Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > msxms | Structured version Visualization version GIF version |
Description: A metric space is an extended metric space. (Contributed by Mario Carneiro, 26-Aug-2015.) |
Ref | Expression |
---|---|
msxms | ⊢ (𝑀 ∈ MetSp → 𝑀 ∈ ∞MetSp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . 3 ⊢ (TopOpen‘𝑀) = (TopOpen‘𝑀) | |
2 | eqid 2736 | . . 3 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
3 | eqid 2736 | . . 3 ⊢ ((dist‘𝑀) ↾ ((Base‘𝑀) × (Base‘𝑀))) = ((dist‘𝑀) ↾ ((Base‘𝑀) × (Base‘𝑀))) | |
4 | 1, 2, 3 | isms 23651 | . 2 ⊢ (𝑀 ∈ MetSp ↔ (𝑀 ∈ ∞MetSp ∧ ((dist‘𝑀) ↾ ((Base‘𝑀) × (Base‘𝑀))) ∈ (Met‘(Base‘𝑀)))) |
5 | 4 | simplbi 499 | 1 ⊢ (𝑀 ∈ MetSp → 𝑀 ∈ ∞MetSp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2104 × cxp 5598 ↾ cres 5602 ‘cfv 6458 Basecbs 16961 distcds 17020 TopOpenctopn 17181 Metcmet 20632 ∞MetSpcxms 23519 MetSpcms 23520 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3306 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-xp 5606 df-res 5612 df-iota 6410 df-fv 6466 df-ms 23523 |
This theorem is referenced by: mstps 23657 imasf1oms 23695 ressms 23731 prdsms 23736 ngpxms 23806 ngptgp 23841 nlmvscnlem2 23898 nlmvscn 23900 nrginvrcn 23905 nghmcn 23958 cnfldxms 23989 nmhmcn 24332 ipcnlem2 24457 ipcn 24459 nglmle 24515 cmetcusp1 24566 dya2icoseg2 32294 |
Copyright terms: Public domain | W3C validator |