![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnmpt2ds | Structured version Visualization version GIF version |
Description: Continuity of the metric function; analogue of cnmpt22f 23170 which cannot be used directly because 𝐷 is not necessarily a function. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
cnmpt1ds.d | ⊢ 𝐷 = (dist‘𝐺) |
cnmpt1ds.j | ⊢ 𝐽 = (TopOpen‘𝐺) |
cnmpt1ds.r | ⊢ 𝑅 = (topGen‘ran (,)) |
cnmpt1ds.g | ⊢ (𝜑 → 𝐺 ∈ MetSp) |
cnmpt1ds.k | ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑋)) |
cnmpt2ds.l | ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑌)) |
cnmpt2ds.a | ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) |
cnmpt2ds.b | ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) |
Ref | Expression |
---|---|
cnmpt2ds | ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝐴𝐷𝐵)) ∈ ((𝐾 ×t 𝐿) Cn 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnmpt1ds.k | . . . . . . . . . 10 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑋)) | |
2 | cnmpt2ds.l | . . . . . . . . . 10 ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑌)) | |
3 | txtopon 23086 | . . . . . . . . . 10 ⊢ ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (TopOn‘𝑌)) → (𝐾 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌))) | |
4 | 1, 2, 3 | syl2anc 584 | . . . . . . . . 9 ⊢ (𝜑 → (𝐾 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌))) |
5 | cnmpt1ds.g | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐺 ∈ MetSp) | |
6 | mstps 23952 | . . . . . . . . . . 11 ⊢ (𝐺 ∈ MetSp → 𝐺 ∈ TopSp) | |
7 | 5, 6 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐺 ∈ TopSp) |
8 | eqid 2732 | . . . . . . . . . . 11 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
9 | cnmpt1ds.j | . . . . . . . . . . 11 ⊢ 𝐽 = (TopOpen‘𝐺) | |
10 | 8, 9 | istps 22427 | . . . . . . . . . 10 ⊢ (𝐺 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘(Base‘𝐺))) |
11 | 7, 10 | sylib 217 | . . . . . . . . 9 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘(Base‘𝐺))) |
12 | cnmpt2ds.a | . . . . . . . . 9 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) | |
13 | cnf2 22744 | . . . . . . . . 9 ⊢ (((𝐾 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝐽 ∈ (TopOn‘(Base‘𝐺)) ∧ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴):(𝑋 × 𝑌)⟶(Base‘𝐺)) | |
14 | 4, 11, 12, 13 | syl3anc 1371 | . . . . . . . 8 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴):(𝑋 × 𝑌)⟶(Base‘𝐺)) |
15 | eqid 2732 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) | |
16 | 15 | fmpo 8050 | . . . . . . . 8 ⊢ (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐴 ∈ (Base‘𝐺) ↔ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴):(𝑋 × 𝑌)⟶(Base‘𝐺)) |
17 | 14, 16 | sylibr 233 | . . . . . . 7 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐴 ∈ (Base‘𝐺)) |
18 | 17 | r19.21bi 3248 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∀𝑦 ∈ 𝑌 𝐴 ∈ (Base‘𝐺)) |
19 | 18 | r19.21bi 3248 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑌) → 𝐴 ∈ (Base‘𝐺)) |
20 | cnmpt2ds.b | . . . . . . . . 9 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) | |
21 | cnf2 22744 | . . . . . . . . 9 ⊢ (((𝐾 ×t 𝐿) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝐽 ∈ (TopOn‘(Base‘𝐺)) ∧ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵):(𝑋 × 𝑌)⟶(Base‘𝐺)) | |
22 | 4, 11, 20, 21 | syl3anc 1371 | . . . . . . . 8 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵):(𝑋 × 𝑌)⟶(Base‘𝐺)) |
23 | eqid 2732 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵) | |
24 | 23 | fmpo 8050 | . . . . . . . 8 ⊢ (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐵 ∈ (Base‘𝐺) ↔ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐵):(𝑋 × 𝑌)⟶(Base‘𝐺)) |
25 | 22, 24 | sylibr 233 | . . . . . . 7 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐵 ∈ (Base‘𝐺)) |
26 | 25 | r19.21bi 3248 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∀𝑦 ∈ 𝑌 𝐵 ∈ (Base‘𝐺)) |
27 | 26 | r19.21bi 3248 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑌) → 𝐵 ∈ (Base‘𝐺)) |
28 | 19, 27 | ovresd 7570 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑌) → (𝐴(𝐷 ↾ ((Base‘𝐺) × (Base‘𝐺)))𝐵) = (𝐴𝐷𝐵)) |
29 | 28 | 3impa 1110 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) → (𝐴(𝐷 ↾ ((Base‘𝐺) × (Base‘𝐺)))𝐵) = (𝐴𝐷𝐵)) |
30 | 29 | mpoeq3dva 7482 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝐴(𝐷 ↾ ((Base‘𝐺) × (Base‘𝐺)))𝐵)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝐴𝐷𝐵))) |
31 | cnmpt1ds.d | . . . . 5 ⊢ 𝐷 = (dist‘𝐺) | |
32 | cnmpt1ds.r | . . . . 5 ⊢ 𝑅 = (topGen‘ran (,)) | |
33 | 8, 31, 9, 32 | msdcn 24348 | . . . 4 ⊢ (𝐺 ∈ MetSp → (𝐷 ↾ ((Base‘𝐺) × (Base‘𝐺))) ∈ ((𝐽 ×t 𝐽) Cn 𝑅)) |
34 | 5, 33 | syl 17 | . . 3 ⊢ (𝜑 → (𝐷 ↾ ((Base‘𝐺) × (Base‘𝐺))) ∈ ((𝐽 ×t 𝐽) Cn 𝑅)) |
35 | 1, 2, 12, 20, 34 | cnmpt22f 23170 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝐴(𝐷 ↾ ((Base‘𝐺) × (Base‘𝐺)))𝐵)) ∈ ((𝐾 ×t 𝐿) Cn 𝑅)) |
36 | 30, 35 | eqeltrrd 2834 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝐴𝐷𝐵)) ∈ ((𝐾 ×t 𝐿) Cn 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3061 × cxp 5673 ran crn 5676 ↾ cres 5677 ⟶wf 6536 ‘cfv 6540 (class class class)co 7405 ∈ cmpo 7407 (,)cioo 13320 Basecbs 17140 distcds 17202 TopOpenctopn 17363 topGenctg 17379 TopOnctopon 22403 TopSpctps 22425 Cn ccn 22719 ×t ctx 23055 MetSpcms 23815 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7666 df-om 7852 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-2o 8463 df-er 8699 df-ec 8701 df-map 8818 df-ixp 8888 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-fi 9402 df-sup 9433 df-inf 9434 df-oi 9501 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-q 12929 df-rp 12971 df-xneg 13088 df-xadd 13089 df-xmul 13090 df-ioo 13324 df-ioc 13325 df-ico 13326 df-icc 13327 df-fz 13481 df-fzo 13624 df-seq 13963 df-exp 14024 df-hash 14287 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-sca 17209 df-vsca 17210 df-ip 17211 df-tset 17212 df-ple 17213 df-ds 17215 df-hom 17217 df-cco 17218 df-rest 17364 df-topn 17365 df-0g 17383 df-gsum 17384 df-topgen 17385 df-pt 17386 df-prds 17389 df-ordt 17443 df-xrs 17444 df-qtop 17449 df-imas 17450 df-xps 17452 df-mre 17526 df-mrc 17527 df-acs 17529 df-ps 18515 df-tsr 18516 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-submnd 18668 df-mulg 18945 df-cntz 19175 df-cmn 19644 df-psmet 20928 df-xmet 20929 df-met 20930 df-bl 20931 df-mopn 20932 df-top 22387 df-topon 22404 df-topsp 22426 df-bases 22440 df-cn 22722 df-cnp 22723 df-tx 23057 df-hmeo 23250 df-xms 23817 df-ms 23818 df-tms 23819 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |