MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt2ds Structured version   Visualization version   GIF version

Theorem cnmpt2ds 23694
Description: Continuity of the metric function; analogue of cnmpt22f 22526 which cannot be used directly because 𝐷 is not necessarily a function. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
cnmpt1ds.d 𝐷 = (dist‘𝐺)
cnmpt1ds.j 𝐽 = (TopOpen‘𝐺)
cnmpt1ds.r 𝑅 = (topGen‘ran (,))
cnmpt1ds.g (𝜑𝐺 ∈ MetSp)
cnmpt1ds.k (𝜑𝐾 ∈ (TopOn‘𝑋))
cnmpt2ds.l (𝜑𝐿 ∈ (TopOn‘𝑌))
cnmpt2ds.a (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐾 ×t 𝐿) Cn 𝐽))
cnmpt2ds.b (𝜑 → (𝑥𝑋, 𝑦𝑌𝐵) ∈ ((𝐾 ×t 𝐿) Cn 𝐽))
Assertion
Ref Expression
cnmpt2ds (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ (𝐴𝐷𝐵)) ∈ ((𝐾 ×t 𝐿) Cn 𝑅))
Distinct variable groups:   𝑥,𝑦,𝐷   𝑥,𝐺,𝑦   𝑥,𝐽,𝑦   𝑥,𝐾   𝜑,𝑥,𝑦   𝑥,𝑅,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐾(𝑦)   𝐿(𝑥,𝑦)

Proof of Theorem cnmpt2ds
StepHypRef Expression
1 cnmpt1ds.k . . . . . . . . . 10 (𝜑𝐾 ∈ (TopOn‘𝑋))
2 cnmpt2ds.l . . . . . . . . . 10 (𝜑𝐿 ∈ (TopOn‘𝑌))
3 txtopon 22442 . . . . . . . . . 10 ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (TopOn‘𝑌)) → (𝐾 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌)))
41, 2, 3syl2anc 587 . . . . . . . . 9 (𝜑 → (𝐾 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌)))
5 cnmpt1ds.g . . . . . . . . . . 11 (𝜑𝐺 ∈ MetSp)
6 mstps 23307 . . . . . . . . . . 11 (𝐺 ∈ MetSp → 𝐺 ∈ TopSp)
75, 6syl 17 . . . . . . . . . 10 (𝜑𝐺 ∈ TopSp)
8 eqid 2736 . . . . . . . . . . 11 (Base‘𝐺) = (Base‘𝐺)
9 cnmpt1ds.j . . . . . . . . . . 11 𝐽 = (TopOpen‘𝐺)
108, 9istps 21785 . . . . . . . . . 10 (𝐺 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘(Base‘𝐺)))
117, 10sylib 221 . . . . . . . . 9 (𝜑𝐽 ∈ (TopOn‘(Base‘𝐺)))
12 cnmpt2ds.a . . . . . . . . 9 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐾 ×t 𝐿) Cn 𝐽))
13 cnf2 22100 . . . . . . . . 9 (((𝐾 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝐽 ∈ (TopOn‘(Base‘𝐺)) ∧ (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) → (𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶(Base‘𝐺))
144, 11, 12, 13syl3anc 1373 . . . . . . . 8 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶(Base‘𝐺))
15 eqid 2736 . . . . . . . . 9 (𝑥𝑋, 𝑦𝑌𝐴) = (𝑥𝑋, 𝑦𝑌𝐴)
1615fmpo 7816 . . . . . . . 8 (∀𝑥𝑋𝑦𝑌 𝐴 ∈ (Base‘𝐺) ↔ (𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶(Base‘𝐺))
1714, 16sylibr 237 . . . . . . 7 (𝜑 → ∀𝑥𝑋𝑦𝑌 𝐴 ∈ (Base‘𝐺))
1817r19.21bi 3120 . . . . . 6 ((𝜑𝑥𝑋) → ∀𝑦𝑌 𝐴 ∈ (Base‘𝐺))
1918r19.21bi 3120 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → 𝐴 ∈ (Base‘𝐺))
20 cnmpt2ds.b . . . . . . . . 9 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐵) ∈ ((𝐾 ×t 𝐿) Cn 𝐽))
21 cnf2 22100 . . . . . . . . 9 (((𝐾 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝐽 ∈ (TopOn‘(Base‘𝐺)) ∧ (𝑥𝑋, 𝑦𝑌𝐵) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) → (𝑥𝑋, 𝑦𝑌𝐵):(𝑋 × 𝑌)⟶(Base‘𝐺))
224, 11, 20, 21syl3anc 1373 . . . . . . . 8 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐵):(𝑋 × 𝑌)⟶(Base‘𝐺))
23 eqid 2736 . . . . . . . . 9 (𝑥𝑋, 𝑦𝑌𝐵) = (𝑥𝑋, 𝑦𝑌𝐵)
2423fmpo 7816 . . . . . . . 8 (∀𝑥𝑋𝑦𝑌 𝐵 ∈ (Base‘𝐺) ↔ (𝑥𝑋, 𝑦𝑌𝐵):(𝑋 × 𝑌)⟶(Base‘𝐺))
2522, 24sylibr 237 . . . . . . 7 (𝜑 → ∀𝑥𝑋𝑦𝑌 𝐵 ∈ (Base‘𝐺))
2625r19.21bi 3120 . . . . . 6 ((𝜑𝑥𝑋) → ∀𝑦𝑌 𝐵 ∈ (Base‘𝐺))
2726r19.21bi 3120 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → 𝐵 ∈ (Base‘𝐺))
2819, 27ovresd 7353 . . . 4 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → (𝐴(𝐷 ↾ ((Base‘𝐺) × (Base‘𝐺)))𝐵) = (𝐴𝐷𝐵))
29283impa 1112 . . 3 ((𝜑𝑥𝑋𝑦𝑌) → (𝐴(𝐷 ↾ ((Base‘𝐺) × (Base‘𝐺)))𝐵) = (𝐴𝐷𝐵))
3029mpoeq3dva 7266 . 2 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ (𝐴(𝐷 ↾ ((Base‘𝐺) × (Base‘𝐺)))𝐵)) = (𝑥𝑋, 𝑦𝑌 ↦ (𝐴𝐷𝐵)))
31 cnmpt1ds.d . . . . 5 𝐷 = (dist‘𝐺)
32 cnmpt1ds.r . . . . 5 𝑅 = (topGen‘ran (,))
338, 31, 9, 32msdcn 23692 . . . 4 (𝐺 ∈ MetSp → (𝐷 ↾ ((Base‘𝐺) × (Base‘𝐺))) ∈ ((𝐽 ×t 𝐽) Cn 𝑅))
345, 33syl 17 . . 3 (𝜑 → (𝐷 ↾ ((Base‘𝐺) × (Base‘𝐺))) ∈ ((𝐽 ×t 𝐽) Cn 𝑅))
351, 2, 12, 20, 34cnmpt22f 22526 . 2 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ (𝐴(𝐷 ↾ ((Base‘𝐺) × (Base‘𝐺)))𝐵)) ∈ ((𝐾 ×t 𝐿) Cn 𝑅))
3630, 35eqeltrrd 2832 1 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ (𝐴𝐷𝐵)) ∈ ((𝐾 ×t 𝐿) Cn 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  wral 3051   × cxp 5534  ran crn 5537  cres 5538  wf 6354  cfv 6358  (class class class)co 7191  cmpo 7193  (,)cioo 12900  Basecbs 16666  distcds 16758  TopOpenctopn 16880  topGenctg 16896  TopOnctopon 21761  TopSpctps 21783   Cn ccn 22075   ×t ctx 22411  MetSpcms 23170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-iin 4893  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-se 5495  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-of 7447  df-om 7623  df-1st 7739  df-2nd 7740  df-supp 7882  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-2o 8181  df-er 8369  df-ec 8371  df-map 8488  df-ixp 8557  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-fsupp 8964  df-fi 9005  df-sup 9036  df-inf 9037  df-oi 9104  df-card 9520  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-3 11859  df-4 11860  df-5 11861  df-6 11862  df-7 11863  df-8 11864  df-9 11865  df-n0 12056  df-z 12142  df-dec 12259  df-uz 12404  df-q 12510  df-rp 12552  df-xneg 12669  df-xadd 12670  df-xmul 12671  df-ioo 12904  df-ioc 12905  df-ico 12906  df-icc 12907  df-fz 13061  df-fzo 13204  df-seq 13540  df-exp 13601  df-hash 13862  df-cj 14627  df-re 14628  df-im 14629  df-sqrt 14763  df-abs 14764  df-struct 16668  df-ndx 16669  df-slot 16670  df-base 16672  df-sets 16673  df-ress 16674  df-plusg 16762  df-mulr 16763  df-sca 16765  df-vsca 16766  df-ip 16767  df-tset 16768  df-ple 16769  df-ds 16771  df-hom 16773  df-cco 16774  df-rest 16881  df-topn 16882  df-0g 16900  df-gsum 16901  df-topgen 16902  df-pt 16903  df-prds 16906  df-ordt 16960  df-xrs 16961  df-qtop 16966  df-imas 16967  df-xps 16969  df-mre 17043  df-mrc 17044  df-acs 17046  df-ps 18026  df-tsr 18027  df-mgm 18068  df-sgrp 18117  df-mnd 18128  df-submnd 18173  df-mulg 18443  df-cntz 18665  df-cmn 19126  df-psmet 20309  df-xmet 20310  df-met 20311  df-bl 20312  df-mopn 20313  df-top 21745  df-topon 21762  df-topsp 21784  df-bases 21797  df-cn 22078  df-cnp 22079  df-tx 22413  df-hmeo 22606  df-xms 23172  df-ms 23173  df-tms 23174
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator