Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > msxms | Structured version Visualization version GIF version |
Description: A metric space is an extended metric space. (Contributed by Mario Carneiro, 26-Aug-2015.) |
Ref | Expression |
---|---|
msxms | ⊢ (𝑀 ∈ MetSp → 𝑀 ∈ ∞MetSp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (TopOpen‘𝑀) = (TopOpen‘𝑀) | |
2 | eqid 2738 | . . 3 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
3 | eqid 2738 | . . 3 ⊢ ((dist‘𝑀) ↾ ((Base‘𝑀) × (Base‘𝑀))) = ((dist‘𝑀) ↾ ((Base‘𝑀) × (Base‘𝑀))) | |
4 | 1, 2, 3 | isms 23590 | . 2 ⊢ (𝑀 ∈ MetSp ↔ (𝑀 ∈ ∞MetSp ∧ ((dist‘𝑀) ↾ ((Base‘𝑀) × (Base‘𝑀))) ∈ (Met‘(Base‘𝑀)))) |
5 | 4 | simplbi 498 | 1 ⊢ (𝑀 ∈ MetSp → 𝑀 ∈ ∞MetSp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 × cxp 5583 ↾ cres 5587 ‘cfv 6427 Basecbs 16900 distcds 16959 TopOpenctopn 17120 Metcmet 20571 ∞MetSpcxms 23458 MetSpcms 23459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3432 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5075 df-opab 5137 df-xp 5591 df-res 5597 df-iota 6385 df-fv 6435 df-ms 23462 |
This theorem is referenced by: mstps 23596 imasf1oms 23634 ressms 23670 prdsms 23675 ngpxms 23745 ngptgp 23780 nlmvscnlem2 23837 nlmvscn 23839 nrginvrcn 23844 nghmcn 23897 cnfldxms 23928 nmhmcn 24271 ipcnlem2 24396 ipcn 24398 nglmle 24454 cmetcusp1 24505 dya2icoseg2 32231 |
Copyright terms: Public domain | W3C validator |