| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > msxms | Structured version Visualization version GIF version | ||
| Description: A metric space is an extended metric space. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| Ref | Expression |
|---|---|
| msxms | ⊢ (𝑀 ∈ MetSp → 𝑀 ∈ ∞MetSp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (TopOpen‘𝑀) = (TopOpen‘𝑀) | |
| 2 | eqid 2729 | . . 3 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 3 | eqid 2729 | . . 3 ⊢ ((dist‘𝑀) ↾ ((Base‘𝑀) × (Base‘𝑀))) = ((dist‘𝑀) ↾ ((Base‘𝑀) × (Base‘𝑀))) | |
| 4 | 1, 2, 3 | isms 24337 | . 2 ⊢ (𝑀 ∈ MetSp ↔ (𝑀 ∈ ∞MetSp ∧ ((dist‘𝑀) ↾ ((Base‘𝑀) × (Base‘𝑀))) ∈ (Met‘(Base‘𝑀)))) |
| 5 | 4 | simplbi 497 | 1 ⊢ (𝑀 ∈ MetSp → 𝑀 ∈ ∞MetSp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 × cxp 5636 ↾ cres 5640 ‘cfv 6511 Basecbs 17179 distcds 17229 TopOpenctopn 17384 Metcmet 21250 ∞MetSpcxms 24205 MetSpcms 24206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-xp 5644 df-res 5650 df-iota 6464 df-fv 6519 df-ms 24209 |
| This theorem is referenced by: mstps 24343 imasf1oms 24378 ressms 24414 prdsms 24419 ngpxms 24489 ngptgp 24524 nlmvscnlem2 24573 nlmvscn 24575 nrginvrcn 24580 nghmcn 24633 cnfldxms 24664 nmhmcn 25020 ipcnlem2 25144 ipcn 25146 nglmle 25202 cmetcusp1 25253 dya2icoseg2 34269 |
| Copyright terms: Public domain | W3C validator |