ ℝ) → (((𝑥(dist‘𝐺)𝑢) < (𝑧 / 2) ∧ (𝑦(dist‘𝐺)𝑣) < (𝑧 / 2)) → ((𝑥(dist‘𝐺)𝑢) + (𝑦(dist‘𝐺)𝑣)) < 𝑧))
2719, 23, 25, 26syl3anc 1373 . . . . . . . . . 10 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (((𝑥(dist‘𝐺)𝑢) < (𝑧 / 2) ∧ (𝑦(dist‘𝐺)𝑣) < (𝑧 / 2)) → ((𝑥(dist‘𝐺)𝑢) + (𝑦(dist‘𝐺)𝑣)) < 𝑧))
2812, 2syl 17 . . . . . . . . . . . . . 14 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → 𝐺 ∈ Grp)
297, 8grpsubcl 19003 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(-g𝐺)𝑦) ∈ (Base‘𝐺))
3028, 15, 20, 29syl3anc 1373 . . . . . . . . . . . . 13 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (𝑥(-g𝐺)𝑦) ∈ (Base‘𝐺))
317, 8grpsubcl 19003 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ 𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺)) → (𝑢(-g𝐺)𝑣) ∈ (Base‘𝐺))
3228, 16, 21, 31syl3anc 1373 . . . . . . . . . . . . 13 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (𝑢(-g𝐺)𝑣) ∈ (Base‘𝐺))
337, 8grpsubcl 19003 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ 𝑢 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑢(-g𝐺)𝑦) ∈ (Base‘𝐺))
3428, 16, 20, 33syl3anc 1373 . . . . . . . . . . . . 13 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (𝑢(-g𝐺)𝑦) ∈ (Base‘𝐺))
357, 17mstri 24408 . . . . . . . . . . . . 13 ((𝐺 ∈ MetSp ∧ ((𝑥(-g𝐺)𝑦) ∈ (Base‘𝐺) ∧ (𝑢(-g𝐺)𝑣) ∈ (Base‘𝐺) ∧ (𝑢(-g𝐺)𝑦) ∈ (Base‘𝐺))) → ((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) ≤ (((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑦)) + ((𝑢(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣))))
3613, 30, 32, 34, 35syl13anc 1374 . . . . . . . . . . . 12 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → ((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) ≤ (((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑦)) + ((𝑢(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣))))
3712simpld 494 . . . . . . . . . . . . . 14 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → 𝐺 ∈ NrmGrp)
387, 8, 17ngpsubcan 24553 . . . . . . . . . . . . . 14 ((𝐺 ∈ NrmGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → ((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑦)) = (𝑥(dist‘𝐺)𝑢))
3937, 15, 16, 20, 38syl13anc 1374 . . . . . . . . . . . . 13 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → ((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑦)) = (𝑥(dist‘𝐺)𝑢))
40 eqid 2735 . . . . . . . . . . . . . . . . 17 (+g𝐺) = (+g𝐺)
41 eqid 2735 . . . . . . . . . . . . . . . . 17 (invg𝐺) = (invg𝐺)
427, 40, 41, 8grpsubval 18968 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑢(-g𝐺)𝑦) = (𝑢(+g𝐺)((invg𝐺)‘𝑦)))
4316, 20, 42syl2anc 584 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (𝑢(-g𝐺)𝑦) = (𝑢(+g𝐺)((invg𝐺)‘𝑦)))
447, 40, 41, 8grpsubval 18968 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺)) → (𝑢(-g𝐺)𝑣) = (𝑢(+g𝐺)((invg𝐺)‘𝑣)))
4544adantl 481 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (𝑢(-g𝐺)𝑣) = (𝑢(+g𝐺)((invg𝐺)‘𝑣)))
4643, 45oveq12d 7423 . . . . . . . . . . . . . 14 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → ((𝑢(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) = ((𝑢(+g𝐺)((invg𝐺)‘𝑦))(dist‘𝐺)(𝑢(+g𝐺)((invg𝐺)‘𝑣))))
477, 41grpinvcl 18970 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ Grp ∧ 𝑦 ∈ (Base‘𝐺)) → ((invg𝐺)‘𝑦) ∈ (Base‘𝐺))
4828, 20, 47syl2anc 584 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → ((invg𝐺)‘𝑦) ∈ (Base‘𝐺))
497, 41grpinvcl 18970 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ Grp ∧ 𝑣 ∈ (Base‘𝐺)) → ((invg𝐺)‘𝑣) ∈ (Base‘𝐺))
5028, 21, 49syl2anc 584 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → ((invg𝐺)‘𝑣) ∈ (Base‘𝐺))
517, 40, 17ngplcan 24550 . . . . . . . . . . . . . . 15 (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (((invg𝐺)‘𝑦) ∈ (Base‘𝐺) ∧ ((invg𝐺)‘𝑣) ∈ (Base‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺))) → ((𝑢(+g𝐺)((invg𝐺)‘𝑦))(dist‘𝐺)(𝑢(+g𝐺)((invg𝐺)‘𝑣))) = (((invg𝐺)‘𝑦)(dist‘𝐺)((invg𝐺)‘𝑣)))
5212, 48, 50, 16, 51syl13anc 1374 . . . . . . . . . . . . . 14 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → ((𝑢(+g𝐺)((invg𝐺)‘𝑦))(dist‘𝐺)(𝑢(+g𝐺)((invg𝐺)‘𝑣))) = (((invg𝐺)‘𝑦)(dist‘𝐺)((invg𝐺)‘𝑣)))
537, 41, 17ngpinvds 24552 . . . . . . . . . . . . . . 15 (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑦 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (((invg𝐺)‘𝑦)(dist‘𝐺)((invg𝐺)‘𝑣)) = (𝑦(dist‘𝐺)𝑣))
5412, 20, 21, 53syl12anc 836 . . . . . . . . . . . . . 14 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (((invg𝐺)‘𝑦)(dist‘𝐺)((invg𝐺)‘𝑣)) = (𝑦(dist‘𝐺)𝑣))
5546, 52, 543eqtrd 2774 . . . . . . . . . . . . 13 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → ((𝑢(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) = (𝑦(dist‘𝐺)𝑣))
5639, 55oveq12d 7423 . . . . . . . . . . . 12 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑦)) + ((𝑢(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣))) = ((𝑥(dist‘𝐺)𝑢) + (𝑦(dist‘𝐺)𝑣)))
5736, 56breqtrd 5145 . . . . . . . . . . 11 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → ((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) ≤ ((𝑥(dist‘𝐺)𝑢) + (𝑦(dist‘𝐺)𝑣)))
587, 17mscl 24400 . . . . . . . . . . . . 13 ((𝐺 ∈ MetSp ∧ (𝑥(-g𝐺)𝑦) ∈ (Base‘𝐺) ∧ (𝑢(-g𝐺)𝑣) ∈ (Base‘𝐺)) → ((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) ∈ ℝ)
5913, 30, 32, 58syl3anc 1373 . . . . . . . . . . . 12 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → ((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) ∈ ℝ)
6019, 23readdcld 11264 . . . . . . . . . . . 12 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → ((𝑥(dist‘𝐺)𝑢) + (𝑦(dist‘𝐺)𝑣)) ∈ ℝ)
61 lelttr 11325 . . . . . . . . . . . 12 ((((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) ∈ ℝ ∧ ((𝑥(dist‘𝐺)𝑢) + (𝑦(dist‘𝐺)𝑣)) ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) ≤ ((𝑥(dist‘𝐺)𝑢) + (𝑦(dist‘𝐺)𝑣)) ∧ ((𝑥(dist‘𝐺)𝑢) + (𝑦(dist‘𝐺)𝑣)) < 𝑧) → ((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) < 𝑧))
6259, 60, 25, 61syl3anc 1373 . . . . . . . . . . 11 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → ((((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) ≤ ((𝑥(dist‘𝐺)𝑢) + (𝑦(dist‘𝐺)𝑣)) ∧ ((𝑥(dist‘𝐺)𝑢) + (𝑦(dist‘𝐺)𝑣)) < 𝑧) → ((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) < 𝑧))
6357, 62mpand 695 . . . . . . . . . 10 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (((𝑥(dist‘𝐺)𝑢) + (𝑦(dist‘𝐺)𝑣)) < 𝑧 → ((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) < 𝑧))
6427, 63syld 47 . . . . . . . . 9 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (((𝑥(dist‘𝐺)𝑢) < (𝑧 / 2) ∧ (𝑦(dist‘𝐺)𝑣) < (𝑧 / 2)) → ((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) < 𝑧))
6515, 16ovresd 7574 . . . . . . . . . . 11 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) = (𝑥(dist‘𝐺)𝑢))
6665breq1d 5129 . . . . . . . . . 10 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → ((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < (𝑧 / 2) ↔ (𝑥(dist‘𝐺)𝑢) < (𝑧 / 2)))
6720, 21ovresd 7574 . . . . . . . . . . 11 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) = (𝑦(dist‘𝐺)𝑣))
6867breq1d 5129 . . . . . . . . . 10 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → ((𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < (𝑧 / 2) ↔ (𝑦(dist‘𝐺)𝑣) < (𝑧 / 2)))
6966, 68anbi12d 632 . . . . . . . . 9 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < (𝑧 / 2) ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < (𝑧 / 2)) ↔ ((𝑥(dist‘𝐺)𝑢) < (𝑧 / 2) ∧ (𝑦(dist‘𝐺)𝑣) < (𝑧 / 2))))
7030, 32ovresd 7574 . . . . . . . . . 10 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → ((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) = ((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)))
7170breq1d 5129 . . . . . . . . 9 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) < 𝑧 ↔ ((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) < 𝑧))
7264, 69, 713imtr4d 294 . . . . . . . 8 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < (𝑧 / 2) ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < (𝑧 / 2)) → ((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) < 𝑧))
7372ralrimivva 3187 . . . . . . 7 ((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) → ∀𝑢 ∈ (Base‘𝐺)∀𝑣 ∈ (Base‘𝐺)(((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < (𝑧 / 2) ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < (𝑧 / 2)) → ((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) < 𝑧))
74 breq2 5123 . . . . . . . . . . 11 (𝑟 = (𝑧 / 2) → ((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < 𝑟 ↔ (𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < (𝑧 / 2)))
75 breq2 5123 . . . . . . . . . . 11 (𝑟 = (𝑧 / 2) → ((𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < 𝑟 ↔ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < (𝑧 / 2)))
7674, 75anbi12d 632 . . . . . . . . . 10 (𝑟 = (𝑧 / 2) → (((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < 𝑟 ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < 𝑟) ↔ ((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < (𝑧 / 2) ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < (𝑧 / 2))))
7776imbi1d 341 . . . . . . . . 9 (𝑟 = (𝑧 / 2) → ((((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < 𝑟 ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < 𝑟) → ((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) < 𝑧) ↔ (((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < (𝑧 / 2) ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < (𝑧 / 2)) → ((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) < 𝑧)))
78772ralbidv 3205 . . . . . . . 8 (𝑟 = (𝑧 / 2) → (∀𝑢 ∈ (Base‘𝐺)∀𝑣 ∈ (Base‘𝐺)(((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < 𝑟 ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < 𝑟) → ((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) < 𝑧) ↔ ∀𝑢 ∈ (Base‘𝐺)∀𝑣 ∈ (Base‘𝐺)(((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < (𝑧 / 2) ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < (𝑧 / 2)) → ((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) < 𝑧)))
7978rspcev 3601 . . . . . . 7 (((𝑧 / 2) ∈ ℝ+ ∧ ∀𝑢 ∈ (Base‘𝐺)∀𝑣 ∈ (Base‘𝐺)(((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < (𝑧 / 2) ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < (𝑧 / 2)) → ((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) < 𝑧)) → ∃𝑟 ∈ ℝ+𝑢 ∈ (Base‘𝐺)∀𝑣 ∈ (Base‘𝐺)(((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < 𝑟 ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < 𝑟) → ((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) < 𝑧))
8011, 73, 79syl2an2 686 . . . . . 6 ((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) → ∃𝑟 ∈ ℝ+𝑢 ∈ (Base‘𝐺)∀𝑣 ∈ (Base‘𝐺)(((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < 𝑟 ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < 𝑟) → ((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) < 𝑧))
8180ralrimiva 3132 . . . . 5 (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → ∀𝑧 ∈ ℝ+𝑟 ∈ ℝ+𝑢 ∈ (Base‘𝐺)∀𝑣 ∈ (Base‘𝐺)(((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < 𝑟 ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < 𝑟) → ((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) < 𝑧))
8281ralrimivva 3187 . . . 4 ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ ℝ+𝑟 ∈ ℝ+𝑢 ∈ (Base‘𝐺)∀𝑣 ∈ (Base‘𝐺)(((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < 𝑟 ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < 𝑟) → ((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) < 𝑧))
83 msxms 24393 . . . . . 6 (𝐺 ∈ MetSp → 𝐺 ∈ ∞MetSp)
84 eqid 2735 . . . . . . 7 ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) = ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))
857, 84xmsxmet 24395 . . . . . 6 (𝐺 ∈ ∞MetSp → ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) ∈ (∞Met‘(Base‘𝐺)))
864, 83, 853syl 18 . . . . 5 ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) ∈ (∞Met‘(Base‘𝐺)))
87 eqid 2735 . . . . . 6 (MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))) = (MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))))
8887, 87, 87txmetcn 24487 . . . . 5 ((((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) ∈ (∞Met‘(Base‘𝐺)) ∧ ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) ∈ (∞Met‘(Base‘𝐺)) ∧ ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) ∈ (∞Met‘(Base‘𝐺))) → ((-g𝐺) ∈ (((MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))) ×t (MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))))) Cn (MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))))) ↔ ((-g𝐺):((Base‘𝐺) × (Base‘𝐺))⟶(Base‘𝐺) ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ ℝ+𝑟 ∈ ℝ+𝑢 ∈ (Base‘𝐺)∀𝑣 ∈ (Base‘𝐺)(((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < 𝑟 ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < 𝑟) → ((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) < 𝑧))))
8986, 86, 86, 88syl3anc 1373 . . . 4 ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → ((-g𝐺) ∈ (((MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))) ×t (MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))))) Cn (MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))))) ↔ ((-g𝐺):((Base‘𝐺) × (Base‘𝐺))⟶(Base‘𝐺) ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ ℝ+𝑟 ∈ ℝ+𝑢 ∈ (Base‘𝐺)∀𝑣 ∈ (Base‘𝐺)(((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < 𝑟 ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < 𝑟) → ((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) < 𝑧))))
9010, 82, 89mpbir2and 713 . . 3 ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → (-g𝐺) ∈ (((MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))) ×t (MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))))) Cn (MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))))))
91 eqid 2735 . . . . . . 7 (TopOpen‘𝐺) = (TopOpen‘𝐺)
9291, 7, 84mstopn 24391 . . . . . 6 (𝐺 ∈ MetSp → (TopOpen‘𝐺) = (MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))))
934, 92syl 17 . . . . 5 ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → (TopOpen‘𝐺) = (MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))))
9493, 93oveq12d 7423 . . . 4 ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → ((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) = ((MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))) ×t (MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))))))
9594, 93oveq12d 7423 . . 3 ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺)) = (((MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))) ×t (MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))))) Cn (MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))))))
9690, 95eleqtrrd 2837 . 2 ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → (-g𝐺) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺)))
9791, 8istgp2 24029 . 2 (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ (-g𝐺) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺))))
982, 6, 96, 97syl3anbrc 1344 1 ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → 𝐺 ∈ TopGrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  wrex 3060   class class class wbr 5119   × cxp 5652  cres 5656  wf 6527  cfv 6531  (class class class)co 7405  cr 11128   + caddc 11132   < clt 11269  cle 11270   / cdiv 11894  2c2 12295  +crp 13008  Basecbs 17228  +gcplusg 17271  distcds 17280  TopOpenctopn 17435  Grpcgrp 18916  invgcminusg 18917  -gcsg 18918  Abelcabl 19762  ∞Metcxmet 21300  MetOpencmopn 21305  TopSpctps 22870   Cn ccn 23162   ×t ctx 23498  TopGrpctgp 24009  ∞MetSpcxms 24256  MetSpcms 24257  NrmGrpcngp 24516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-icc 13369  df-fz 13525  df-fzo 13672  df-seq 14020  df-hash 14349  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-hom 17295  df-cco 17296  df-rest 17436  df-topn 17437  df-0g 17455  df-gsum 17456  df-topgen 17457  df-pt 17458  df-prds 17461  df-xrs 17516  df-qtop 17521  df-imas 17522  df-xps 17524  df-mre 17598  df-mrc 17599  df-acs 17601  df-plusf 18617  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-grp 18919  df-minusg 18920  df-sbg 18921  df-mulg 19051  df-cntz 19300  df-cmn 19763  df-abl 19764  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-cn 23165  df-cnp 23166  df-tx 23500  df-hmeo 23693  df-tmd 24010  df-tgp 24011  df-xms 24259  df-ms 24260  df-tms 24261  df-nm 24521  df-ngp 24522
This theorem is referenced by:  nrgtgp  24611  nlmtlm  24633
  Copyright terms: Public domain W3C validator