![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnmpt1ds | Structured version Visualization version GIF version |
Description: Continuity of the metric function; analogue of cnmpt12f 23690 which cannot be used directly because 𝐷 is not necessarily a function. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
cnmpt1ds.d | ⊢ 𝐷 = (dist‘𝐺) |
cnmpt1ds.j | ⊢ 𝐽 = (TopOpen‘𝐺) |
cnmpt1ds.r | ⊢ 𝑅 = (topGen‘ran (,)) |
cnmpt1ds.g | ⊢ (𝜑 → 𝐺 ∈ MetSp) |
cnmpt1ds.k | ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑋)) |
cnmpt1ds.a | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐾 Cn 𝐽)) |
cnmpt1ds.b | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐾 Cn 𝐽)) |
Ref | Expression |
---|---|
cnmpt1ds | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴𝐷𝐵)) ∈ (𝐾 Cn 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnmpt1ds.k | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑋)) | |
2 | cnmpt1ds.g | . . . . . . . 8 ⊢ (𝜑 → 𝐺 ∈ MetSp) | |
3 | mstps 24481 | . . . . . . . 8 ⊢ (𝐺 ∈ MetSp → 𝐺 ∈ TopSp) | |
4 | 2, 3 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ TopSp) |
5 | eqid 2735 | . . . . . . . 8 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
6 | cnmpt1ds.j | . . . . . . . 8 ⊢ 𝐽 = (TopOpen‘𝐺) | |
7 | 5, 6 | istps 22956 | . . . . . . 7 ⊢ (𝐺 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘(Base‘𝐺))) |
8 | 4, 7 | sylib 218 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘(Base‘𝐺))) |
9 | cnmpt1ds.a | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐾 Cn 𝐽)) | |
10 | cnf2 23273 | . . . . . 6 ⊢ ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ (TopOn‘(Base‘𝐺)) ∧ (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐾 Cn 𝐽)) → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶(Base‘𝐺)) | |
11 | 1, 8, 9, 10 | syl3anc 1370 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶(Base‘𝐺)) |
12 | 11 | fvmptelcdm 7133 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ (Base‘𝐺)) |
13 | cnmpt1ds.b | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐾 Cn 𝐽)) | |
14 | cnf2 23273 | . . . . . 6 ⊢ ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ (TopOn‘(Base‘𝐺)) ∧ (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐾 Cn 𝐽)) → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶(Base‘𝐺)) | |
15 | 1, 8, 13, 14 | syl3anc 1370 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶(Base‘𝐺)) |
16 | 15 | fvmptelcdm 7133 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ (Base‘𝐺)) |
17 | 12, 16 | ovresd 7600 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐴(𝐷 ↾ ((Base‘𝐺) × (Base‘𝐺)))𝐵) = (𝐴𝐷𝐵)) |
18 | 17 | mpteq2dva 5248 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴(𝐷 ↾ ((Base‘𝐺) × (Base‘𝐺)))𝐵)) = (𝑥 ∈ 𝑋 ↦ (𝐴𝐷𝐵))) |
19 | cnmpt1ds.d | . . . . 5 ⊢ 𝐷 = (dist‘𝐺) | |
20 | cnmpt1ds.r | . . . . 5 ⊢ 𝑅 = (topGen‘ran (,)) | |
21 | 5, 19, 6, 20 | msdcn 24877 | . . . 4 ⊢ (𝐺 ∈ MetSp → (𝐷 ↾ ((Base‘𝐺) × (Base‘𝐺))) ∈ ((𝐽 ×t 𝐽) Cn 𝑅)) |
22 | 2, 21 | syl 17 | . . 3 ⊢ (𝜑 → (𝐷 ↾ ((Base‘𝐺) × (Base‘𝐺))) ∈ ((𝐽 ×t 𝐽) Cn 𝑅)) |
23 | 1, 9, 13, 22 | cnmpt12f 23690 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴(𝐷 ↾ ((Base‘𝐺) × (Base‘𝐺)))𝐵)) ∈ (𝐾 Cn 𝑅)) |
24 | 18, 23 | eqeltrrd 2840 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴𝐷𝐵)) ∈ (𝐾 Cn 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ↦ cmpt 5231 × cxp 5687 ran crn 5690 ↾ cres 5691 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 (,)cioo 13384 Basecbs 17245 distcds 17307 TopOpenctopn 17468 topGenctg 17484 TopOnctopon 22932 TopSpctps 22954 Cn ccn 23248 ×t ctx 23584 MetSpcms 24344 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-ec 8746 df-map 8867 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-fi 9449 df-sup 9480 df-inf 9481 df-oi 9548 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-q 12989 df-rp 13033 df-xneg 13152 df-xadd 13153 df-xmul 13154 df-ioo 13388 df-ioc 13389 df-ico 13390 df-icc 13391 df-fz 13545 df-fzo 13692 df-seq 14040 df-exp 14100 df-hash 14367 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-hom 17322 df-cco 17323 df-rest 17469 df-topn 17470 df-0g 17488 df-gsum 17489 df-topgen 17490 df-pt 17491 df-prds 17494 df-ordt 17548 df-xrs 17549 df-qtop 17554 df-imas 17555 df-xps 17557 df-mre 17631 df-mrc 17632 df-acs 17634 df-ps 18624 df-tsr 18625 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-submnd 18810 df-mulg 19099 df-cntz 19348 df-cmn 19815 df-psmet 21374 df-xmet 21375 df-met 21376 df-bl 21377 df-mopn 21378 df-top 22916 df-topon 22933 df-topsp 22955 df-bases 22969 df-cn 23251 df-cnp 23252 df-tx 23586 df-hmeo 23779 df-xms 24346 df-ms 24347 df-tms 24348 |
This theorem is referenced by: nmcn 24880 |
Copyright terms: Public domain | W3C validator |