![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ngptps | Structured version Visualization version GIF version |
Description: A normed group is a topological space. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
ngptps | ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ TopSp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ngpms 24629 | . 2 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp) | |
2 | mstps 24481 | . 2 ⊢ (𝐺 ∈ MetSp → 𝐺 ∈ TopSp) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ TopSp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 TopSpctps 22954 MetSpcms 24344 NrmGrpcngp 24606 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-xp 5695 df-co 5698 df-res 5701 df-iota 6516 df-fv 6571 df-xms 24346 df-ms 24347 df-ngp 24612 |
This theorem is referenced by: nmcn 24880 cnmpt1ip 25295 cnmpt2ip 25296 csscld 25297 clsocv 25298 rrxtps 46242 |
Copyright terms: Public domain | W3C validator |