Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnmpt1ds | Structured version Visualization version GIF version |
Description: Continuity of the metric function; analogue of cnmpt12f 22922 which cannot be used directly because 𝐷 is not necessarily a function. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
cnmpt1ds.d | ⊢ 𝐷 = (dist‘𝐺) |
cnmpt1ds.j | ⊢ 𝐽 = (TopOpen‘𝐺) |
cnmpt1ds.r | ⊢ 𝑅 = (topGen‘ran (,)) |
cnmpt1ds.g | ⊢ (𝜑 → 𝐺 ∈ MetSp) |
cnmpt1ds.k | ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑋)) |
cnmpt1ds.a | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐾 Cn 𝐽)) |
cnmpt1ds.b | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐾 Cn 𝐽)) |
Ref | Expression |
---|---|
cnmpt1ds | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴𝐷𝐵)) ∈ (𝐾 Cn 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnmpt1ds.k | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑋)) | |
2 | cnmpt1ds.g | . . . . . . . 8 ⊢ (𝜑 → 𝐺 ∈ MetSp) | |
3 | mstps 23713 | . . . . . . . 8 ⊢ (𝐺 ∈ MetSp → 𝐺 ∈ TopSp) | |
4 | 2, 3 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐺 ∈ TopSp) |
5 | eqid 2737 | . . . . . . . 8 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
6 | cnmpt1ds.j | . . . . . . . 8 ⊢ 𝐽 = (TopOpen‘𝐺) | |
7 | 5, 6 | istps 22188 | . . . . . . 7 ⊢ (𝐺 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘(Base‘𝐺))) |
8 | 4, 7 | sylib 217 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘(Base‘𝐺))) |
9 | cnmpt1ds.a | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐾 Cn 𝐽)) | |
10 | cnf2 22505 | . . . . . 6 ⊢ ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ (TopOn‘(Base‘𝐺)) ∧ (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐾 Cn 𝐽)) → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶(Base‘𝐺)) | |
11 | 1, 8, 9, 10 | syl3anc 1371 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶(Base‘𝐺)) |
12 | 11 | fvmptelcdm 7047 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ (Base‘𝐺)) |
13 | cnmpt1ds.b | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐾 Cn 𝐽)) | |
14 | cnf2 22505 | . . . . . 6 ⊢ ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ (TopOn‘(Base‘𝐺)) ∧ (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐾 Cn 𝐽)) → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶(Base‘𝐺)) | |
15 | 1, 8, 13, 14 | syl3anc 1371 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶(Base‘𝐺)) |
16 | 15 | fvmptelcdm 7047 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ (Base‘𝐺)) |
17 | 12, 16 | ovresd 7505 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐴(𝐷 ↾ ((Base‘𝐺) × (Base‘𝐺)))𝐵) = (𝐴𝐷𝐵)) |
18 | 17 | mpteq2dva 5196 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴(𝐷 ↾ ((Base‘𝐺) × (Base‘𝐺)))𝐵)) = (𝑥 ∈ 𝑋 ↦ (𝐴𝐷𝐵))) |
19 | cnmpt1ds.d | . . . . 5 ⊢ 𝐷 = (dist‘𝐺) | |
20 | cnmpt1ds.r | . . . . 5 ⊢ 𝑅 = (topGen‘ran (,)) | |
21 | 5, 19, 6, 20 | msdcn 24109 | . . . 4 ⊢ (𝐺 ∈ MetSp → (𝐷 ↾ ((Base‘𝐺) × (Base‘𝐺))) ∈ ((𝐽 ×t 𝐽) Cn 𝑅)) |
22 | 2, 21 | syl 17 | . . 3 ⊢ (𝜑 → (𝐷 ↾ ((Base‘𝐺) × (Base‘𝐺))) ∈ ((𝐽 ×t 𝐽) Cn 𝑅)) |
23 | 1, 9, 13, 22 | cnmpt12f 22922 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴(𝐷 ↾ ((Base‘𝐺) × (Base‘𝐺)))𝐵)) ∈ (𝐾 Cn 𝑅)) |
24 | 18, 23 | eqeltrrd 2839 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴𝐷𝐵)) ∈ (𝐾 Cn 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1541 ∈ wcel 2106 ↦ cmpt 5179 × cxp 5622 ran crn 5625 ↾ cres 5626 ⟶wf 6479 ‘cfv 6483 (class class class)co 7341 (,)cioo 13184 Basecbs 17009 distcds 17068 TopOpenctopn 17229 topGenctg 17245 TopOnctopon 22164 TopSpctps 22186 Cn ccn 22480 ×t ctx 22816 MetSpcms 23576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5233 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 ax-un 7654 ax-cnex 11032 ax-resscn 11033 ax-1cn 11034 ax-icn 11035 ax-addcl 11036 ax-addrcl 11037 ax-mulcl 11038 ax-mulrcl 11039 ax-mulcom 11040 ax-addass 11041 ax-mulass 11042 ax-distr 11043 ax-i2m1 11044 ax-1ne0 11045 ax-1rid 11046 ax-rnegex 11047 ax-rrecex 11048 ax-cnre 11049 ax-pre-lttri 11050 ax-pre-lttrn 11051 ax-pre-ltadd 11052 ax-pre-mulgt0 11053 ax-pre-sup 11054 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-pss 3920 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4857 df-int 4899 df-iun 4947 df-iin 4948 df-br 5097 df-opab 5159 df-mpt 5180 df-tr 5214 df-id 5522 df-eprel 5528 df-po 5536 df-so 5537 df-fr 5579 df-se 5580 df-we 5581 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-pred 6242 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-f1 6488 df-fo 6489 df-f1o 6490 df-fv 6491 df-isom 6492 df-riota 7297 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7599 df-om 7785 df-1st 7903 df-2nd 7904 df-supp 8052 df-frecs 8171 df-wrecs 8202 df-recs 8276 df-rdg 8315 df-1o 8371 df-2o 8372 df-er 8573 df-ec 8575 df-map 8692 df-ixp 8761 df-en 8809 df-dom 8810 df-sdom 8811 df-fin 8812 df-fsupp 9231 df-fi 9272 df-sup 9303 df-inf 9304 df-oi 9371 df-card 9800 df-pnf 11116 df-mnf 11117 df-xr 11118 df-ltxr 11119 df-le 11120 df-sub 11312 df-neg 11313 df-div 11738 df-nn 12079 df-2 12141 df-3 12142 df-4 12143 df-5 12144 df-6 12145 df-7 12146 df-8 12147 df-9 12148 df-n0 12339 df-z 12425 df-dec 12543 df-uz 12688 df-q 12794 df-rp 12836 df-xneg 12953 df-xadd 12954 df-xmul 12955 df-ioo 13188 df-ioc 13189 df-ico 13190 df-icc 13191 df-fz 13345 df-fzo 13488 df-seq 13827 df-exp 13888 df-hash 14150 df-cj 14909 df-re 14910 df-im 14911 df-sqrt 15045 df-abs 15046 df-struct 16945 df-sets 16962 df-slot 16980 df-ndx 16992 df-base 17010 df-ress 17039 df-plusg 17072 df-mulr 17073 df-sca 17075 df-vsca 17076 df-ip 17077 df-tset 17078 df-ple 17079 df-ds 17081 df-hom 17083 df-cco 17084 df-rest 17230 df-topn 17231 df-0g 17249 df-gsum 17250 df-topgen 17251 df-pt 17252 df-prds 17255 df-ordt 17309 df-xrs 17310 df-qtop 17315 df-imas 17316 df-xps 17318 df-mre 17392 df-mrc 17393 df-acs 17395 df-ps 18381 df-tsr 18382 df-mgm 18423 df-sgrp 18472 df-mnd 18483 df-submnd 18528 df-mulg 18797 df-cntz 19019 df-cmn 19483 df-psmet 20694 df-xmet 20695 df-met 20696 df-bl 20697 df-mopn 20698 df-top 22148 df-topon 22165 df-topsp 22187 df-bases 22201 df-cn 22483 df-cnp 22484 df-tx 22818 df-hmeo 23011 df-xms 23578 df-ms 23579 df-tms 23580 |
This theorem is referenced by: nmcn 24112 |
Copyright terms: Public domain | W3C validator |