MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  msxms Structured version   Visualization version   GIF version

Theorem msxms 22472
Description: A metric space is a topological space. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
msxms (𝑀 ∈ MetSp → 𝑀 ∈ ∞MetSp)

Proof of Theorem msxms
StepHypRef Expression
1 eqid 2771 . . 3 (TopOpen‘𝑀) = (TopOpen‘𝑀)
2 eqid 2771 . . 3 (Base‘𝑀) = (Base‘𝑀)
3 eqid 2771 . . 3 ((dist‘𝑀) ↾ ((Base‘𝑀) × (Base‘𝑀))) = ((dist‘𝑀) ↾ ((Base‘𝑀) × (Base‘𝑀)))
41, 2, 3isms 22467 . 2 (𝑀 ∈ MetSp ↔ (𝑀 ∈ ∞MetSp ∧ ((dist‘𝑀) ↾ ((Base‘𝑀) × (Base‘𝑀))) ∈ (Met‘(Base‘𝑀))))
54simplbi 485 1 (𝑀 ∈ MetSp → 𝑀 ∈ ∞MetSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2145   × cxp 5247  cres 5251  cfv 6029  Basecbs 16057  distcds 16151  TopOpenctopn 16283  Metcme 19940  ∞MetSpcxme 22335  MetSpcmt 22336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-rex 3067  df-rab 3070  df-v 3353  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-opab 4847  df-xp 5255  df-res 5261  df-iota 5992  df-fv 6037  df-ms 22339
This theorem is referenced by:  mstps  22473  imasf1oms  22508  ressms  22544  prdsms  22549  ngpxms  22618  ngptgp  22653  nlmvscnlem2  22702  nlmvscn  22704  nrginvrcn  22709  nghmcn  22762  cnfldxms  22793  nmhmcn  23132  ipcnlem2  23255  ipcn  23257  nglmle  23312  cmetcusp1  23361  dya2icoseg2  30673
  Copyright terms: Public domain W3C validator