MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ngptps Structured version   Visualization version   GIF version

Theorem ngptps 24506
Description: A normed group is a topological space. (Contributed by Mario Carneiro, 5-Oct-2015.)
Assertion
Ref Expression
ngptps (𝐺 ∈ NrmGrp → 𝐺 ∈ TopSp)

Proof of Theorem ngptps
StepHypRef Expression
1 ngpms 24504 . 2 (𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp)
2 mstps 24359 . 2 (𝐺 ∈ MetSp → 𝐺 ∈ TopSp)
31, 2syl 17 1 (𝐺 ∈ NrmGrp → 𝐺 ∈ TopSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  TopSpctps 22835  MetSpcms 24222  NrmGrpcngp 24481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-xp 5629  df-co 5632  df-res 5635  df-iota 6442  df-fv 6494  df-xms 24224  df-ms 24225  df-ngp 24487
This theorem is referenced by:  nmcn  24749  cnmpt1ip  25163  cnmpt2ip  25164  csscld  25165  clsocv  25166  rrxtps  46268
  Copyright terms: Public domain W3C validator