MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  msxms Structured version   Visualization version   GIF version

Theorem msxms 24340
Description: A metric space is an extended metric space. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
msxms (𝑀 ∈ MetSp → 𝑀 ∈ ∞MetSp)

Proof of Theorem msxms
StepHypRef Expression
1 eqid 2729 . . 3 (TopOpen‘𝑀) = (TopOpen‘𝑀)
2 eqid 2729 . . 3 (Base‘𝑀) = (Base‘𝑀)
3 eqid 2729 . . 3 ((dist‘𝑀) ↾ ((Base‘𝑀) × (Base‘𝑀))) = ((dist‘𝑀) ↾ ((Base‘𝑀) × (Base‘𝑀)))
41, 2, 3isms 24335 . 2 (𝑀 ∈ MetSp ↔ (𝑀 ∈ ∞MetSp ∧ ((dist‘𝑀) ↾ ((Base‘𝑀) × (Base‘𝑀))) ∈ (Met‘(Base‘𝑀))))
54simplbi 497 1 (𝑀 ∈ MetSp → 𝑀 ∈ ∞MetSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109   × cxp 5617  cres 5621  cfv 6482  Basecbs 17120  distcds 17170  TopOpenctopn 17325  Metcmet 21247  ∞MetSpcxms 24203  MetSpcms 24204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-xp 5625  df-res 5631  df-iota 6438  df-fv 6490  df-ms 24207
This theorem is referenced by:  mstps  24341  imasf1oms  24376  ressms  24412  prdsms  24417  ngpxms  24487  ngptgp  24522  nlmvscnlem2  24571  nlmvscn  24573  nrginvrcn  24578  nghmcn  24631  cnfldxms  24662  nmhmcn  25018  ipcnlem2  25142  ipcn  25144  nglmle  25200  cmetcusp1  25251  dya2icoseg2  34246
  Copyright terms: Public domain W3C validator