![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > msxms | Structured version Visualization version GIF version |
Description: A metric space is an extended metric space. (Contributed by Mario Carneiro, 26-Aug-2015.) |
Ref | Expression |
---|---|
msxms | ⊢ (𝑀 ∈ MetSp → 𝑀 ∈ ∞MetSp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ (TopOpen‘𝑀) = (TopOpen‘𝑀) | |
2 | eqid 2740 | . . 3 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
3 | eqid 2740 | . . 3 ⊢ ((dist‘𝑀) ↾ ((Base‘𝑀) × (Base‘𝑀))) = ((dist‘𝑀) ↾ ((Base‘𝑀) × (Base‘𝑀))) | |
4 | 1, 2, 3 | isms 24480 | . 2 ⊢ (𝑀 ∈ MetSp ↔ (𝑀 ∈ ∞MetSp ∧ ((dist‘𝑀) ↾ ((Base‘𝑀) × (Base‘𝑀))) ∈ (Met‘(Base‘𝑀)))) |
5 | 4 | simplbi 497 | 1 ⊢ (𝑀 ∈ MetSp → 𝑀 ∈ ∞MetSp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 × cxp 5698 ↾ cres 5702 ‘cfv 6573 Basecbs 17258 distcds 17320 TopOpenctopn 17481 Metcmet 21373 ∞MetSpcxms 24348 MetSpcms 24349 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-res 5712 df-iota 6525 df-fv 6581 df-ms 24352 |
This theorem is referenced by: mstps 24486 imasf1oms 24524 ressms 24560 prdsms 24565 ngpxms 24635 ngptgp 24670 nlmvscnlem2 24727 nlmvscn 24729 nrginvrcn 24734 nghmcn 24787 cnfldxms 24818 nmhmcn 25172 ipcnlem2 25297 ipcn 25299 nglmle 25355 cmetcusp1 25406 dya2icoseg2 34243 |
Copyright terms: Public domain | W3C validator |