| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > msxms | Structured version Visualization version GIF version | ||
| Description: A metric space is an extended metric space. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| Ref | Expression |
|---|---|
| msxms | ⊢ (𝑀 ∈ MetSp → 𝑀 ∈ ∞MetSp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (TopOpen‘𝑀) = (TopOpen‘𝑀) | |
| 2 | eqid 2729 | . . 3 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 3 | eqid 2729 | . . 3 ⊢ ((dist‘𝑀) ↾ ((Base‘𝑀) × (Base‘𝑀))) = ((dist‘𝑀) ↾ ((Base‘𝑀) × (Base‘𝑀))) | |
| 4 | 1, 2, 3 | isms 24313 | . 2 ⊢ (𝑀 ∈ MetSp ↔ (𝑀 ∈ ∞MetSp ∧ ((dist‘𝑀) ↾ ((Base‘𝑀) × (Base‘𝑀))) ∈ (Met‘(Base‘𝑀)))) |
| 5 | 4 | simplbi 497 | 1 ⊢ (𝑀 ∈ MetSp → 𝑀 ∈ ∞MetSp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 × cxp 5629 ↾ cres 5633 ‘cfv 6499 Basecbs 17155 distcds 17205 TopOpenctopn 17360 Metcmet 21226 ∞MetSpcxms 24181 MetSpcms 24182 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-xp 5637 df-res 5643 df-iota 6452 df-fv 6507 df-ms 24185 |
| This theorem is referenced by: mstps 24319 imasf1oms 24354 ressms 24390 prdsms 24395 ngpxms 24465 ngptgp 24500 nlmvscnlem2 24549 nlmvscn 24551 nrginvrcn 24556 nghmcn 24609 cnfldxms 24640 nmhmcn 24996 ipcnlem2 25120 ipcn 25122 nglmle 25178 cmetcusp1 25229 dya2icoseg2 34242 |
| Copyright terms: Public domain | W3C validator |