MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  msxms Structured version   Visualization version   GIF version

Theorem msxms 24349
Description: A metric space is an extended metric space. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
msxms (𝑀 ∈ MetSp → 𝑀 ∈ ∞MetSp)

Proof of Theorem msxms
StepHypRef Expression
1 eqid 2730 . . 3 (TopOpen‘𝑀) = (TopOpen‘𝑀)
2 eqid 2730 . . 3 (Base‘𝑀) = (Base‘𝑀)
3 eqid 2730 . . 3 ((dist‘𝑀) ↾ ((Base‘𝑀) × (Base‘𝑀))) = ((dist‘𝑀) ↾ ((Base‘𝑀) × (Base‘𝑀)))
41, 2, 3isms 24344 . 2 (𝑀 ∈ MetSp ↔ (𝑀 ∈ ∞MetSp ∧ ((dist‘𝑀) ↾ ((Base‘𝑀) × (Base‘𝑀))) ∈ (Met‘(Base‘𝑀))))
54simplbi 497 1 (𝑀 ∈ MetSp → 𝑀 ∈ ∞MetSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109   × cxp 5639  cres 5643  cfv 6514  Basecbs 17186  distcds 17236  TopOpenctopn 17391  Metcmet 21257  ∞MetSpcxms 24212  MetSpcms 24213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-xp 5647  df-res 5653  df-iota 6467  df-fv 6522  df-ms 24216
This theorem is referenced by:  mstps  24350  imasf1oms  24385  ressms  24421  prdsms  24426  ngpxms  24496  ngptgp  24531  nlmvscnlem2  24580  nlmvscn  24582  nrginvrcn  24587  nghmcn  24640  cnfldxms  24671  nmhmcn  25027  ipcnlem2  25151  ipcn  25153  nglmle  25209  cmetcusp1  25260  dya2icoseg2  34276
  Copyright terms: Public domain W3C validator