| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > msxms | Structured version Visualization version GIF version | ||
| Description: A metric space is an extended metric space. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| Ref | Expression |
|---|---|
| msxms | ⊢ (𝑀 ∈ MetSp → 𝑀 ∈ ∞MetSp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (TopOpen‘𝑀) = (TopOpen‘𝑀) | |
| 2 | eqid 2729 | . . 3 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 3 | eqid 2729 | . . 3 ⊢ ((dist‘𝑀) ↾ ((Base‘𝑀) × (Base‘𝑀))) = ((dist‘𝑀) ↾ ((Base‘𝑀) × (Base‘𝑀))) | |
| 4 | 1, 2, 3 | isms 24335 | . 2 ⊢ (𝑀 ∈ MetSp ↔ (𝑀 ∈ ∞MetSp ∧ ((dist‘𝑀) ↾ ((Base‘𝑀) × (Base‘𝑀))) ∈ (Met‘(Base‘𝑀)))) |
| 5 | 4 | simplbi 497 | 1 ⊢ (𝑀 ∈ MetSp → 𝑀 ∈ ∞MetSp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 × cxp 5617 ↾ cres 5621 ‘cfv 6482 Basecbs 17120 distcds 17170 TopOpenctopn 17325 Metcmet 21247 ∞MetSpcxms 24203 MetSpcms 24204 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-xp 5625 df-res 5631 df-iota 6438 df-fv 6490 df-ms 24207 |
| This theorem is referenced by: mstps 24341 imasf1oms 24376 ressms 24412 prdsms 24417 ngpxms 24487 ngptgp 24522 nlmvscnlem2 24571 nlmvscn 24573 nrginvrcn 24578 nghmcn 24631 cnfldxms 24662 nmhmcn 25018 ipcnlem2 25142 ipcn 25144 nglmle 25200 cmetcusp1 25251 dya2icoseg2 34246 |
| Copyright terms: Public domain | W3C validator |