| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > msxms | Structured version Visualization version GIF version | ||
| Description: A metric space is an extended metric space. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| Ref | Expression |
|---|---|
| msxms | ⊢ (𝑀 ∈ MetSp → 𝑀 ∈ ∞MetSp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (TopOpen‘𝑀) = (TopOpen‘𝑀) | |
| 2 | eqid 2731 | . . 3 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 3 | eqid 2731 | . . 3 ⊢ ((dist‘𝑀) ↾ ((Base‘𝑀) × (Base‘𝑀))) = ((dist‘𝑀) ↾ ((Base‘𝑀) × (Base‘𝑀))) | |
| 4 | 1, 2, 3 | isms 24364 | . 2 ⊢ (𝑀 ∈ MetSp ↔ (𝑀 ∈ ∞MetSp ∧ ((dist‘𝑀) ↾ ((Base‘𝑀) × (Base‘𝑀))) ∈ (Met‘(Base‘𝑀)))) |
| 5 | 4 | simplbi 497 | 1 ⊢ (𝑀 ∈ MetSp → 𝑀 ∈ ∞MetSp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 × cxp 5612 ↾ cres 5616 ‘cfv 6481 Basecbs 17120 distcds 17170 TopOpenctopn 17325 Metcmet 21277 ∞MetSpcxms 24232 MetSpcms 24233 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-xp 5620 df-res 5626 df-iota 6437 df-fv 6489 df-ms 24236 |
| This theorem is referenced by: mstps 24370 imasf1oms 24405 ressms 24441 prdsms 24446 ngpxms 24516 ngptgp 24551 nlmvscnlem2 24600 nlmvscn 24602 nrginvrcn 24607 nghmcn 24660 cnfldxms 24691 nmhmcn 25047 ipcnlem2 25171 ipcn 25173 nglmle 25229 cmetcusp1 25280 dya2icoseg2 34291 |
| Copyright terms: Public domain | W3C validator |