MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ngptgp Structured version   Visualization version   GIF version

Theorem ngptgp 23221
Description: A normed abelian group is a topological group (with the topology induced by the metric induced by the norm). (Contributed by Mario Carneiro, 4-Oct-2015.)
Assertion
Ref Expression
ngptgp ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → 𝐺 ∈ TopGrp)

Proof of Theorem ngptgp
Dummy variables 𝑢 𝑟 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ngpgrp 23184 . . 3 (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp)
21adantr 483 . 2 ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → 𝐺 ∈ Grp)
3 ngpms 23185 . . . 4 (𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp)
43adantr 483 . . 3 ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → 𝐺 ∈ MetSp)
5 mstps 23041 . . 3 (𝐺 ∈ MetSp → 𝐺 ∈ TopSp)
64, 5syl 17 . 2 ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → 𝐺 ∈ TopSp)
7 eqid 2820 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
8 eqid 2820 . . . . . 6 (-g𝐺) = (-g𝐺)
97, 8grpsubf 18157 . . . . 5 (𝐺 ∈ Grp → (-g𝐺):((Base‘𝐺) × (Base‘𝐺))⟶(Base‘𝐺))
102, 9syl 17 . . . 4 ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → (-g𝐺):((Base‘𝐺) × (Base‘𝐺))⟶(Base‘𝐺))
11 rphalfcl 12395 . . . . . . 7 (𝑧 ∈ ℝ+ → (𝑧 / 2) ∈ ℝ+)
12 simplll 773 . . . . . . . . . . . . 13 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel))
1312, 4syl 17 . . . . . . . . . . . 12 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → 𝐺 ∈ MetSp)
14 simpllr 774 . . . . . . . . . . . . 13 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)))
1514simpld 497 . . . . . . . . . . . 12 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → 𝑥 ∈ (Base‘𝐺))
16 simprl 769 . . . . . . . . . . . 12 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → 𝑢 ∈ (Base‘𝐺))
17 eqid 2820 . . . . . . . . . . . . 13 (dist‘𝐺) = (dist‘𝐺)
187, 17mscl 23047 . . . . . . . . . . . 12 ((𝐺 ∈ MetSp ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺)) → (𝑥(dist‘𝐺)𝑢) ∈ ℝ)
1913, 15, 16, 18syl3anc 1367 . . . . . . . . . . 11 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (𝑥(dist‘𝐺)𝑢) ∈ ℝ)
2014simprd 498 . . . . . . . . . . . 12 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → 𝑦 ∈ (Base‘𝐺))
21 simprr 771 . . . . . . . . . . . 12 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → 𝑣 ∈ (Base‘𝐺))
227, 17mscl 23047 . . . . . . . . . . . 12 ((𝐺 ∈ MetSp ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺)) → (𝑦(dist‘𝐺)𝑣) ∈ ℝ)
2313, 20, 21, 22syl3anc 1367 . . . . . . . . . . 11 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (𝑦(dist‘𝐺)𝑣) ∈ ℝ)
24 rpre 12376 . . . . . . . . . . . 12 (𝑧 ∈ ℝ+𝑧 ∈ ℝ)
2524ad2antlr 725 . . . . . . . . . . 11 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → 𝑧 ∈ ℝ)
26 lt2halves 11851 . . . . . . . . . . 11 (((𝑥(dist‘𝐺)𝑢) ∈ ℝ ∧ (𝑦(dist‘𝐺)𝑣) ∈ ℝ ∧ 𝑧 ∈ ℝ) → (((𝑥(dist‘𝐺)𝑢) < (𝑧 / 2) ∧ (𝑦(dist‘𝐺)𝑣) < (𝑧 / 2)) → ((𝑥(dist‘𝐺)𝑢) + (𝑦(dist‘𝐺)𝑣)) < 𝑧))
2719, 23, 25, 26syl3anc 1367 . . . . . . . . . 10 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (((𝑥(dist‘𝐺)𝑢) < (𝑧 / 2) ∧ (𝑦(dist‘𝐺)𝑣) < (𝑧 / 2)) → ((𝑥(dist‘𝐺)𝑢) + (𝑦(dist‘𝐺)𝑣)) < 𝑧))
2812, 2syl 17 . . . . . . . . . . . . . 14 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → 𝐺 ∈ Grp)
297, 8grpsubcl 18158 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(-g𝐺)𝑦) ∈ (Base‘𝐺))
3028, 15, 20, 29syl3anc 1367 . . . . . . . . . . . . 13 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (𝑥(-g𝐺)𝑦) ∈ (Base‘𝐺))
317, 8grpsubcl 18158 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ 𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺)) → (𝑢(-g𝐺)𝑣) ∈ (Base‘𝐺))
3228, 16, 21, 31syl3anc 1367 . . . . . . . . . . . . 13 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (𝑢(-g𝐺)𝑣) ∈ (Base‘𝐺))
337, 8grpsubcl 18158 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ 𝑢 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑢(-g𝐺)𝑦) ∈ (Base‘𝐺))
3428, 16, 20, 33syl3anc 1367 . . . . . . . . . . . . 13 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (𝑢(-g𝐺)𝑦) ∈ (Base‘𝐺))
357, 17mstri 23055 . . . . . . . . . . . . 13 ((𝐺 ∈ MetSp ∧ ((𝑥(-g𝐺)𝑦) ∈ (Base‘𝐺) ∧ (𝑢(-g𝐺)𝑣) ∈ (Base‘𝐺) ∧ (𝑢(-g𝐺)𝑦) ∈ (Base‘𝐺))) → ((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) ≤ (((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑦)) + ((𝑢(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣))))
3613, 30, 32, 34, 35syl13anc 1368 . . . . . . . . . . . 12 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → ((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) ≤ (((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑦)) + ((𝑢(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣))))
3712simpld 497 . . . . . . . . . . . . . 14 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → 𝐺 ∈ NrmGrp)
387, 8, 17ngpsubcan 23199 . . . . . . . . . . . . . 14 ((𝐺 ∈ NrmGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → ((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑦)) = (𝑥(dist‘𝐺)𝑢))
3937, 15, 16, 20, 38syl13anc 1368 . . . . . . . . . . . . 13 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → ((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑦)) = (𝑥(dist‘𝐺)𝑢))
40 eqid 2820 . . . . . . . . . . . . . . . . 17 (+g𝐺) = (+g𝐺)
41 eqid 2820 . . . . . . . . . . . . . . . . 17 (invg𝐺) = (invg𝐺)
427, 40, 41, 8grpsubval 18128 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑢(-g𝐺)𝑦) = (𝑢(+g𝐺)((invg𝐺)‘𝑦)))
4316, 20, 42syl2anc 586 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (𝑢(-g𝐺)𝑦) = (𝑢(+g𝐺)((invg𝐺)‘𝑦)))
447, 40, 41, 8grpsubval 18128 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺)) → (𝑢(-g𝐺)𝑣) = (𝑢(+g𝐺)((invg𝐺)‘𝑣)))
4544adantl 484 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (𝑢(-g𝐺)𝑣) = (𝑢(+g𝐺)((invg𝐺)‘𝑣)))
4643, 45oveq12d 7151 . . . . . . . . . . . . . 14 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → ((𝑢(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) = ((𝑢(+g𝐺)((invg𝐺)‘𝑦))(dist‘𝐺)(𝑢(+g𝐺)((invg𝐺)‘𝑣))))
477, 41grpinvcl 18130 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ Grp ∧ 𝑦 ∈ (Base‘𝐺)) → ((invg𝐺)‘𝑦) ∈ (Base‘𝐺))
4828, 20, 47syl2anc 586 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → ((invg𝐺)‘𝑦) ∈ (Base‘𝐺))
497, 41grpinvcl 18130 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ Grp ∧ 𝑣 ∈ (Base‘𝐺)) → ((invg𝐺)‘𝑣) ∈ (Base‘𝐺))
5028, 21, 49syl2anc 586 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → ((invg𝐺)‘𝑣) ∈ (Base‘𝐺))
517, 40, 17ngplcan 23196 . . . . . . . . . . . . . . 15 (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (((invg𝐺)‘𝑦) ∈ (Base‘𝐺) ∧ ((invg𝐺)‘𝑣) ∈ (Base‘𝐺) ∧ 𝑢 ∈ (Base‘𝐺))) → ((𝑢(+g𝐺)((invg𝐺)‘𝑦))(dist‘𝐺)(𝑢(+g𝐺)((invg𝐺)‘𝑣))) = (((invg𝐺)‘𝑦)(dist‘𝐺)((invg𝐺)‘𝑣)))
5212, 48, 50, 16, 51syl13anc 1368 . . . . . . . . . . . . . 14 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → ((𝑢(+g𝐺)((invg𝐺)‘𝑦))(dist‘𝐺)(𝑢(+g𝐺)((invg𝐺)‘𝑣))) = (((invg𝐺)‘𝑦)(dist‘𝐺)((invg𝐺)‘𝑣)))
537, 41, 17ngpinvds 23198 . . . . . . . . . . . . . . 15 (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑦 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (((invg𝐺)‘𝑦)(dist‘𝐺)((invg𝐺)‘𝑣)) = (𝑦(dist‘𝐺)𝑣))
5412, 20, 21, 53syl12anc 834 . . . . . . . . . . . . . 14 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (((invg𝐺)‘𝑦)(dist‘𝐺)((invg𝐺)‘𝑣)) = (𝑦(dist‘𝐺)𝑣))
5546, 52, 543eqtrd 2859 . . . . . . . . . . . . 13 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → ((𝑢(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) = (𝑦(dist‘𝐺)𝑣))
5639, 55oveq12d 7151 . . . . . . . . . . . 12 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑦)) + ((𝑢(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣))) = ((𝑥(dist‘𝐺)𝑢) + (𝑦(dist‘𝐺)𝑣)))
5736, 56breqtrd 5068 . . . . . . . . . . 11 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → ((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) ≤ ((𝑥(dist‘𝐺)𝑢) + (𝑦(dist‘𝐺)𝑣)))
587, 17mscl 23047 . . . . . . . . . . . . 13 ((𝐺 ∈ MetSp ∧ (𝑥(-g𝐺)𝑦) ∈ (Base‘𝐺) ∧ (𝑢(-g𝐺)𝑣) ∈ (Base‘𝐺)) → ((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) ∈ ℝ)
5913, 30, 32, 58syl3anc 1367 . . . . . . . . . . . 12 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → ((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) ∈ ℝ)
6019, 23readdcld 10648 . . . . . . . . . . . 12 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → ((𝑥(dist‘𝐺)𝑢) + (𝑦(dist‘𝐺)𝑣)) ∈ ℝ)
61 lelttr 10709 . . . . . . . . . . . 12 ((((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) ∈ ℝ ∧ ((𝑥(dist‘𝐺)𝑢) + (𝑦(dist‘𝐺)𝑣)) ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) ≤ ((𝑥(dist‘𝐺)𝑢) + (𝑦(dist‘𝐺)𝑣)) ∧ ((𝑥(dist‘𝐺)𝑢) + (𝑦(dist‘𝐺)𝑣)) < 𝑧) → ((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) < 𝑧))
6259, 60, 25, 61syl3anc 1367 . . . . . . . . . . 11 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → ((((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) ≤ ((𝑥(dist‘𝐺)𝑢) + (𝑦(dist‘𝐺)𝑣)) ∧ ((𝑥(dist‘𝐺)𝑢) + (𝑦(dist‘𝐺)𝑣)) < 𝑧) → ((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) < 𝑧))
6357, 62mpand 693 . . . . . . . . . 10 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (((𝑥(dist‘𝐺)𝑢) + (𝑦(dist‘𝐺)𝑣)) < 𝑧 → ((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) < 𝑧))
6427, 63syld 47 . . . . . . . . 9 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (((𝑥(dist‘𝐺)𝑢) < (𝑧 / 2) ∧ (𝑦(dist‘𝐺)𝑣) < (𝑧 / 2)) → ((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) < 𝑧))
6515, 16ovresd 7293 . . . . . . . . . . 11 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) = (𝑥(dist‘𝐺)𝑢))
6665breq1d 5052 . . . . . . . . . 10 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → ((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < (𝑧 / 2) ↔ (𝑥(dist‘𝐺)𝑢) < (𝑧 / 2)))
6720, 21ovresd 7293 . . . . . . . . . . 11 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) = (𝑦(dist‘𝐺)𝑣))
6867breq1d 5052 . . . . . . . . . 10 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → ((𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < (𝑧 / 2) ↔ (𝑦(dist‘𝐺)𝑣) < (𝑧 / 2)))
6966, 68anbi12d 632 . . . . . . . . 9 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < (𝑧 / 2) ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < (𝑧 / 2)) ↔ ((𝑥(dist‘𝐺)𝑢) < (𝑧 / 2) ∧ (𝑦(dist‘𝐺)𝑣) < (𝑧 / 2))))
7030, 32ovresd 7293 . . . . . . . . . 10 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → ((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) = ((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)))
7170breq1d 5052 . . . . . . . . 9 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) < 𝑧 ↔ ((𝑥(-g𝐺)𝑦)(dist‘𝐺)(𝑢(-g𝐺)𝑣)) < 𝑧))
7264, 69, 713imtr4d 296 . . . . . . . 8 (((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) ∧ (𝑢 ∈ (Base‘𝐺) ∧ 𝑣 ∈ (Base‘𝐺))) → (((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < (𝑧 / 2) ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < (𝑧 / 2)) → ((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) < 𝑧))
7372ralrimivva 3178 . . . . . . 7 ((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) → ∀𝑢 ∈ (Base‘𝐺)∀𝑣 ∈ (Base‘𝐺)(((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < (𝑧 / 2) ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < (𝑧 / 2)) → ((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) < 𝑧))
74 breq2 5046 . . . . . . . . . . 11 (𝑟 = (𝑧 / 2) → ((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < 𝑟 ↔ (𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < (𝑧 / 2)))
75 breq2 5046 . . . . . . . . . . 11 (𝑟 = (𝑧 / 2) → ((𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < 𝑟 ↔ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < (𝑧 / 2)))
7674, 75anbi12d 632 . . . . . . . . . 10 (𝑟 = (𝑧 / 2) → (((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < 𝑟 ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < 𝑟) ↔ ((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < (𝑧 / 2) ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < (𝑧 / 2))))
7776imbi1d 344 . . . . . . . . 9 (𝑟 = (𝑧 / 2) → ((((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < 𝑟 ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < 𝑟) → ((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) < 𝑧) ↔ (((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < (𝑧 / 2) ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < (𝑧 / 2)) → ((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) < 𝑧)))
78772ralbidv 3186 . . . . . . . 8 (𝑟 = (𝑧 / 2) → (∀𝑢 ∈ (Base‘𝐺)∀𝑣 ∈ (Base‘𝐺)(((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < 𝑟 ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < 𝑟) → ((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) < 𝑧) ↔ ∀𝑢 ∈ (Base‘𝐺)∀𝑣 ∈ (Base‘𝐺)(((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < (𝑧 / 2) ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < (𝑧 / 2)) → ((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) < 𝑧)))
7978rspcev 3602 . . . . . . 7 (((𝑧 / 2) ∈ ℝ+ ∧ ∀𝑢 ∈ (Base‘𝐺)∀𝑣 ∈ (Base‘𝐺)(((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < (𝑧 / 2) ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < (𝑧 / 2)) → ((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) < 𝑧)) → ∃𝑟 ∈ ℝ+𝑢 ∈ (Base‘𝐺)∀𝑣 ∈ (Base‘𝐺)(((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < 𝑟 ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < 𝑟) → ((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) < 𝑧))
8011, 73, 79syl2an2 684 . . . . . 6 ((((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ 𝑧 ∈ ℝ+) → ∃𝑟 ∈ ℝ+𝑢 ∈ (Base‘𝐺)∀𝑣 ∈ (Base‘𝐺)(((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < 𝑟 ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < 𝑟) → ((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) < 𝑧))
8180ralrimiva 3169 . . . . 5 (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → ∀𝑧 ∈ ℝ+𝑟 ∈ ℝ+𝑢 ∈ (Base‘𝐺)∀𝑣 ∈ (Base‘𝐺)(((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < 𝑟 ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < 𝑟) → ((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) < 𝑧))
8281ralrimivva 3178 . . . 4 ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ ℝ+𝑟 ∈ ℝ+𝑢 ∈ (Base‘𝐺)∀𝑣 ∈ (Base‘𝐺)(((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < 𝑟 ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < 𝑟) → ((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) < 𝑧))
83 msxms 23040 . . . . . 6 (𝐺 ∈ MetSp → 𝐺 ∈ ∞MetSp)
84 eqid 2820 . . . . . . 7 ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) = ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))
857, 84xmsxmet 23042 . . . . . 6 (𝐺 ∈ ∞MetSp → ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) ∈ (∞Met‘(Base‘𝐺)))
864, 83, 853syl 18 . . . . 5 ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) ∈ (∞Met‘(Base‘𝐺)))
87 eqid 2820 . . . . . 6 (MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))) = (MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))))
8887, 87, 87txmetcn 23134 . . . . 5 ((((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) ∈ (∞Met‘(Base‘𝐺)) ∧ ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) ∈ (∞Met‘(Base‘𝐺)) ∧ ((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))) ∈ (∞Met‘(Base‘𝐺))) → ((-g𝐺) ∈ (((MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))) ×t (MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))))) Cn (MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))))) ↔ ((-g𝐺):((Base‘𝐺) × (Base‘𝐺))⟶(Base‘𝐺) ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ ℝ+𝑟 ∈ ℝ+𝑢 ∈ (Base‘𝐺)∀𝑣 ∈ (Base‘𝐺)(((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < 𝑟 ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < 𝑟) → ((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) < 𝑧))))
8986, 86, 86, 88syl3anc 1367 . . . 4 ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → ((-g𝐺) ∈ (((MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))) ×t (MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))))) Cn (MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))))) ↔ ((-g𝐺):((Base‘𝐺) × (Base‘𝐺))⟶(Base‘𝐺) ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)∀𝑧 ∈ ℝ+𝑟 ∈ ℝ+𝑢 ∈ (Base‘𝐺)∀𝑣 ∈ (Base‘𝐺)(((𝑥((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑢) < 𝑟 ∧ (𝑦((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))𝑣) < 𝑟) → ((𝑥(-g𝐺)𝑦)((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))(𝑢(-g𝐺)𝑣)) < 𝑧))))
9010, 82, 89mpbir2and 711 . . 3 ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → (-g𝐺) ∈ (((MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))) ×t (MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))))) Cn (MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))))))
91 eqid 2820 . . . . . . 7 (TopOpen‘𝐺) = (TopOpen‘𝐺)
9291, 7, 84mstopn 23038 . . . . . 6 (𝐺 ∈ MetSp → (TopOpen‘𝐺) = (MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))))
934, 92syl 17 . . . . 5 ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → (TopOpen‘𝐺) = (MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))))
9493, 93oveq12d 7151 . . . 4 ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → ((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) = ((MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))) ×t (MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))))))
9594, 93oveq12d 7151 . . 3 ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺)) = (((MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺)))) ×t (MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))))) Cn (MetOpen‘((dist‘𝐺) ↾ ((Base‘𝐺) × (Base‘𝐺))))))
9690, 95eleqtrrd 2914 . 2 ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → (-g𝐺) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺)))
9791, 8istgp2 22675 . 2 (𝐺 ∈ TopGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ (-g𝐺) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺))))
982, 6, 96, 97syl3anbrc 1339 1 ((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) → 𝐺 ∈ TopGrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3125  wrex 3126   class class class wbr 5042   × cxp 5529  cres 5533  wf 6327  cfv 6331  (class class class)co 7133  cr 10514   + caddc 10518   < clt 10653  cle 10654   / cdiv 11275  2c2 11671  +crp 12368  Basecbs 16462  +gcplusg 16544  distcds 16553  TopOpenctopn 16674  Grpcgrp 18082  invgcminusg 18083  -gcsg 18084  Abelcabl 18886  ∞Metcxmet 20506  MetOpencmopn 20511  TopSpctps 21516   Cn ccn 21808   ×t ctx 22144  TopGrpctgp 22655  ∞MetSpcxms 22903  MetSpcms 22904  NrmGrpcngp 23163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439  ax-cnex 10571  ax-resscn 10572  ax-1cn 10573  ax-icn 10574  ax-addcl 10575  ax-addrcl 10576  ax-mulcl 10577  ax-mulrcl 10578  ax-mulcom 10579  ax-addass 10580  ax-mulass 10581  ax-distr 10582  ax-i2m1 10583  ax-1ne0 10584  ax-1rid 10585  ax-rnegex 10586  ax-rrecex 10587  ax-cnre 10588  ax-pre-lttri 10589  ax-pre-lttrn 10590  ax-pre-ltadd 10591  ax-pre-mulgt0 10592  ax-pre-sup 10593
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-tp 4548  df-op 4550  df-uni 4815  df-int 4853  df-iun 4897  df-iin 4898  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5436  df-eprel 5441  df-po 5450  df-so 5451  df-fr 5490  df-se 5491  df-we 5492  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-isom 6340  df-riota 7091  df-ov 7136  df-oprab 7137  df-mpo 7138  df-of 7387  df-om 7559  df-1st 7667  df-2nd 7668  df-supp 7809  df-wrecs 7925  df-recs 7986  df-rdg 8024  df-1o 8080  df-2o 8081  df-oadd 8084  df-er 8267  df-map 8386  df-ixp 8440  df-en 8488  df-dom 8489  df-sdom 8490  df-fin 8491  df-fsupp 8812  df-fi 8853  df-sup 8884  df-inf 8885  df-oi 8952  df-card 9346  df-pnf 10655  df-mnf 10656  df-xr 10657  df-ltxr 10658  df-le 10659  df-sub 10850  df-neg 10851  df-div 11276  df-nn 11617  df-2 11679  df-3 11680  df-4 11681  df-5 11682  df-6 11683  df-7 11684  df-8 11685  df-9 11686  df-n0 11877  df-z 11961  df-dec 12078  df-uz 12223  df-q 12328  df-rp 12369  df-xneg 12486  df-xadd 12487  df-xmul 12488  df-icc 12724  df-fz 12877  df-fzo 13018  df-seq 13354  df-hash 13676  df-struct 16464  df-ndx 16465  df-slot 16466  df-base 16468  df-sets 16469  df-ress 16470  df-plusg 16557  df-mulr 16558  df-sca 16560  df-vsca 16561  df-ip 16562  df-tset 16563  df-ple 16564  df-ds 16566  df-hom 16568  df-cco 16569  df-rest 16675  df-topn 16676  df-0g 16694  df-gsum 16695  df-topgen 16696  df-pt 16697  df-prds 16700  df-xrs 16754  df-qtop 16759  df-imas 16760  df-xps 16762  df-mre 16836  df-mrc 16837  df-acs 16839  df-plusf 17830  df-mgm 17831  df-sgrp 17880  df-mnd 17891  df-submnd 17936  df-grp 18085  df-minusg 18086  df-sbg 18087  df-mulg 18204  df-cntz 18426  df-cmn 18887  df-abl 18888  df-psmet 20513  df-xmet 20514  df-met 20515  df-bl 20516  df-mopn 20517  df-top 21478  df-topon 21495  df-topsp 21517  df-bases 21530  df-cn 21811  df-cnp 21812  df-tx 22146  df-hmeo 22339  df-tmd 22656  df-tgp 22657  df-xms 22906  df-ms 22907  df-tms 22908  df-nm 23168  df-ngp 23169
This theorem is referenced by:  nrgtgp  23257  nlmtlm  23279
  Copyright terms: Public domain W3C validator